test_transforms.py 82.7 KB
Newer Older
1
import math
2
import os
3
import random
4
import re
5
import textwrap
6
import warnings
7
from functools import partial
8
9
10

import numpy as np
import pytest
11
12
import torch
import torchvision.transforms as transforms
13
import torchvision.transforms._functional_tensor as F_t
14
import torchvision.transforms.functional as F
15
from PIL import Image
16
17
from torch._utils_internal import get_file_path_2

18
19
20
21
22
try:
    import accimage
except ImportError:
    accimage = None

23
24
25
26
27
try:
    from scipy import stats
except ImportError:
    stats = None

28
from common_utils import assert_equal, assert_run_python_script, cycle_over, float_dtypes, int_dtypes
29
30


31
GRACE_HOPPER = get_file_path_2(
32
33
    os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
)
34
35


36
def _get_grayscale_test_image(img, fill=None):
37
38
    img = img.convert("L")
    fill = (fill[0],) if isinstance(fill, tuple) else fill
39
40
41
    return img, fill


42
class TestConvertImageDtype:
43
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(float_dtypes()))
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    def test_float_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert abs(actual_max - desired_max) < 1e-7

60
61
    @pytest.mark.parametrize("input_dtype", float_dtypes())
    @pytest.mark.parametrize("output_dtype", int_dtypes())
62
63
64
65
66
67
    def test_float_to_int(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
68
            input_dtype == torch.float64 and output_dtype == torch.int64
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        ):
            with pytest.raises(RuntimeError):
                transform(input_image)
        else:
            output_image = transform(input_image)
            output_image_script = transform_script(input_image, output_dtype)

            torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

            actual_min, actual_max = output_image.tolist()
            desired_min, desired_max = 0, torch.iinfo(output_dtype).max

            assert actual_min == desired_min
            assert actual_max == desired_max

84
85
    @pytest.mark.parametrize("input_dtype", int_dtypes())
    @pytest.mark.parametrize("output_dtype", float_dtypes())
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    def test_int_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert actual_min >= desired_min
        assert abs(actual_max - desired_max) < 1e-7
        assert actual_max <= desired_max

104
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    def test_dtype_int_to_int(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)
        output_max = torch.iinfo(output_dtype).max

        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(
            output_image_script,
            output_image,
            rtol=0.0,
            atol=1e-6,
121
            msg=f"{output_image_script} vs {output_image}",
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        )

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, output_max

        # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
        if input_max >= output_max:
            error_term = 0
        else:
            error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

        assert actual_min == desired_min
        assert actual_max == (desired_max + error_term)

136
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    def test_int_to_int_consistency(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)

        output_max = torch.iinfo(output_dtype).max
        if output_max <= input_max:
            return

        transform = transforms.ConvertImageDtype(output_dtype)
        inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
        output_image = inverse_transfrom(transform(input_image))

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, input_max

        assert actual_min == desired_min
        assert actual_max == desired_max
154

155

156
157
158
@pytest.mark.skipif(accimage is None, reason="accimage not available")
class TestAccImage:
    def test_accimage_to_tensor(self):
159
        trans = transforms.PILToTensor()
160

161
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
162
163
164
165
166
167
168
        output = trans(accimage.Image(GRACE_HOPPER))

        torch.testing.assert_close(output, expected_output)

    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

169
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
170
171
172
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
173
        torch.testing.assert_close(output, expected_output)
174
175

    def test_accimage_resize(self):
176
177
        trans = transforms.Compose(
            [
178
                transforms.Resize(256, interpolation=Image.LINEAR),
179
180
                transforms.PILToTensor(),
                transforms.ConvertImageDtype(dtype=torch.float),
181
182
            ]
        )
183
184
185
186

        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

187
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
188
189
190
191
192
193
194
195
196
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        assert np.abs((expected_output - output).mean()) < 1e-3
        assert (expected_output - output).var() < 1e-5
        # note the high absolute tolerance
        torch.testing.assert_close(output.numpy(), expected_output.numpy(), rtol=1e-5, atol=5e-2)

    def test_accimage_crop(self):
197
        trans = transforms.Compose(
198
            [transforms.CenterCrop(256), transforms.PILToTensor(), transforms.ConvertImageDtype(dtype=torch.float)]
199
        )
200
201
202
203

        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

204
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
205
206
207
208
209
210
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        torch.testing.assert_close(output, expected_output)


211
class TestToTensor:
212
    @pytest.mark.parametrize("channels", [1, 3, 4])
213
214
215
    def test_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.ToTensor()
216
        np_rng = np.random.RandomState(0)
217

218
219
220
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
221
        torch.testing.assert_close(output, input_data)
222

223
        ndarray = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
224
225
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1)) / 255.0
226
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
227

228
        ndarray = np_rng.rand(height, width, channels).astype(np.float32)
229
230
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1))
231
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
232
233
234

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
235
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
236
        output = trans(img)
237
        torch.testing.assert_close(input_data, output, check_dtype=False)
238
239
240
241

    def test_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.ToTensor()
242
        np_rng = np.random.RandomState(0)
243

244
        with pytest.raises(TypeError):
245
            trans(np_rng.rand(1, height, width).tolist())
246

247
        with pytest.raises(ValueError):
248
            trans(np_rng.rand(height))
249

250
        with pytest.raises(ValueError):
251
            trans(np_rng.rand(1, 1, height, width))
252

253
    @pytest.mark.parametrize("dtype", [torch.float16, torch.float, torch.double])
254
    def test_to_tensor_with_other_default_dtypes(self, dtype):
255
        np_rng = np.random.RandomState(0)
256
        current_def_dtype = torch.get_default_dtype()
257

258
        t = transforms.ToTensor()
259
        np_arr = np_rng.randint(0, 255, (32, 32, 3), dtype=np.uint8)
260
        img = Image.fromarray(np_arr)
261

262
263
264
        torch.set_default_dtype(dtype)
        res = t(img)
        assert res.dtype == dtype, f"{res.dtype} vs {dtype}"
265

266
        torch.set_default_dtype(current_def_dtype)
267

268
    @pytest.mark.parametrize("channels", [1, 3, 4])
269
270
271
    def test_pil_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.PILToTensor()
272
        np_rng = np.random.RandomState(0)
273

