test_transforms.py 78.1 KB
Newer Older
1
import math
2
import os
3
import random
4
from functools import partial
5
6
7

import numpy as np
import pytest
8
9
import torch
import torchvision.transforms as transforms
10
import torchvision.transforms.functional as F
11
import torchvision.transforms.functional_tensor as F_t
12
from PIL import Image
13
14
from torch._utils_internal import get_file_path_2

15
16
17
18
19
try:
    import accimage
except ImportError:
    accimage = None

20
21
22
23
24
try:
    from scipy import stats
except ImportError:
    stats = None

25
from common_utils import cycle_over, int_dtypes, float_dtypes, assert_equal
26
27


28
GRACE_HOPPER = get_file_path_2(
29
30
    os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
)
31
32


33
def _get_grayscale_test_image(img, fill=None):
34
35
    img = img.convert("L")
    fill = (fill[0],) if isinstance(fill, tuple) else fill
36
37
38
    return img, fill


39
class TestConvertImageDtype:
40
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(float_dtypes()))
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    def test_float_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert abs(actual_max - desired_max) < 1e-7

57
58
    @pytest.mark.parametrize("input_dtype", float_dtypes())
    @pytest.mark.parametrize("output_dtype", int_dtypes())
59
60
61
62
63
64
    def test_float_to_int(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
65
            input_dtype == torch.float64 and output_dtype == torch.int64
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        ):
            with pytest.raises(RuntimeError):
                transform(input_image)
        else:
            output_image = transform(input_image)
            output_image_script = transform_script(input_image, output_dtype)

            torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

            actual_min, actual_max = output_image.tolist()
            desired_min, desired_max = 0, torch.iinfo(output_dtype).max

            assert actual_min == desired_min
            assert actual_max == desired_max

81
82
    @pytest.mark.parametrize("input_dtype", int_dtypes())
    @pytest.mark.parametrize("output_dtype", float_dtypes())
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    def test_int_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert actual_min >= desired_min
        assert abs(actual_max - desired_max) < 1e-7
        assert actual_max <= desired_max

101
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    def test_dtype_int_to_int(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)
        output_max = torch.iinfo(output_dtype).max

        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(
            output_image_script,
            output_image,
            rtol=0.0,
            atol=1e-6,
118
            msg=f"{output_image_script} vs {output_image}",
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        )

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, output_max

        # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
        if input_max >= output_max:
            error_term = 0
        else:
            error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

        assert actual_min == desired_min
        assert actual_max == (desired_max + error_term)

133
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    def test_int_to_int_consistency(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)

        output_max = torch.iinfo(output_dtype).max
        if output_max <= input_max:
            return

        transform = transforms.ConvertImageDtype(output_dtype)
        inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
        output_image = inverse_transfrom(transform(input_image))

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, input_max

        assert actual_min == desired_min
        assert actual_max == desired_max
151

152

153
154
155
156
157
@pytest.mark.skipif(accimage is None, reason="accimage not available")
class TestAccImage:
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

158
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
159
160
161
162
163
164
165
        output = trans(accimage.Image(GRACE_HOPPER))

        torch.testing.assert_close(output, expected_output)

    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

166
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
167
168
169
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
170
        torch.testing.assert_close(output, expected_output)
171
172

    def test_accimage_resize(self):
173
174
175
176
177
178
        trans = transforms.Compose(
            [
                transforms.Resize(256, interpolation=Image.LINEAR),
                transforms.ToTensor(),
            ]
        )
179
180
181
182

        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

183
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
184
185
186
187
188
189
190
191
192
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        assert np.abs((expected_output - output).mean()) < 1e-3
        assert (expected_output - output).var() < 1e-5
        # note the high absolute tolerance
        torch.testing.assert_close(output.numpy(), expected_output.numpy(), rtol=1e-5, atol=5e-2)

    def test_accimage_crop(self):
193
194
195
196
197
198
        trans = transforms.Compose(
            [
                transforms.CenterCrop(256),
                transforms.ToTensor(),
            ]
        )
199
200
201
202

        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

203
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
204
205
206
207
208
209
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        torch.testing.assert_close(output, expected_output)


210
class TestToTensor:
211
    @pytest.mark.parametrize("channels", [1, 3, 4])
212
213
214
    def test_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.ToTensor()
215
        np_rng = np.random.RandomState(0)
216

217
218
219
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
220
        torch.testing.assert_close(output, input_data)
221

222
        ndarray = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
223
224
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1)) / 255.0
225
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
226

227
        ndarray = np_rng.rand(height, width, channels).astype(np.float32)
228
229
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1))
230
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
231
232
233

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
234
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
235
        output = trans(img)
236
        torch.testing.assert_close(input_data, output, check_dtype=False)
237
238
239
240

    def test_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.ToTensor()
241
        np_rng = np.random.RandomState(0)
242

243
        with pytest.raises(TypeError):
244
            trans(np_rng.rand(1, height, width).tolist())
245

246
        with pytest.raises(ValueError):
247
            trans(np_rng.rand(height))
248

249
        with pytest.raises(ValueError):
250
            trans(np_rng.rand(1, 1, height, width))
251

252
    @pytest.mark.parametrize("dtype", [torch.float16, torch.float, torch.double])
253
    def test_to_tensor_with_other_default_dtypes(self, dtype):
254
        np_rng = np.random.RandomState(0)
255
        current_def_dtype = torch.get_default_dtype()
256

257
        t = transforms.ToTensor()
258
        np_arr = np_rng.randint(0, 255, (32, 32, 3), dtype=np.uint8)
259
        img = Image.fromarray(np_arr)
260

261
262
263
        torch.set_default_dtype(dtype)
        res = t(img)
        assert res.dtype == dtype, f"{res.dtype} vs {dtype}"
264