274
275
276
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
277
        torch.testing.assert_close(input_data, output)
278

279
        input_data = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
280
281
282
283
284
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
        expected_output = input_data.transpose((2, 0, 1))
        torch.testing.assert_close(output.numpy(), expected_output)

285
        input_data = torch.as_tensor(np_rng.rand(channels, height, width).astype(np.float32))
286
287
288
        img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
        output = trans(img)  # HWC -> CHW
        expected_output = (input_data * 255).byte()
289
        torch.testing.assert_close(output, expected_output)
290

291
292
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
293
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
294
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
295
        torch.testing.assert_close(input_data, output)
296

297
298
299
    def test_pil_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.PILToTensor()
300
        np_rng = np.random.RandomState(0)
301

302
        with pytest.raises(TypeError):
303
            trans(np_rng.rand(1, height, width).tolist())
304

305
        with pytest.raises(TypeError):
306
            trans(np_rng.rand(1, height, width))
307
308


309
310
311
312
313
314
315
316
317
318
319
320
321
322
def test_randomresized_params():
    height = random.randint(24, 32) * 2
    width = random.randint(24, 32) * 2
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    size = 100
    epsilon = 0.05
    min_scale = 0.25
    for _ in range(10):
        scale_min = max(round(random.random(), 2), min_scale)
        scale_range = (scale_min, scale_min + round(random.random(), 2))
        aspect_min = max(round(random.random(), 2), epsilon)
        aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
323
        randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range, antialias=True)
324
325
        i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
        aspect_ratio_obtained = w / h
326
327
328
329
        assert (
            min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained
            and aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon
        ) or aspect_ratio_obtained == 1.0
330
331
332
333
334
335
        assert isinstance(i, int)
        assert isinstance(j, int)
        assert isinstance(h, int)
        assert isinstance(w, int)


336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # single integer
        22,
        27,
        28,
        36,
        # single integer in tuple/list
        [
            22,
        ],
        (27,),
    ],
)
@pytest.mark.parametrize("max_size", (None, 37, 1000))
367
368
369
def test_resize(height, width, osize, max_size):
    img = Image.new("RGB", size=(width, height), color=127)

370
    t = transforms.Resize(osize, max_size=max_size, antialias=True)
371
372
    result = t(img)

373
    msg = f"{height}, {width} - {osize} - {max_size}"
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
    # If size is an int, smaller edge of the image will be matched to this number.
    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
    if height < width:
        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
        if max_size is not None and max_size < exp_w:
            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
        assert result.size == (exp_w, exp_h), msg
    elif width < height:
        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
        if max_size is not None and max_size < exp_h:
            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
        assert result.size == (exp_w, exp_h), msg
    else:
        exp_w, exp_h = (osize, osize)  # (w, h)
        if max_size is not None and max_size < osize:
            exp_w, exp_h = max_size, max_size
        assert result.size == (exp_w, exp_h), msg


394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # two integers sequence output
        [22, 22],
        [22, 28],
        [22, 36],
        [27, 22],
        [36, 22],
        [28, 28],
        [28, 37],
        [37, 27],
        [37, 37],
    ],
)
424
425
426
427
def test_resize_sequence_output(height, width, osize):
    img = Image.new("RGB", size=(width, height), color=127)
    oheight, owidth = osize

428
    t = transforms.Resize(osize, antialias=True)
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    result = t(img)

    assert (owidth, oheight) == result.size


def test_resize_antialias_error():
    osize = [37, 37]
    img = Image.new("RGB", size=(35, 29), color=127)

    with pytest.warns(UserWarning, match=r"Anti-alias option is always applied for PIL Image input"):
        t = transforms.Resize(osize, antialias=False)
        t(img)


443
444
445
446
447
448
449
450
451
452
def test_resize_antialias_default_warning():

    img = Image.new("RGB", size=(10, 10), color=127)
    # We make sure we don't warn for PIL images since the default behaviour doesn't change
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        transforms.Resize((20, 20))(img)
        transforms.RandomResizedCrop((20, 20))(img)


453
454
455
456
457
458
459
460
@pytest.mark.parametrize("height, width", ((32, 64), (64, 32)))
def test_resize_size_equals_small_edge_size(height, width):
    # Non-regression test for https://github.com/pytorch/vision/issues/5405
    # max_size used to be ignored if size == small_edge_size
    max_size = 40
    img = Image.new("RGB", size=(width, height), color=127)

    small_edge = min(height, width)
461
    t = transforms.Resize(small_edge, max_size=max_size, antialias=True)
462
463
464
465
    result = t(img)
    assert max(result.size) == max_size


466
class TestPad:
467
468
    @pytest.mark.parametrize("fill", [85, 85.0])
    def test_pad(self, fill):
469
470
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
471
        img = torch.ones(3, height, width, dtype=torch.uint8)
472
        padding = random.randint(1, 20)
473
474
475
476
        result = transforms.Compose(
            [
                transforms.ToPILImage(),
                transforms.Pad(padding, fill=fill),
477
                transforms.PILToTensor(),
478
479
            ]
        )(img)
480
481
482
483
484
485
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
486
487
        torch.testing.assert_close(h_padded, torch.full_like(h_padded, fill_value=fill), rtol=0.0, atol=0.0)
        torch.testing.assert_close(w_padded, torch.full_like(w_padded, fill_value=fill), rtol=0.0, atol=0.0)
488
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)), transforms.ToPILImage()(img))
489
490
491
492
493
494

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

495
        padding = tuple(random.randint(1, 20) for _ in range(2))
496
497
498
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

499
        padding = [random.randint(1, 20) for _ in range(4)]
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
515
        edge_padded_img = F.pad(img, 3, padding_mode="edge")
516
517
518
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
519
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8))
520
        assert transforms.PILToTensor()(edge_padded_img).size() == (3, 35, 35)
521
522

        # Pad 3 to left/right, 2 to top/bottom
523
        reflect_padded_img = F.pad(img, (3, 2), padding_mode="reflect")
524
525
526
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
527
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8))
528
        assert transforms.PILToTensor()(reflect_padded_img).size() == (3, 33, 35)
529
530

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
531
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode="symmetric")
532
533
534
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
535
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8))
536
        assert transforms.PILToTensor()(symmetric_padded_img).size() == (3, 32, 34)
537
538
539
540