265
        torch.set_default_dtype(current_def_dtype)
266

267
    @pytest.mark.parametrize("channels", [1, 3, 4])
268
269
270
    def test_pil_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.PILToTensor()
271
        np_rng = np.random.RandomState(0)
272

273
274
275
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
276
        torch.testing.assert_close(input_data, output)
277

278
        input_data = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
279
280
281
282
283
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
        expected_output = input_data.transpose((2, 0, 1))
        torch.testing.assert_close(output.numpy(), expected_output)

284
        input_data = torch.as_tensor(np_rng.rand(channels, height, width).astype(np.float32))
285
286
287
        img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
        output = trans(img)  # HWC -> CHW
        expected_output = (input_data * 255).byte()
288
        torch.testing.assert_close(output, expected_output)
289

290
291
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
292
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
293
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
294
        torch.testing.assert_close(input_data, output)
295

296
297
298
    def test_pil_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.PILToTensor()
299
        np_rng = np.random.RandomState(0)
300

301
        with pytest.raises(TypeError):
302
            trans(np_rng.rand(1, height, width).tolist())
303

304
        with pytest.raises(TypeError):
305
            trans(np_rng.rand(1, height, width))
306
307


308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def test_randomresized_params():
    height = random.randint(24, 32) * 2
    width = random.randint(24, 32) * 2
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    size = 100
    epsilon = 0.05
    min_scale = 0.25
    for _ in range(10):
        scale_min = max(round(random.random(), 2), min_scale)
        scale_range = (scale_min, scale_min + round(random.random(), 2))
        aspect_min = max(round(random.random(), 2), epsilon)
        aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
        randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
        i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
        aspect_ratio_obtained = w / h
325
326
327
328
        assert (
            min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained
            and aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon
        ) or aspect_ratio_obtained == 1.0
329
330
331
332
333
334
        assert isinstance(i, int)
        assert isinstance(j, int)
        assert isinstance(h, int)
        assert isinstance(w, int)


335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # single integer
        22,
        27,
        28,
        36,
        # single integer in tuple/list
        [
            22,
        ],
        (27,),
    ],
)
@pytest.mark.parametrize("max_size", (None, 37, 1000))
366
367
368
369
370
371
def test_resize(height, width, osize, max_size):
    img = Image.new("RGB", size=(width, height), color=127)

    t = transforms.Resize(osize, max_size=max_size)
    result = t(img)

372
    msg = f"{height}, {width} - {osize} - {max_size}"
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
    # If size is an int, smaller edge of the image will be matched to this number.
    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
    if height < width:
        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
        if max_size is not None and max_size < exp_w:
            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
        assert result.size == (exp_w, exp_h), msg
    elif width < height:
        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
        if max_size is not None and max_size < exp_h:
            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
        assert result.size == (exp_w, exp_h), msg
    else:
        exp_w, exp_h = (osize, osize)  # (w, h)
        if max_size is not None and max_size < osize:
            exp_w, exp_h = max_size, max_size
        assert result.size == (exp_w, exp_h), msg


393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # two integers sequence output
        [22, 22],
        [22, 28],
        [22, 36],
        [27, 22],
        [36, 22],
        [28, 28],
        [28, 37],
        [37, 27],
        [37, 37],
    ],
)
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def test_resize_sequence_output(height, width, osize):
    img = Image.new("RGB", size=(width, height), color=127)
    oheight, owidth = osize

    t = transforms.Resize(osize)
    result = t(img)

    assert (owidth, oheight) == result.size


def test_resize_antialias_error():
    osize = [37, 37]
    img = Image.new("RGB", size=(35, 29), color=127)

    with pytest.warns(UserWarning, match=r"Anti-alias option is always applied for PIL Image input"):
        t = transforms.Resize(osize, antialias=False)
        t(img)


442
443
444
445
446
447
448
class TestPad:
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        fill = random.randint(1, 50)
449
450
451
452
453
454
455
        result = transforms.Compose(
            [
                transforms.ToPILImage(),
                transforms.Pad(padding, fill=fill),
                transforms.ToTensor(),
            ]
        )(img)
456
457
458
459
460
461
462
463
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
464
465
466
        torch.testing.assert_close(h_padded, torch.full_like(h_padded, fill_value=fill_v), rtol=0.0, atol=eps)
        torch.testing.assert_close(w_padded, torch.full_like(w_padded, fill_value=fill_v), rtol=0.0, atol=eps)
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)), transforms.ToPILImage()(img))
467
468
469
470
471
472

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

473
        padding = tuple(random.randint(1, 20) for _ in range(2))
474
475
476
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

477
        padding = tuple(random.randint(1, 20) for _ in range(4))
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
493
        edge_padded_img = F.pad(img, 3, padding_mode="edge")
494
495
496
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
497
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8))
498
499
500
        assert transforms.ToTensor()(edge_padded_img).size() == (3, 35, 35)

        # Pad 3 to left/right, 2 to top/bottom
501
        reflect_padded_img = F.pad(img, (3, 2), padding_mode="reflect")
502
503
504
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
505
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8))
506
507
508
        assert transforms.ToTensor()(reflect_padded_img).size() == (3, 33, 35)

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
509
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode="symmetric")
510
511
512
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
513
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8))
514
515
516
517
518
        assert transforms.ToTensor()(symmetric_padded_img).size() == (3, 32, 34)

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
519
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode="symmetric")
520
521
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
522
523
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8))
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8))
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
        assert transforms.ToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
542
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])
543
544