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
541
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode="symmetric")
542
543
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
544
545
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8))
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8))
546
        assert transforms.PILToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
564
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])
565
566


567
@pytest.mark.parametrize(
568
    "fn, trans, kwargs",
569
570
571
572
573
574
575
    [
        (F.invert, transforms.RandomInvert, {}),
        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
        (F.autocontrast, transforms.RandomAutocontrast, {}),
        (F.equalize, transforms.RandomEqualize, {}),
576
577
578
        (F.vflip, transforms.RandomVerticalFlip, {}),
        (F.hflip, transforms.RandomHorizontalFlip, {}),
        (partial(F.to_grayscale, num_output_channels=3), transforms.RandomGrayscale, {}),
579
580
    ],
)
581
582
583
584
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_randomness(fn, trans, kwargs, seed, p):
    torch.manual_seed(seed)
585
586
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

587
588
    expected_transformed_img = fn(img, **kwargs)
    randomly_transformed_img = trans(p=p, **kwargs)(img)
589

590
591
592
593
    if p == 0:
        assert randomly_transformed_img == img
    elif p == 1:
        assert randomly_transformed_img == expected_transformed_img
594

595
    trans(**kwargs).__repr__()
596
597


598
599
600
601
602
603
604
605
606
def test_autocontrast_equal_minmax():
    img_tensor = torch.tensor([[[10]], [[128]], [[245]]], dtype=torch.uint8).expand(3, 32, 32)
    img_pil = F.to_pil_image(img_tensor)

    img_tensor = F.autocontrast(img_tensor)
    img_pil = F.autocontrast(img_pil)
    torch.testing.assert_close(img_tensor, F.pil_to_tensor(img_pil))


607
608
609
610
class TestToPil:
    def _get_1_channel_tensor_various_types():
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
611
        yield img_data_float, expected_output, "L"
612

613
614
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
615
        yield img_data_byte, expected_output, "L"
616

617
618
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        expected_output = img_data_short.numpy()
619
        yield img_data_short, expected_output, "I;16"
620

621
622
        img_data_int = torch.IntTensor(1, 4, 4).random_()
        expected_output = img_data_int.numpy()
623
        yield img_data_int, expected_output, "I"
624

625
626
627
    def _get_2d_tensor_various_types():
        img_data_float = torch.Tensor(4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
628
        yield img_data_float, expected_output, "L"
629

630
631
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
632
        yield img_data_byte, expected_output, "L"
633

634
635
        img_data_short = torch.ShortTensor(4, 4).random_()
        expected_output = img_data_short.numpy()
636
        yield img_data_short, expected_output, "I;16"
637

638
639
        img_data_int = torch.IntTensor(4, 4).random_()
        expected_output = img_data_int.numpy()
640
        yield img_data_int, expected_output, "I"
641

642
643
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_1_channel_tensor_various_types())
644
645
646
    def test_1_channel_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()
647

648
        img = transform(img_data)
649
        assert img.mode == expected_mode
650
        torch.testing.assert_close(expected_output, to_tensor(img).numpy())
651

652
653
654
    def test_1_channel_float_tensor_to_pil_image(self):
        img_data = torch.Tensor(1, 4, 4).uniform_()
        # 'F' mode for torch.FloatTensor
655
656
        img_F_mode = transforms.ToPILImage(mode="F")(img_data)
        assert img_F_mode.mode == "F"
657
        torch.testing.assert_close(
658
            np.array(Image.fromarray(img_data.squeeze(0).numpy(), mode="F")), np.array(img_F_mode)
659
        )
660

661
662
663
664
665
666
667
668
669
670
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4, 1).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4, 1).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4, 1).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4, 1).random_().numpy(), "I"),
        ],
    )
671
672
673
    def test_1_channel_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
674
        assert img.mode == expected_mode
675
676
677
        # note: we explicitly convert img's dtype because pytorch doesn't support uint16
        # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
        torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
678

679
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
680
681
    def test_2_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
682

683
684
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
685
            assert img.mode == "LA"  # default should assume LA
686
687
688
689
690
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(2):
691
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
692
693
694
695
696
697
698

    def test_2_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        transforms.ToPILImage().__repr__()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
699
            transforms.ToPILImage(mode="RGBA")(img_data)
700
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
701
            transforms.ToPILImage(mode="P")(img_data)
702
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
703
            transforms.ToPILImage(mode="RGB")(img_data)
704

705
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
706
707
708
709
710
    def test_2_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
711
            assert img.mode == "LA"  # default should assume LA
712
713
714
715
716
717
718
719
720
721
722
723
724
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(2):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_2_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(2, 4, 4).uniform_()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
725
            transforms.ToPILImage(mode="RGBA")(img_data)
726
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
727
            transforms.ToPILImage(mode="P")(img_data)
728
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
729
            transforms.ToPILImage(mode="RGB")(img_data)
730

731
732
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_2d_tensor_various_types())
733
734
735
736
737
    def test_2d_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img = transform(img_data)
738
        assert img.mode == expected_mode
739
740
        torch.testing.assert_close(expected_output, to_tensor(img).numpy()[0])

741
742
743
744
745
746
747
748
749
750
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4).random_().numpy(), "I"),
        ],
    )
751
752
753
    def test_2d_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
754
        assert img.mode == expected_mode
755
        np.testing.assert_allclose(img_data, img)
756

757
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
758
759
760
    def test_3_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
761

762
763
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
764
            assert img.mode == "RGB"  # default should assume RGB
765
766
767
768
769
770
771
772
773
774
775
776
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_3_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
777
            transforms.ToPILImage(mode="RGBA")(img_data)
778
        with pytest.raises(ValueError, match=error_message_3d):
779
            transforms.ToPILImage(mode="P")(img_data)
780
        with pytest.raises(ValueError, match=error_message_3d):
781
            transforms.ToPILImage(mode="LA")(img_data)
782

783
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
784
785
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

786
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
787
788
789
790
791
    def test_3_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
792
            assert img.mode == "RGB"  # default should assume RGB
793
794
795
796
797
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
798
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
799
800
801
802
803
804
805
806
807
808

    def test_3_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
809
            transforms.ToPILImage(mode="RGBA")(img_data)
810
        with pytest.raises(ValueError, match=error_message_3d):
811
            transforms.ToPILImage(mode="P")(img_data)
812
        with pytest.raises(ValueError, match=error_message_3d):
813
            transforms.ToPILImage(mode="LA")(img_data)
814

815
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
816
817
818
819
820
821
    def test_4_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(4, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
822
            assert img.mode == "RGBA"  # default should assume RGBA
823
824
825
826
827
828
829
830
831
832
833
834
835
836
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(4):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_4_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(4, 4, 4).uniform_()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
837
            transforms.ToPILImage(mode="RGB")(img_data)
838
        with pytest.raises(ValueError, match=error_message_4d):
839
            transforms.ToPILImage(mode="P")(img_data)
840
        with pytest.raises(ValueError, match=error_message_4d):
841
            transforms.ToPILImage(mode="LA")(img_data)
842

843
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
844
845
846
847
848
    def test_4_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
849
            assert img.mode == "RGBA"  # default should assume RGBA
850
851
852
853
854
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(4):
855
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
856
857
858
859
860
861
862

    def test_4_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
863
            transforms.ToPILImage(mode="RGB")(img_data)
864
        with pytest.raises(ValueError, match=error_message_4d):
865
            transforms.ToPILImage(mode="P")(img_data)
866
        with pytest.raises(ValueError, match=error_message_4d):
867
            transforms.ToPILImage(mode="LA")(img_data)
868
869
870

    def test_ndarray_bad_types_to_pil_image(self):
        trans = transforms.ToPILImage()
871
        reg_msg = r"Input type \w+ is not supported"
872
873
874
875
876
877
878
879
880
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.int64))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint16))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint32))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.float64))

881
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
882
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
883
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
884
885
886
            transforms.ToPILImage()(np.ones([4, 4, 6]))

    def test_tensor_bad_types_to_pil_image(self):
887
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
888
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
889
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
890
            transforms.ToPILImage()(torch.ones(6, 4, 4))
891
892


893
894
895
896
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
897
    x_pil = Image.fromarray(x_np, mode="RGB")
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
923
    x_pil = Image.fromarray(x_np, mode="RGB")
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


945
@pytest.mark.skipif(Image.__version__ >= "7", reason="Temporarily disabled")
946
947
948
949
def test_adjust_saturation():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
950
    x_pil = Image.fromarray(x_np, mode="RGB")
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

    # test 0
    y_pil = F.adjust_saturation(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_saturation(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_saturation(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
976
    x_pil = Image.fromarray(x_np, mode="RGB")
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
    x_data = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        65,
        108,
        101,
        120,
        97,
        110,
        100,
        101,
        114,
        32,
        86,
        114,
        121,
        110,
        105,
        111,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1057
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1058
    x_pil = Image.fromarray(x_np, mode="RGB")
1059
1060
1061
1062
1063
1064
1065
1066
1067

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        30,
        30,
        74,
        103,
        96,
        114,
        97,
        110,
        100,
        101,
        114,
        32,
        81,
        103,
        108,
        102,
        101,
        107,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1118
1119
1120
1121
1122
1123
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        46,
        118,
        111,
        132,
        97,
        110,
        100,
        101,
        114,
        32,
        95,
        135,
        146,
        126,
        112,
        119,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1174
1175
1176
1177
1178
1179
1180
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1181
    x_pil = Image.fromarray(x_np, mode="RGB")
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1193
    x_pil = Image.fromarray(x_np, mode="RGB")
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1219
    x_rgb = Image.fromarray(x_np, mode="RGB")
1220

1221
1222
1223
1224
1225
1226
1227
    x_l = x_rgb.convert("L")
    assert F.adjust_brightness(x_l, 2).mode == "L"
    assert F.adjust_saturation(x_l, 2).mode == "L"
    assert F.adjust_contrast(x_l, 2).mode == "L"
    assert F.adjust_hue(x_l, 0.4).mode == "L"
    assert F.adjust_sharpness(x_l, 2).mode == "L"
    assert F.adjust_gamma(x_l, 0.5).mode == "L"
1228
1229


1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


1266
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1343
1344
1345
1346
1347
1348
def test_to_grayscale():
    """Unit tests for grayscale transform"""

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1349
1350
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1351
1352
1353
1354
1355
1356
1357
    gray_np = np.array(x_pil_2)

    # Test Set: Grayscale an image with desired number of output channels
    # Case 1: RGB -> 1 channel grayscale
    trans1 = transforms.Grayscale(num_output_channels=1)
    gray_pil_1 = trans1(x_pil)
    gray_np_1 = np.array(gray_pil_1)
1358
1359
    assert gray_pil_1.mode == "L", "mode should be L"
    assert gray_np_1.shape == tuple(x_shape[0:2]), "should be 1 channel"
1360
1361
1362
1363
1364
1365
    assert_equal(gray_np, gray_np_1)

    # Case 2: RGB -> 3 channel grayscale
    trans2 = transforms.Grayscale(num_output_channels=3)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
1366
1367
    assert gray_pil_2.mode == "RGB", "mode should be RGB"
    assert gray_np_2.shape == tuple(x_shape), "should be 3 channel"
1368
1369
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
1370
    assert_equal(gray_np, gray_np_2[:, :, 0])
1371
1372
1373
1374
1375

    # Case 3: 1 channel grayscale -> 1 channel grayscale
    trans3 = transforms.Grayscale(num_output_channels=1)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
1376
1377
    assert gray_pil_3.mode == "L", "mode should be L"
    assert gray_np_3.shape == tuple(x_shape[0:2]), "should be 1 channel"
1378
1379
1380
1381
1382
1383
    assert_equal(gray_np, gray_np_3)

    # Case 4: 1 channel grayscale -> 3 channel grayscale
    trans4 = transforms.Grayscale(num_output_channels=3)
    gray_pil_4 = trans4(x_pil_2)
    gray_np_4 = np.array(gray_pil_4)
1384
1385
    assert gray_pil_4.mode == "RGB", "mode should be RGB"
    assert gray_np_4.shape == tuple(x_shape), "should be 3 channel"
1386
1387
    assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
    assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
1388
    assert_equal(gray_np, gray_np_4[:, :, 0])
1389
1390
1391
1392
1393