545
@pytest.mark.parametrize(
546
    "fn, trans, kwargs",
547
548
549
550
551
552
553
    [
        (F.invert, transforms.RandomInvert, {}),
        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
        (F.autocontrast, transforms.RandomAutocontrast, {}),
        (F.equalize, transforms.RandomEqualize, {}),
554
555
556
        (F.vflip, transforms.RandomVerticalFlip, {}),
        (F.hflip, transforms.RandomHorizontalFlip, {}),
        (partial(F.to_grayscale, num_output_channels=3), transforms.RandomGrayscale, {}),
557
558
    ],
)
559
560
561
562
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_randomness(fn, trans, kwargs, seed, p):
    torch.manual_seed(seed)
563
564
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

565
566
    expected_transformed_img = fn(img, **kwargs)
    randomly_transformed_img = trans(p=p, **kwargs)(img)
567

568
569
570
571
    if p == 0:
        assert randomly_transformed_img == img
    elif p == 1:
        assert randomly_transformed_img == expected_transformed_img
572

573
    trans(**kwargs).__repr__()
574
575


576
577
578
579
580
581
582
583
584
def test_autocontrast_equal_minmax():
    img_tensor = torch.tensor([[[10]], [[128]], [[245]]], dtype=torch.uint8).expand(3, 32, 32)
    img_pil = F.to_pil_image(img_tensor)

    img_tensor = F.autocontrast(img_tensor)
    img_pil = F.autocontrast(img_pil)
    torch.testing.assert_close(img_tensor, F.pil_to_tensor(img_pil))


585
586
587
588
class TestToPil:
    def _get_1_channel_tensor_various_types():
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
589
        yield img_data_float, expected_output, "L"
590

591
592
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
593
        yield img_data_byte, expected_output, "L"
594

595
596
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        expected_output = img_data_short.numpy()
597
        yield img_data_short, expected_output, "I;16"
598

599
600
        img_data_int = torch.IntTensor(1, 4, 4).random_()
        expected_output = img_data_int.numpy()
601
        yield img_data_int, expected_output, "I"
602

603
604
605
    def _get_2d_tensor_various_types():
        img_data_float = torch.Tensor(4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
606
        yield img_data_float, expected_output, "L"
607

608
609
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
610
        yield img_data_byte, expected_output, "L"
611

612
613
        img_data_short = torch.ShortTensor(4, 4).random_()
        expected_output = img_data_short.numpy()
614
        yield img_data_short, expected_output, "I;16"
615

616
617
        img_data_int = torch.IntTensor(4, 4).random_()
        expected_output = img_data_int.numpy()
618
        yield img_data_int, expected_output, "I"
619

620
621
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_1_channel_tensor_various_types())
622
623
624
    def test_1_channel_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()
625

626
        img = transform(img_data)
627
        assert img.mode == expected_mode
628
        torch.testing.assert_close(expected_output, to_tensor(img).numpy())
629

630
631
632
    def test_1_channel_float_tensor_to_pil_image(self):
        img_data = torch.Tensor(1, 4, 4).uniform_()
        # 'F' mode for torch.FloatTensor
633
634
        img_F_mode = transforms.ToPILImage(mode="F")(img_data)
        assert img_F_mode.mode == "F"
635
        torch.testing.assert_close(
636
            np.array(Image.fromarray(img_data.squeeze(0).numpy(), mode="F")), np.array(img_F_mode)
637
        )
638

639
640
641
642
643
644
645
646
647
648
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4, 1).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4, 1).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4, 1).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4, 1).random_().numpy(), "I"),
        ],
    )
649
650
651
    def test_1_channel_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
652
        assert img.mode == expected_mode
653
654
655
        # note: we explicitly convert img's dtype because pytorch doesn't support uint16
        # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
        torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
656

657
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
658
659
    def test_2_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
660

661
662
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
663
            assert img.mode == "LA"  # default should assume LA
664
665
666
667
668
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(2):
669
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
670
671
672
673
674
675
676

    def test_2_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        transforms.ToPILImage().__repr__()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
677
            transforms.ToPILImage(mode="RGBA")(img_data)
678
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
679
            transforms.ToPILImage(mode="P")(img_data)
680
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
681
            transforms.ToPILImage(mode="RGB")(img_data)
682

683
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
684
685
686
687
688
    def test_2_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
689
            assert img.mode == "LA"  # default should assume LA
690
691
692
693
694
695
696
697
698
699
700
701
702
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(2):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_2_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(2, 4, 4).uniform_()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
703
            transforms.ToPILImage(mode="RGBA")(img_data)
704
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
705
            transforms.ToPILImage(mode="P")(img_data)
706
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
707
            transforms.ToPILImage(mode="RGB")(img_data)
708

709
710
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_2d_tensor_various_types())
711
712
713
714
715
    def test_2d_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img = transform(img_data)
716
        assert img.mode == expected_mode
717
718
        torch.testing.assert_close(expected_output, to_tensor(img).numpy()[0])

719
720
721
722
723
724
725
726
727
728
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4).random_().numpy(), "I"),
        ],
    )
729
730
731
    def test_2d_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
732
        assert img.mode == expected_mode
733
        np.testing.assert_allclose(img_data, img)
734

735
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
736
737
738
    def test_3_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
739

740
741
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
742
            assert img.mode == "RGB"  # default should assume RGB
743
744
745
746
747
748
749
750
751
752
753
754
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_3_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
755
            transforms.ToPILImage(mode="RGBA")(img_data)
756
        with pytest.raises(ValueError, match=error_message_3d):
757
            transforms.ToPILImage(mode="P")(img_data)
758
        with pytest.raises(ValueError, match=error_message_3d):
759
            transforms.ToPILImage(mode="LA")(img_data)
760

761
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
762
763
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