    # Checking if Grayscale can be printed as string
    trans4.__repr__()


1394
1395
1396
1397
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_random_apply(p, seed):
    torch.manual_seed(seed)
1398
    random_apply_transform = transforms.RandomApply([transforms.RandomRotation((45, 50))], p=p)
1399
1400
1401
1402
1403
1404
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_apply_transform(img)
    if p == 0:
        assert out == img
    elif p == 1:
        assert out != img
1405

1406
1407
    # Checking if RandomApply can be printed as string
    random_apply_transform.__repr__()
1408
1409


1410
1411
1412
1413
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("proba_passthrough", (0, 1))
def test_random_choice(proba_passthrough, seed):
    random.seed(seed)  # RandomChoice relies on python builtin random.choice, not pytorch
1414

1415
    random_choice_transform = transforms.RandomChoice(
1416
        [
1417
            lambda x: x,  # passthrough
1418
            transforms.RandomRotation((45, 50)),
1419
        ],
1420
        p=[proba_passthrough, 1 - proba_passthrough],
1421
1422
    )

1423
1424
1425
1426
1427
1428
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_choice_transform(img)
    if proba_passthrough == 1:
        assert out == img
    elif proba_passthrough == 0:
        assert out != img
1429
1430
1431
1432
1433

    # Checking if RandomChoice can be printed as string
    random_choice_transform.__repr__()


1434
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1435
1436
1437
def test_random_order():
    random_state = random.getstate()
    random.seed(42)
1438
    random_order_transform = transforms.RandomOrder([transforms.Resize(20, antialias=True), transforms.CenterCrop(10)])
1439
1440
1441
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_normal_order = 0
1442
    resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20, antialias=True)(img))
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
    for _ in range(num_samples):
        out = random_order_transform(img)
        if out == resize_crop_out:
            num_normal_order += 1

    p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomOrder can be printed as string
    random_order_transform.__repr__()


1456
1457
1458
1459
1460
1461
1462
1463
def test_linear_transformation():
    num_samples = 1000
    x = torch.randn(num_samples, 3, 10, 10)
    flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
    # compute principal components
    sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
    u, s, _ = np.linalg.svd(sigma.numpy())
    zca_epsilon = 1e-10  # avoid division by 0
1464
    d = torch.Tensor(np.diag(1.0 / np.sqrt(s + zca_epsilon)))
1465
1466
    u = torch.Tensor(u)
    principal_components = torch.mm(torch.mm(u, d), u.t())
1467
    mean_vector = torch.sum(flat_x, dim=0) / flat_x.size(0)
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
    # initialize whitening matrix
    whitening = transforms.LinearTransformation(principal_components, mean_vector)
    # estimate covariance and mean using weak law of large number
    num_features = flat_x.size(1)
    cov = 0.0
    mean = 0.0
    for i in x:
        xwhite = whitening(i)
        xwhite = xwhite.view(1, -1).numpy()
        cov += np.dot(xwhite, xwhite.T) / num_features
        mean += np.sum(xwhite) / num_features
    # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1480
1481
1482
1483
1484
1485
    torch.testing.assert_close(
        cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False, msg="cov not close to 1"
    )
    torch.testing.assert_close(
        mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False, msg="mean not close to 0"
    )
1486
1487
1488
1489
1490

    # Checking if LinearTransformation can be printed as string
    whitening.__repr__()


1491
@pytest.mark.parametrize("dtype", int_dtypes())
1492
1493
1494
1495
1496
1497
1498
1499
1500
def test_max_value(dtype):

    assert F_t._max_value(dtype) == torch.iinfo(dtype).max
    # remove float testing as it can lead to errors such as
    # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
    # for dtype in float_dtypes():
    # self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)


1501
1502
1503
1504
1505
1506
1507
1508
1509
@pytest.mark.xfail(
    reason="torch.iinfo() is not supported by torchscript. See https://github.com/pytorch/pytorch/issues/41492."
)
def test_max_value_iinfo():
    @torch.jit.script
    def max_value(image: torch.Tensor) -> int:
        return 1 if image.is_floating_point() else torch.iinfo(image.dtype).max


1510
1511
@pytest.mark.parametrize("should_vflip", [True, False])
@pytest.mark.parametrize("single_dim", [True, False])
1512
1513
1514
1515
1516
1517
1518
1519
1520
def test_ten_crop(should_vflip, single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
1521
        transform = transforms.TenCrop(crop_h, vertical_flip=should_vflip)
1522
1523
        five_crop = transforms.FiveCrop(crop_h)
    else:
1524
        transform = transforms.TenCrop((crop_h, crop_w), vertical_flip=should_vflip)
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
        five_crop = transforms.FiveCrop((crop_h, crop_w))

    img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
    results = transform(img)
    expected_output = five_crop(img)

    # Checking if FiveCrop and TenCrop can be printed as string
    transform.__repr__()
    five_crop.__repr__()

    if should_vflip:
1536
        vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
1537
1538
        expected_output += five_crop(vflipped_img)
    else:
1539
        hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
1540
1541
1542
1543
1544
1545
        expected_output += five_crop(hflipped_img)

    assert len(results) == 10
    assert results == expected_output


1546
@pytest.mark.parametrize("single_dim", [True, False])
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
def test_five_crop(single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
        transform = transforms.FiveCrop(crop_h)
    else:
        transform = transforms.FiveCrop((crop_h, crop_w))

    img = torch.FloatTensor(3, h, w).uniform_()

    results = transform(to_pil_image(img))

    assert len(results) == 5
    for crop in results:
        assert crop.size == (crop_w, crop_h)

    to_pil_image = transforms.ToPILImage()
    tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
1570
1571
1572
    tr = to_pil_image(img[:, 0:crop_h, w - crop_w :])
    bl = to_pil_image(img[:, h - crop_h :, 0:crop_w])
    br = to_pil_image(img[:, h - crop_h :, w - crop_w :])
1573
1574
1575
1576
1577
    center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
    expected_output = (tl, tr, bl, br, center)
    assert results == expected_output