764
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
765
766
767
768
769
    def test_3_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
770
            assert img.mode == "RGB"  # default should assume RGB
771
772
773
774
775
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
776
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
777
778
779
780
781
782
783
784
785
786

    def test_3_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
787
            transforms.ToPILImage(mode="RGBA")(img_data)
788
        with pytest.raises(ValueError, match=error_message_3d):
789
            transforms.ToPILImage(mode="P")(img_data)
790
        with pytest.raises(ValueError, match=error_message_3d):
791
            transforms.ToPILImage(mode="LA")(img_data)
792

793
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
794
795
796
797
798
799
    def test_4_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(4, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
800
            assert img.mode == "RGBA"  # default should assume RGBA
801
802
803
804
805
806
807
808
809
810
811
812
813
814
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(4):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_4_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(4, 4, 4).uniform_()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
815
            transforms.ToPILImage(mode="RGB")(img_data)
816
        with pytest.raises(ValueError, match=error_message_4d):
817
            transforms.ToPILImage(mode="P")(img_data)
818
        with pytest.raises(ValueError, match=error_message_4d):
819
            transforms.ToPILImage(mode="LA")(img_data)
820

821
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
822
823
824
825
826
    def test_4_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
827
            assert img.mode == "RGBA"  # default should assume RGBA
828
829
830
831
832
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(4):
833
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
834
835
836
837
838
839
840

    def test_4_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
841
            transforms.ToPILImage(mode="RGB")(img_data)
842
        with pytest.raises(ValueError, match=error_message_4d):
843
            transforms.ToPILImage(mode="P")(img_data)
844
        with pytest.raises(ValueError, match=error_message_4d):
845
            transforms.ToPILImage(mode="LA")(img_data)
846
847
848

    def test_ndarray_bad_types_to_pil_image(self):
        trans = transforms.ToPILImage()
849
        reg_msg = r"Input type \w+ is not supported"
850
851
852
853
854
855
856
857
858
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.int64))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint16))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint32))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.float64))

859
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
860
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
861
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
862
863
864
            transforms.ToPILImage()(np.ones([4, 4, 6]))

    def test_tensor_bad_types_to_pil_image(self):
865
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
866
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
867
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
868
            transforms.ToPILImage()(torch.ones(6, 4, 4))
869
870


871
872
873
874
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
875
    x_pil = Image.fromarray(x_np, mode="RGB")
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
901
    x_pil = Image.fromarray(x_np, mode="RGB")
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


923
@pytest.mark.skipif(Image.__version__ >= "7", reason="Temporarily disabled")
924
925
926
927
def test_adjust_saturation():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
928
    x_pil = Image.fromarray(x_np, mode="RGB")
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

    # test 0
    y_pil = F.adjust_saturation(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_saturation(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_saturation(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
954
    x_pil = Image.fromarray(x_np, mode="RGB")
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
    x_data = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        65,
        108,
        101,
        120,
        97,
        110,
        100,
        101,
        114,
        32,
        86,
        114,
        121,
        110,
        105,
        111,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1035
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1036
    x_pil = Image.fromarray(x_np, mode="RGB")
1037
1038
1039
1040
1041
1042
1043
1044
1045

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        30,
        30,
        74,
        103,
        96,
        114,
        97,
        110,
        100,
        101,
        114,
        32,
        81,
        103,
        108,
        102,
        101,
        107,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1096
1097
1098
1099
1100
1101
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        46,
        118,
        111,
        132,
        97,
        110,
        100,
        101,
        114,
        32,
        95,
        135,
        146,
        126,
        112,
        119,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1152
1153
1154
1155
1156
1157
1158
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1159
    x_pil = Image.fromarray(x_np, mode="RGB")
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1171
    x_pil = Image.fromarray(x_np, mode="RGB")
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1197
    x_rgb = Image.fromarray(x_np, mode="RGB")
1198

1199
1200
1201
1202
1203
1204
1205
    x_l = x_rgb.convert("L")
    assert F.adjust_brightness(x_l, 2).mode == "L"
    assert F.adjust_saturation(x_l, 2).mode == "L"
    assert F.adjust_contrast(x_l, 2).mode == "L"
    assert F.adjust_hue(x_l, 0.4).mode == "L"
    assert F.adjust_sharpness(x_l, 2).mode == "L"
    assert F.adjust_gamma(x_l, 0.5).mode == "L"
1206
1207


1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


1244
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1321
1322
1323
1324
1325
1326
def test_to_grayscale():
    """Unit tests for grayscale transform"""

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1327
1328
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1329
1330
1331
1332
1333
1334
1335
    gray_np = np.array(x_pil_2)

    # Test Set: Grayscale an image with desired number of output channels
    # Case 1: RGB -> 1 channel grayscale
    trans1 = transforms.Grayscale(num_output_channels=1)
    gray_pil_1 = trans1(x_pil)
    gray_np_1 = np.array(gray_pil_1)
1336
1337
    assert gray_pil_1.mode == "L", "mode should be L"
    assert gray_np_1.shape == tuple(x_shape[0:2]), "should be 1 channel"
1338
1339
1340
1341
1342
1343
    assert_equal(gray_np, gray_np_1)

    # Case 2: RGB -> 3 channel grayscale
    trans2 = transforms.Grayscale(num_output_channels=3)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
1344
1345
    assert gray_pil_2.mode == "RGB", "mode should be RGB"
    assert gray_np_2.shape == tuple(x_shape), "should be 3 channel"
1346
1347
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
1348
    assert_equal(gray_np, gray_np_2[:, :, 0])
1349
1350
1351
1352
1353

    # Case 3: 1 channel grayscale -> 1 channel grayscale
    trans3 = transforms.Grayscale(num_output_channels=1)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
1354
1355
    assert gray_pil_3.mode == "L", "mode should be L"
    assert gray_np_3.shape == tuple(x_shape[0:2]), "should be 1 channel"
1356
1357
1358
1359
1360
1361
    assert_equal(gray_np, gray_np_3)