1578
1579
1580
@pytest.mark.parametrize("policy", transforms.AutoAugmentPolicy)
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1581
def test_autoaugment(policy, fill, grayscale):
1582
1583
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1584
1585
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1586
1587
1588
1589
1590
1591
    transform = transforms.AutoAugment(policy=policy, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1592
1593
1594
1595
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1596
def test_randaugment(num_ops, magnitude, fill, grayscale):
1597
1598
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1599
1600
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1601
1602
1603
1604
1605
1606
    transform = transforms.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1607
1608
1609
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("num_magnitude_bins", [10, 13, 30])
@pytest.mark.parametrize("grayscale", [True, False])
1610
def test_trivialaugmentwide(fill, num_magnitude_bins, grayscale):
1611
1612
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1613
1614
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1615
1616
1617
1618
1619
1620
    transform = transforms.TrivialAugmentWide(fill=fill, num_magnitude_bins=num_magnitude_bins)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("severity", [1, 10])
@pytest.mark.parametrize("mixture_width", [1, 2])
@pytest.mark.parametrize("chain_depth", [-1, 2])
@pytest.mark.parametrize("all_ops", [True, False])
@pytest.mark.parametrize("grayscale", [True, False])
def test_augmix(fill, severity, mixture_width, chain_depth, all_ops, grayscale):
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
    transform = transforms.AugMix(
        fill=fill, severity=severity, mixture_width=mixture_width, chain_depth=chain_depth, all_ops=all_ops
    )
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1640
1641
1642
1643
1644
def test_random_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2
1645
    img = torch.ones(3, height, width, dtype=torch.uint8)
1646
1647
1648
1649
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
1650
            transforms.PILToTensor(),
1651
1652
        ]
    )(img)
1653
1654
1655
1656
    assert result.size(1) == oheight
    assert result.size(2) == owidth

    padding = random.randint(1, 20)
1657
1658
1659
1660
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
1661
            transforms.PILToTensor(),
1662
1663
        ]
    )(img)
1664
1665
1666
    assert result.size(1) == oheight
    assert result.size(2) == owidth

1667
    result = transforms.Compose(
1668
        [transforms.ToPILImage(), transforms.RandomCrop((height, width)), transforms.PILToTensor()]
1669
    )(img)
1670
1671
1672
1673
    assert result.size(1) == height
    assert result.size(2) == width
    torch.testing.assert_close(result, img)

1674
1675
1676
1677
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
1678
            transforms.PILToTensor(),
1679
1680
        ]
    )(img)
1681
1682
1683
    assert result.size(1) == height + 1
    assert result.size(2) == width + 1

1684
    t = transforms.RandomCrop(33)
1685
    img = torch.ones(3, 32, 32)
Nicolas Hug's avatar
Nicolas Hug committed
1686
    with pytest.raises(ValueError, match=r"Required crop size .+ is larger than input image size .+"):
1687
1688
1689
        t(img)


1690
1691
1692
1693
1694
1695
def test_center_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2

1696
    img = torch.ones(3, height, width, dtype=torch.uint8)
1697
1698
    oh1 = (height - oheight) // 2
    ow1 = (width - owidth) // 2
1699
    imgnarrow = img[:, oh1 : oh1 + oheight, ow1 : ow1 + owidth]
1700
    imgnarrow.fill_(0)
1701
1702
1703
1704
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1705
            transforms.PILToTensor(),
1706
1707
        ]
    )(img)
1708
1709
1710
    assert result.sum() == 0
    oheight += 1
    owidth += 1
1711
1712
1713
1714
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1715
            transforms.PILToTensor(),
1716
1717
        ]
    )(img)
1718
1719
1720
1721
    sum1 = result.sum()
    assert sum1 > 1
    oheight += 1
    owidth += 1
1722
1723
1724
1725
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1726
            transforms.PILToTensor(),
1727
1728
        ]
    )(img)
1729
1730
1731
1732
1733
    sum2 = result.sum()
    assert sum2 > 0
    assert sum2 > sum1


1734
1735
1736
1737
@pytest.mark.parametrize("odd_image_size", (True, False))
@pytest.mark.parametrize("delta", (1, 3, 5))
@pytest.mark.parametrize("delta_width", (-2, -1, 0, 1, 2))
@pytest.mark.parametrize("delta_height", (-2, -1, 0, 1, 2))
1738
def test_center_crop_2(odd_image_size, delta, delta_width, delta_height):
1739
    """Tests when center crop size is larger than image size, along any dimension"""
1740
1741
1742
1743
1744
1745
1746
1747
1748

    # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
    input_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
    if odd_image_size:
        input_image_size = (input_image_size[0] + 1, input_image_size[1] + 1)

    delta_height *= delta
    delta_width *= delta

1749
    img = torch.ones(3, *input_image_size, dtype=torch.uint8)
1750
1751
1752
    crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

    # Test both transforms, one with PIL input and one with tensor
1753
    output_pil = transforms.Compose(
1754
        [transforms.ToPILImage(), transforms.CenterCrop(crop_size), transforms.PILToTensor()],
1755
1756
1757
1758
1759
1760
1761
1762
    )(img)
    assert output_pil.size()[1:3] == crop_size

    output_tensor = transforms.CenterCrop(crop_size)(img)
    assert output_tensor.size()[1:3] == crop_size

    # Ensure output for PIL and Tensor are equal
    assert_equal(
1763
1764
        output_tensor,
        output_pil,
1765
        msg=f"image_size: {input_image_size} crop_size: {crop_size}",
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
    )

    # Check if content in center of both image and cropped output is same.
    center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
    crop_center_tl, input_center_tl = [0, 0], [0, 0]
    for index in range(2):
        if crop_size[index] > input_image_size[index]:
            crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
        else:
            input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

    output_center = output_pil[
        :,
1779
1780
        crop_center_tl[0] : crop_center_tl[0] + center_size[0],
        crop_center_tl[1] : crop_center_tl[1] + center_size[1],
1781
1782
1783
1784
    ]

    img_center = img[
        :,
1785
1786
        input_center_tl[0] : input_center_tl[0] + center_size[0],
        input_center_tl[1] : input_center_tl[1] + center_size[1],
1787
1788
    ]

1789
    assert_equal(output_center, img_center)
1790
1791
1792
1793
1794
1795
1796
1797


def test_color_jitter():
    color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1798
1799
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811

    for _ in range(10):
        y_pil = color_jitter(x_pil)
        assert y_pil.mode == x_pil.mode

        y_pil_2 = color_jitter(x_pil_2)
        assert y_pil_2.mode == x_pil_2.mode

    # Checking if ColorJitter can be printed as string
    color_jitter.__repr__()


1812
1813
1814
1815
1816
1817
@pytest.mark.parametrize("hue", [1, (-1, 1)])
def test_color_jitter_hue_out_of_bounds(hue):
    with pytest.raises(ValueError, match=re.escape("hue values should be between (-0.5, 0.5)")):
        transforms.ColorJitter(hue=hue)


1818
@pytest.mark.parametrize("seed", range(10))
1819
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1820
1821
def test_random_erasing(seed):
    torch.random.manual_seed(seed)
1822
1823
    img = torch.ones(3, 128, 128)

1824
1825
1826
1827
1828
1829
1830
1831
1832
    t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.0))
    y, x, h, w, v = t.get_params(
        img,
        t.scale,
        t.ratio,
        [
            t.value,
        ],
    )
1833
1834
1835
    aspect_ratio = h / w
    # Add some tolerance due to the rounding and int conversion used in the transform
    tol = 0.05
1836
    assert 1 / 3 - tol <= aspect_ratio <= 3 + tol
1837

1838
    # Make sure that h > w and h < w are equally likely (log-scale sampling)
1839
1840
1841
1842
    aspect_ratios = []
    random.seed(42)
    trial = 1000
    for _ in range(trial):
1843
1844
1845
1846
1847
1848
1849
1850
        y, x, h, w, v = t.get_params(
            img,
            t.scale,
            t.ratio,
            [
                t.value,
            ],
        )
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
        aspect_ratios.append(h / w)

    count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
    p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
    assert p_value > 0.0001

    # Checking if RandomErasing can be printed as string
    t.__repr__()


def test_random_rotation():

    with pytest.raises(ValueError):
        transforms.RandomRotation(-0.7)

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7])

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7, 0, 0.7])

    t = transforms.RandomRotation(0, fill=None)
    assert t.fill == 0

    t = transforms.RandomRotation(10)
    angle = t.get_params(t.degrees)
1877
    assert angle > -10 and angle < 10
1878
1879
1880

    t = transforms.RandomRotation((-10, 10))
    angle = t.get_params(t.degrees)
1881
    assert -10 < angle < 10
1882
1883
1884
1885

    # Checking if RandomRotation can be printed as string
    t.__repr__()

1886
1887
1888
    t = transforms.RandomRotation((-10, 10), interpolation=Image.BILINEAR)
    assert t.interpolation == transforms.InterpolationMode.BILINEAR

1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905

def test_random_rotation_error():
    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomRotation(0, fill={})


def test_randomperspective():
    for _ in range(10):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        perp = transforms.RandomPerspective()
        startpoints, endpoints = perp.get_params(width, height, 0.5)
        tr_img = F.perspective(img, startpoints, endpoints)
1906
1907
        tr_img2 = F.convert_image_dtype(F.pil_to_tensor(F.perspective(tr_img, endpoints, startpoints)))
        tr_img = F.convert_image_dtype(F.pil_to_tensor(tr_img))
1908
1909
        assert img.size[0] == width
        assert img.size[1] == height
1910
1911
1912
        assert torch.nn.functional.mse_loss(
            tr_img, F.convert_image_dtype(F.pil_to_tensor(img))
        ) + 0.3 > torch.nn.functional.mse_loss(tr_img2, F.convert_image_dtype(F.pil_to_tensor(img)))
1913
1914


1915
@pytest.mark.parametrize("seed", range(10))
1916
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1917
1918
def test_randomperspective_fill(mode, seed):
    torch.random.manual_seed(seed)
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomPerspective(fill={})

    t = transforms.RandomPerspective(fill=None)
    assert t.fill == 0

    height = 100
    width = 100
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    fill = 127
    num_bands = len(mode)

    img_conv = img.convert(mode)
    perspective = transforms.RandomPerspective(p=1, fill=fill)
    tr_img = perspective(img_conv)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
    tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    wrong_num_bands = num_bands + 1
    with pytest.raises(ValueError):
        F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))


1957
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1958
1959
def test_normalize():
    def samples_from_standard_normal(tensor):
1960
        p_value = stats.kstest(list(tensor.view(-1)), "norm", args=(0, 1)).pvalue
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
        return p_value > 0.0001

    random_state = random.getstate()
    random.seed(42)
    for channels in [1, 3]:
        img = torch.rand(channels, 10, 10)
        mean = [img[c].mean() for c in range(channels)]
        std = [img[c].std() for c in range(channels)]
        normalized = transforms.Normalize(mean, std)(img)
        assert samples_from_standard_normal(normalized)
    random.setstate(random_state)

    # Checking if Normalize can be printed as string
    transforms.Normalize(mean, std).__repr__()

    # Checking the optional in-place behaviour
    tensor = torch.rand((1, 16, 16))
    tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
    assert_equal(tensor, tensor_inplace)


1982
1983
@pytest.mark.parametrize("dtype1", [torch.float32, torch.float64])
@pytest.mark.parametrize("dtype2", [torch.int64, torch.float32, torch.float64])
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
def test_normalize_different_dtype(dtype1, dtype2):
    img = torch.rand(3, 10, 10, dtype=dtype1)
    mean = torch.tensor([1, 2, 3], dtype=dtype2)
    std = torch.tensor([1, 2, 1], dtype=dtype2)
    # checks that it doesn't crash
    transforms.functional.normalize(img, mean, std)


def test_normalize_3d_tensor():
    torch.manual_seed(28)
    n_channels = 3
    img_size = 10
    mean = torch.rand(n_channels)
    std = torch.rand(n_channels)
    img = torch.rand(n_channels, img_size, img_size)
    target = F.normalize(img, mean, std)

    mean_unsqueezed = mean.view(-1, 1, 1)
    std_unsqueezed = std.view(-1, 1, 1)
    result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
2004
2005
2006
    result2 = F.normalize(
        img, mean_unsqueezed.repeat(1, img_size, img_size), std_unsqueezed.repeat(1, img_size, img_size)
    )
2007
2008
2009
2010
    torch.testing.assert_close(target, result1)
    torch.testing.assert_close(target, result2)