    # Case 4: 1 channel grayscale -> 3 channel grayscale
    trans4 = transforms.Grayscale(num_output_channels=3)
    gray_pil_4 = trans4(x_pil_2)
    gray_np_4 = np.array(gray_pil_4)
1362
1363
    assert gray_pil_4.mode == "RGB", "mode should be RGB"
    assert gray_np_4.shape == tuple(x_shape), "should be 3 channel"
1364
1365
    assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
    assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
1366
    assert_equal(gray_np, gray_np_4[:, :, 0])
1367
1368
1369
1370
1371

    # Checking if Grayscale can be printed as string
    trans4.__repr__()


1372
1373
1374
1375
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_random_apply(p, seed):
    torch.manual_seed(seed)
1376
    random_apply_transform = transforms.RandomApply([transforms.RandomRotation((45, 50))], p=p)
1377
1378
1379
1380
1381
1382
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_apply_transform(img)
    if p == 0:
        assert out == img
    elif p == 1:
        assert out != img
1383

1384
1385
    # Checking if RandomApply can be printed as string
    random_apply_transform.__repr__()
1386
1387


1388
1389
1390
1391
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("proba_passthrough", (0, 1))
def test_random_choice(proba_passthrough, seed):
    random.seed(seed)  # RandomChoice relies on python builtin random.choice, not pytorch
1392

1393
    random_choice_transform = transforms.RandomChoice(
1394
        [
1395
            lambda x: x,  # passthrough
1396
            transforms.RandomRotation((45, 50)),
1397
        ],
1398
        p=[proba_passthrough, 1 - proba_passthrough],
1399
1400
    )

1401
1402
1403
1404
1405
1406
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_choice_transform(img)
    if proba_passthrough == 1:
        assert out == img
    elif proba_passthrough == 0:
        assert out != img
1407
1408
1409
1410
1411

    # Checking if RandomChoice can be printed as string
    random_choice_transform.__repr__()


1412
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1413
1414
1415
def test_random_order():
    random_state = random.getstate()
    random.seed(42)
1416
    random_order_transform = transforms.RandomOrder([transforms.Resize(20), transforms.CenterCrop(10)])
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_normal_order = 0
    resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
    for _ in range(num_samples):
        out = random_order_transform(img)
        if out == resize_crop_out:
            num_normal_order += 1

    p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomOrder can be printed as string
    random_order_transform.__repr__()


1434
1435
1436
1437
1438
1439
1440
1441
def test_linear_transformation():
    num_samples = 1000
    x = torch.randn(num_samples, 3, 10, 10)
    flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
    # compute principal components
    sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
    u, s, _ = np.linalg.svd(sigma.numpy())
    zca_epsilon = 1e-10  # avoid division by 0
1442
    d = torch.Tensor(np.diag(1.0 / np.sqrt(s + zca_epsilon)))
1443
1444
    u = torch.Tensor(u)
    principal_components = torch.mm(torch.mm(u, d), u.t())
1445
    mean_vector = torch.sum(flat_x, dim=0) / flat_x.size(0)
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
    # initialize whitening matrix
    whitening = transforms.LinearTransformation(principal_components, mean_vector)
    # estimate covariance and mean using weak law of large number
    num_features = flat_x.size(1)
    cov = 0.0
    mean = 0.0
    for i in x:
        xwhite = whitening(i)
        xwhite = xwhite.view(1, -1).numpy()
        cov += np.dot(xwhite, xwhite.T) / num_features
        mean += np.sum(xwhite) / num_features
    # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1458
1459
1460
1461
1462
1463
    torch.testing.assert_close(
        cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False, msg="cov not close to 1"
    )
    torch.testing.assert_close(
        mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False, msg="mean not close to 0"
    )
1464
1465
1466
1467
1468

    # Checking if LinearTransformation can be printed as string
    whitening.__repr__()


1469
@pytest.mark.parametrize("dtype", int_dtypes())
1470
1471
1472
1473
1474
1475
1476
1477
1478
def test_max_value(dtype):

    assert F_t._max_value(dtype) == torch.iinfo(dtype).max
    # remove float testing as it can lead to errors such as
    # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
    # for dtype in float_dtypes():
    # self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)


1479
1480
@pytest.mark.parametrize("should_vflip", [True, False])
@pytest.mark.parametrize("single_dim", [True, False])
1481
1482
1483
1484
1485
1486
1487
1488
1489
def test_ten_crop(should_vflip, single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
1490
        transform = transforms.TenCrop(crop_h, vertical_flip=should_vflip)
1491
1492
        five_crop = transforms.FiveCrop(crop_h)
    else:
1493
        transform = transforms.TenCrop((crop_h, crop_w), vertical_flip=should_vflip)
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
        five_crop = transforms.FiveCrop((crop_h, crop_w))

    img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
    results = transform(img)
    expected_output = five_crop(img)

    # Checking if FiveCrop and TenCrop can be printed as string
    transform.__repr__()
    five_crop.__repr__()

    if should_vflip:
        vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
        expected_output += five_crop(vflipped_img)
    else:
        hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
        expected_output += five_crop(hflipped_img)

    assert len(results) == 10
    assert results == expected_output


1515
@pytest.mark.parametrize("single_dim", [True, False])
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
def test_five_crop(single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
        transform = transforms.FiveCrop(crop_h)
    else:
        transform = transforms.FiveCrop((crop_h, crop_w))

    img = torch.FloatTensor(3, h, w).uniform_()

    results = transform(to_pil_image(img))

    assert len(results) == 5
    for crop in results:
        assert crop.size == (crop_w, crop_h)

    to_pil_image = transforms.ToPILImage()
    tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
1539
1540
1541
    tr = to_pil_image(img[:, 0:crop_h, w - crop_w :])
    bl = to_pil_image(img[:, h - crop_h :, 0:crop_w])
    br = to_pil_image(img[:, h - crop_h :, w - crop_w :])
1542
1543
1544
1545
1546
    center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
    expected_output = (tl, tr, bl, br, center)
    assert results == expected_output


1547
1548
1549
@pytest.mark.parametrize("policy", transforms.AutoAugmentPolicy)
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1550
def test_autoaugment(policy, fill, grayscale):
1551
1552
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1553
1554
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1555
1556
1557
1558
1559
1560
    transform = transforms.AutoAugment(policy=policy, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1561
1562
1563
1564
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1565
def test_randaugment(num_ops, magnitude, fill, grayscale):
1566
1567
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1568
1569
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1570
1571
1572
1573
1574
1575
    transform = transforms.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1576
1577
1578
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("num_magnitude_bins", [10, 13, 30])
@pytest.mark.parametrize("grayscale", [True, False])
1579
def test_trivialaugmentwide(fill, num_magnitude_bins, grayscale):
1580
1581
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1582
1583
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1584
1585
1586
1587
1588
1589
    transform = transforms.TrivialAugmentWide(fill=fill, num_magnitude_bins=num_magnitude_bins)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1590
1591
1592
1593
1594
1595
def test_random_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2
    img = torch.ones(3, height, width)
1596
1597
1598
1599
1600
1601
1602
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1603
1604
1605
1606
    assert result.size(1) == oheight
    assert result.size(2) == owidth

    padding = random.randint(1, 20)
1607
1608
1609
1610
1611
1612
1613
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ]
    )(img)
1614
1615
1616
    assert result.size(1) == oheight
    assert result.size(2) == owidth

1617
1618
1619
    result = transforms.Compose(
        [transforms.ToPILImage(), transforms.RandomCrop((height, width)), transforms.ToTensor()]
    )(img)
1620
1621
1622
1623
    assert result.size(1) == height
    assert result.size(2) == width
    torch.testing.assert_close(result, img)

1624
1625
1626
1627
1628
1629
1630
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ]
    )(img)
1631
1632
1633
1634
1635
1636
1637
1638
1639
    assert result.size(1) == height + 1
    assert result.size(2) == width + 1

    t = transforms.RandomCrop(48)
    img = torch.ones(3, 32, 32)
    with pytest.raises(ValueError, match=r"Required crop size .+ is larger then input image size .+"):
        t(img)


1640
1641
1642
1643
1644
1645
1646
1647
1648
def test_center_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2

    img = torch.ones(3, height, width)
    oh1 = (height - oheight) // 2
    ow1 = (width - owidth) // 2
1649
    imgnarrow = img[:, oh1 : oh1 + oheight, ow1 : ow1 + owidth]
1650
    imgnarrow.fill_(0)
1651
1652
1653
1654
1655
1656
1657
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1658
1659
1660
    assert result.sum() == 0
    oheight += 1
    owidth += 1
1661
1662
1663
1664
1665
1666
1667
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1668
1669
1670
1671
    sum1 = result.sum()
    assert sum1 > 1
    oheight += 1
    owidth += 1
1672
1673
1674
1675
1676
1677
1678
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1679
1680
1681
1682
1683
    sum2 = result.sum()
    assert sum2 > 0
    assert sum2 > sum1


1684
1685
1686
1687
@pytest.mark.parametrize("odd_image_size", (True, False))
@pytest.mark.parametrize("delta", (1, 3, 5))
@pytest.mark.parametrize("delta_width", (-2, -1, 0, 1, 2))
@pytest.mark.parametrize("delta_height", (-2, -1, 0, 1, 2))
1688
def test_center_crop_2(odd_image_size, delta, delta_width, delta_height):
1689
    """Tests when center crop size is larger than image size, along any dimension"""
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702

    # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
    input_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
    if odd_image_size:
        input_image_size = (input_image_size[0] + 1, input_image_size[1] + 1)

    delta_height *= delta
    delta_width *= delta

    img = torch.ones(3, *input_image_size)
    crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

    # Test both transforms, one with PIL input and one with tensor
1703
1704
    output_pil = transforms.Compose(
        [transforms.ToPILImage(), transforms.CenterCrop(crop_size), transforms.ToTensor()],
1705
1706
1707
1708
1709
1710
1711
1712
    )(img)
    assert output_pil.size()[1:3] == crop_size

    output_tensor = transforms.CenterCrop(crop_size)(img)
    assert output_tensor.size()[1:3] == crop_size

    # Ensure output for PIL and Tensor are equal
    assert_equal(
1713
1714
        output_tensor,
        output_pil,
1715
        msg=f"image_size: {input_image_size} crop_size: {crop_size}",
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
    )

    # Check if content in center of both image and cropped output is same.
    center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
    crop_center_tl, input_center_tl = [0, 0], [0, 0]
    for index in range(2):
        if crop_size[index] > input_image_size[index]:
            crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
        else:
            input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

    output_center = output_pil[
        :,
1729
1730
        crop_center_tl[0] : crop_center_tl[0] + center_size[0],
        crop_center_tl[1] : crop_center_tl[1] + center_size[1],
1731
1732
1733
1734
    ]

    img_center = img[
        :,
1735
1736
        input_center_tl[0] : input_center_tl[0] + center_size[0],
        input_center_tl[1] : input_center_tl[1] + center_size[1],
1737
1738
    ]

1739
    assert_equal(output_center, img_center)
1740
1741
1742
1743
1744
1745
1746
1747


def test_color_jitter():
    color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1748
1749
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761

    for _ in range(10):
        y_pil = color_jitter(x_pil)
        assert y_pil.mode == x_pil.mode

        y_pil_2 = color_jitter(x_pil_2)
        assert y_pil_2.mode == x_pil_2.mode

    # Checking if ColorJitter can be printed as string
    color_jitter.__repr__()


1762
@pytest.mark.parametrize("seed", range(10))
1763
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1764
1765
def test_random_erasing(seed):
    torch.random.manual_seed(seed)
1766
1767
    img = torch.ones(3, 128, 128)

1768
1769
1770
1771
1772
1773
1774
1775
1776
    t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.0))
    y, x, h, w, v = t.get_params(
        img,
        t.scale,
        t.ratio,
        [
            t.value,
        ],
    )
1777
1778
1779
    aspect_ratio = h / w
    # Add some tolerance due to the rounding and int conversion used in the transform
    tol = 0.05
1780
    assert 1 / 3 - tol <= aspect_ratio <= 3 + tol
1781

1782
    # Make sure that h > w and h < w are equaly likely (log-scale sampling)
1783
1784
1785
1786
    aspect_ratios = []
    random.seed(42)
    trial = 1000
    for _ in range(trial):
1787
1788
1789
1790
1791
1792
1793
1794
        y, x, h, w, v = t.get_params(
            img,
            t.scale,
            t.ratio,
            [
                t.value,
            ],
        )
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
        aspect_ratios.append(h / w)

    count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
    p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
    assert p_value > 0.0001

    # Checking if RandomErasing can be printed as string
    t.__repr__()


def test_random_rotation():

    with pytest.raises(ValueError):
        transforms.RandomRotation(-0.7)

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7])

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7, 0, 0.7])

    t = transforms.RandomRotation(0, fill=None)
    assert t.fill == 0

    t = transforms.RandomRotation(10)
    angle = t.get_params(t.degrees)
1821
    assert angle > -10 and angle < 10
1822
1823
1824

    t = transforms.RandomRotation((-10, 10))
    angle = t.get_params(t.degrees)
1825
    assert -10 < angle < 10
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860

    # Checking if RandomRotation can be printed as string
    t.__repr__()

    # assert deprecation warning and non-BC
    with pytest.warns(UserWarning, match=r"Argument resample is deprecated and will be removed"):
        t = transforms.RandomRotation((-10, 10), resample=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        t = transforms.RandomRotation((-10, 10), interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR


def test_random_rotation_error():
    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomRotation(0, fill={})


def test_randomperspective():
    for _ in range(10):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        perp = transforms.RandomPerspective()
        startpoints, endpoints = perp.get_params(width, height, 0.5)
        tr_img = F.perspective(img, startpoints, endpoints)
        tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
        tr_img = F.to_tensor(tr_img)
        assert img.size[0] == width
        assert img.size[1] == height
1861
1862
1863
        assert torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3 > torch.nn.functional.mse_loss(
            tr_img2, F.to_tensor(img)
        )
1864
1865


1866
@pytest.mark.parametrize("seed", range(10))
1867
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1868
1869
def test_randomperspective_fill(mode, seed):
    torch.random.manual_seed(seed)
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomPerspective(fill={})

    t = transforms.RandomPerspective(fill=None)
    assert t.fill == 0

    height = 100
    width = 100
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    fill = 127
    num_bands = len(mode)

    img_conv = img.convert(mode)
    perspective = transforms.RandomPerspective(p=1, fill=fill)
    tr_img = perspective(img_conv)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
    tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    wrong_num_bands = num_bands + 1
    with pytest.raises(ValueError):
        F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))


1908
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1909
1910
def test_normalize():
    def samples_from_standard_normal(tensor):
1911
        p_value = stats.kstest(list(tensor.view(-1)), "norm", args=(0, 1)).pvalue
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
        return p_value > 0.0001

    random_state = random.getstate()
    random.seed(42)
    for channels in [1, 3]:
        img = torch.rand(channels, 10, 10)
        mean = [img[c].mean() for c in range(channels)]
        std = [img[c].std() for c in range(channels)]
        normalized = transforms.Normalize(mean, std)(img)
        assert samples_from_standard_normal(normalized)
    random.setstate(random_state)

    # Checking if Normalize can be printed as string
    transforms.Normalize(mean, std).__repr__()

    # Checking the optional in-place behaviour
    tensor = torch.rand((1, 16, 16))
    tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
    assert_equal(tensor, tensor_inplace)


1933
1934
@pytest.mark.parametrize("dtype1", [torch.float32, torch.float64])
@pytest.mark.parametrize("dtype2", [torch.int64, torch.float32, torch.float64])
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
def test_normalize_different_dtype(dtype1, dtype2):
    img = torch.rand(3, 10, 10, dtype=dtype1)
    mean = torch.tensor([1, 2, 3], dtype=dtype2)
    std = torch.tensor([1, 2, 1], dtype=dtype2)
    # checks that it doesn't crash
    transforms.functional.normalize(img, mean, std)


def test_normalize_3d_tensor():
    torch.manual_seed(28)
    n_channels = 3
    img_size = 10
    mean = torch.rand(n_channels)
    std = torch.rand(n_channels)
    img = torch.rand(n_channels, img_size, img_size)
    target = F.normalize(img, mean, std)

    mean_unsqueezed = mean.view(-1, 1, 1)
    std_unsqueezed = std.view(-1, 1, 1)
    result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
1955
1956
1957
    result2 = F.normalize(
        img, mean_unsqueezed.repeat(1, img_size, img_size), std_unsqueezed.repeat(1, img_size, img_size)
    )
1958
1959
1960
1961
    torch.testing.assert_close(target, result1)
    torch.testing.assert_close(target, result2)


1962
class TestAffine:
1963
    @pytest.fixture(scope="class")
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
    def input_img(self):
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        for pt in [(16, 16), (20, 16), (20, 20)]:
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
        return input_img

    def test_affine_translate_seq(self, input_img):
        with pytest.raises(TypeError, match=r"Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)

1976
    @pytest.fixture(scope="class")
1977
1978
1979
1980
1981
1982
1983
1984
1985
    def pil_image(self, input_img):
        return F.to_pil_image(input_img)

    def _to_3x3_inv(self, inv_result_matrix):
        result_matrix = np.zeros((3, 3))
        result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
        result_matrix[2, 2] = 1
        return np.linalg.inv(result_matrix)

1986
    def _test_transformation(self, angle, translate, scale, shear, pil_image, input_img, center=None):
1987
1988
1989

        a_rad = math.radians(angle)
        s_rad = [math.radians(sh_) for sh_ in shear]
1990
        cnt = [20, 20] if center is None else center
1991
1992
1993
1994
1995
1996
        cx, cy = cnt
        tx, ty = translate
        sx, sy = s_rad
        rot = a_rad

        # 1) Check transformation matrix:
1997
1998
        C = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        T = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
1999
2000
2001
        Cinv = np.linalg.inv(C)

        RS = np.array(
2002
2003
2004
2005
2006
2007
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
2008

2009
        SHx = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
2010

2011
        SHy = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
2012
2013
2014
2015
2016

        RSS = np.matmul(RS, np.matmul(SHy, SHx))

        true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

2017
2018
2019
        result_matrix = self._to_3x3_inv(
            F._get_inverse_affine_matrix(center=cnt, angle=angle, translate=translate, scale=scale, shear=shear)
        )
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
        assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
        # 2) Perform inverse mapping:
        true_result = np.zeros((40, 40, 3), dtype=np.uint8)
        inv_true_matrix = np.linalg.inv(true_matrix)
        for y in range(true_result.shape[0]):
            for x in range(true_result.shape[1]):
                # Same as for PIL:
                # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                # src/libImaging/Geometry.c#L1060
                input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                _x, _y = res[:2]
                if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                    true_result[y, x, :] = input_img[_y, _x, :]

2035
        result = F.affine(pil_image, angle=angle, translate=translate, scale=scale, shear=shear, center=center)
2036
2037
2038
2039
2040
        assert result.size == pil_image.size
        # Compute number of different pixels:
        np_result = np.array(result)
        n_diff_pixels = np.sum(np_result != true_result) / 3
        # Accept 3 wrong pixels
2041
2042
2043
        error_msg = (
            f"angle={angle}, translate={translate}, scale={scale}, shear={shear}\nn diff pixels={n_diff_pixels}\n"
        )
2044
2045
2046
2047
2048
        assert n_diff_pixels < 3, error_msg

    def test_transformation_discrete(self, pil_image, input_img):
        # Test rotation
        angle = 45
2049
2050
2051
        self._test_transformation(
            angle=angle, translate=(0, 0), scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2052

2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
        # Test rotation
        angle = 45
        self._test_transformation(
            angle=angle,
            translate=(0, 0),
            scale=1.0,
            shear=(0.0, 0.0),
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2065
2066
        # Test translation
        translate = [10, 15]
2067
2068
2069
        self._test_transformation(
            angle=0.0, translate=translate, scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2070
2071
2072

        # Test scale
        scale = 1.2
2073
2074
2075
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=scale, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2076
2077
2078

        # Test shear
        shear = [45.0, 25.0]
2079
2080
2081
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=1.0, shear=shear, pil_image=pil_image, input_img=input_img
        )
2082

2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
        # Test shear with top-left as center
        shear = [45.0, 25.0]
        self._test_transformation(
            angle=0.0,
            translate=(0.0, 0.0),
            scale=1.0,
            shear=shear,
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2095
2096
2097
2098
2099
    @pytest.mark.parametrize("angle", range(-90, 90, 36))
    @pytest.mark.parametrize("translate", range(-10, 10, 5))
    @pytest.mark.parametrize("scale", [0.77, 1.0, 1.27])
    @pytest.mark.parametrize("shear", range(-15, 15, 5))
    def test_transformation_range(self, angle, translate, scale, shear, pil_image, input_img):
2100
2101
2102
2103
2104
2105
2106
2107
        self._test_transformation(
            angle=angle,
            translate=(translate, translate),
            scale=scale,
            shear=(shear, shear),
            pil_image=pil_image,
            input_img=input_img,
        )
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154


def test_random_affine():

    with pytest.raises(ValueError):
        transforms.RandomAffine(-0.7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7, 0, 0.7])
    with pytest.raises(TypeError):
        transforms.RandomAffine([-90, 90], translate=2.0)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomAffine(0, fill={})

    t = transforms.RandomAffine(0, fill=None)
    assert t.fill == 0

    x = np.zeros((100, 100, 3), dtype=np.uint8)
    img = F.to_pil_image(x)

    t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
    for _ in range(100):
2155
        angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear, img_size=img.size)
2156
        assert -10 < angle < 10
2157
2158
        assert -img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5
        assert -img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
        assert 0.7 < scale < 1.3
        assert -10 < shear[0] < 10
        assert -20 < shear[1] < 40

    # Checking if RandomAffine can be printed as string
    t.__repr__()

    t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
    assert "bilinear" in t.__repr__()

    # assert deprecation warning and non-BC
    with pytest.warns(UserWarning, match=r"Argument resample is deprecated and will be removed"):
        t = transforms.RandomAffine(10, resample=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR

    with pytest.warns(UserWarning, match=r"Argument fillcolor is deprecated and will be removed"):
        t = transforms.RandomAffine(10, fillcolor=10)
        assert t.fill == 10

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        t = transforms.RandomAffine(10, interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR


2184
if __name__ == "__main__":
2185
    pytest.main([__file__])