2011
class TestAffine:
2012
    @pytest.fixture(scope="class")
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
    def input_img(self):
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        for pt in [(16, 16), (20, 16), (20, 20)]:
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
        return input_img

    def test_affine_translate_seq(self, input_img):
        with pytest.raises(TypeError, match=r"Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)

2025
    @pytest.fixture(scope="class")
2026
2027
2028
2029
2030
2031
2032
2033
2034
    def pil_image(self, input_img):
        return F.to_pil_image(input_img)

    def _to_3x3_inv(self, inv_result_matrix):
        result_matrix = np.zeros((3, 3))
        result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
        result_matrix[2, 2] = 1
        return np.linalg.inv(result_matrix)

2035
    def _test_transformation(self, angle, translate, scale, shear, pil_image, input_img, center=None):
2036
2037
2038

        a_rad = math.radians(angle)
        s_rad = [math.radians(sh_) for sh_ in shear]
2039
        cnt = [20, 20] if center is None else center
2040
2041
2042
2043
2044
2045
        cx, cy = cnt
        tx, ty = translate
        sx, sy = s_rad
        rot = a_rad

        # 1) Check transformation matrix:
2046
2047
        C = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        T = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
2048
2049
2050
        Cinv = np.linalg.inv(C)

        RS = np.array(
2051
2052
2053
2054
2055
2056
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
2057

2058
        SHx = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
2059

2060
        SHy = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
2061
2062
2063
2064
2065

        RSS = np.matmul(RS, np.matmul(SHy, SHx))

        true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

2066
2067
2068
        result_matrix = self._to_3x3_inv(
            F._get_inverse_affine_matrix(center=cnt, angle=angle, translate=translate, scale=scale, shear=shear)
        )
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
        assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
        # 2) Perform inverse mapping:
        true_result = np.zeros((40, 40, 3), dtype=np.uint8)
        inv_true_matrix = np.linalg.inv(true_matrix)
        for y in range(true_result.shape[0]):
            for x in range(true_result.shape[1]):
                # Same as for PIL:
                # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                # src/libImaging/Geometry.c#L1060
                input_pt = np.array([x + 0.5, y + 0.5, 1.0])
2079
                res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(int)
2080
2081
2082
2083
                _x, _y = res[:2]
                if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                    true_result[y, x, :] = input_img[_y, _x, :]

2084
        result = F.affine(pil_image, angle=angle, translate=translate, scale=scale, shear=shear, center=center)
2085
2086
2087
2088
2089
        assert result.size == pil_image.size
        # Compute number of different pixels:
        np_result = np.array(result)
        n_diff_pixels = np.sum(np_result != true_result) / 3
        # Accept 3 wrong pixels
2090
2091
2092
        error_msg = (
            f"angle={angle}, translate={translate}, scale={scale}, shear={shear}\nn diff pixels={n_diff_pixels}\n"
        )
2093
2094
2095
2096
2097
        assert n_diff_pixels < 3, error_msg

    def test_transformation_discrete(self, pil_image, input_img):
        # Test rotation
        angle = 45
2098
2099
2100
        self._test_transformation(
            angle=angle, translate=(0, 0), scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2101

2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
        # Test rotation
        angle = 45
        self._test_transformation(
            angle=angle,
            translate=(0, 0),
            scale=1.0,
            shear=(0.0, 0.0),
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2114
2115
        # Test translation
        translate = [10, 15]
2116
2117
2118
        self._test_transformation(
            angle=0.0, translate=translate, scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2119
2120
2121

        # Test scale
        scale = 1.2
2122
2123
2124
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=scale, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2125
2126
2127

        # Test shear
        shear = [45.0, 25.0]
2128
2129
2130
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=1.0, shear=shear, pil_image=pil_image, input_img=input_img
        )
2131

2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
        # Test shear with top-left as center
        shear = [45.0, 25.0]
        self._test_transformation(
            angle=0.0,
            translate=(0.0, 0.0),
            scale=1.0,
            shear=shear,
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2144
2145
2146
2147
2148
    @pytest.mark.parametrize("angle", range(-90, 90, 36))
    @pytest.mark.parametrize("translate", range(-10, 10, 5))
    @pytest.mark.parametrize("scale", [0.77, 1.0, 1.27])
    @pytest.mark.parametrize("shear", range(-15, 15, 5))
    def test_transformation_range(self, angle, translate, scale, shear, pil_image, input_img):
2149
2150
2151
2152
2153
2154
2155
2156
        self._test_transformation(
            angle=angle,
            translate=(translate, translate),
            scale=scale,
            shear=(shear, shear),
            pil_image=pil_image,
            input_img=input_img,
        )
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203


def test_random_affine():

    with pytest.raises(ValueError):
        transforms.RandomAffine(-0.7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7, 0, 0.7])
    with pytest.raises(TypeError):
        transforms.RandomAffine([-90, 90], translate=2.0)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomAffine(0, fill={})

    t = transforms.RandomAffine(0, fill=None)
    assert t.fill == 0

    x = np.zeros((100, 100, 3), dtype=np.uint8)
    img = F.to_pil_image(x)

    t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
    for _ in range(100):
2204
        angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear, img_size=img.size)
2205
        assert -10 < angle < 10
2206
2207
        assert -img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5
        assert -img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
        assert 0.7 < scale < 1.3
        assert -10 < shear[0] < 10
        assert -20 < shear[1] < 40

    # Checking if RandomAffine can be printed as string
    t.__repr__()

    t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
    assert "bilinear" in t.__repr__()

2218
2219
2220
    t = transforms.RandomAffine(10, interpolation=Image.BILINEAR)
    assert t.interpolation == transforms.InterpolationMode.BILINEAR

2221

2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
def test_elastic_transformation():
    with pytest.raises(TypeError, match=r"alpha should be float or a sequence of floats"):
        transforms.ElasticTransform(alpha=True, sigma=2.0)
    with pytest.raises(TypeError, match=r"alpha should be a sequence of floats"):
        transforms.ElasticTransform(alpha=[1.0, True], sigma=2.0)
    with pytest.raises(ValueError, match=r"alpha is a sequence its length should be 2"):
        transforms.ElasticTransform(alpha=[1.0, 0.0, 1.0], sigma=2.0)

    with pytest.raises(TypeError, match=r"sigma should be float or a sequence of floats"):
        transforms.ElasticTransform(alpha=2.0, sigma=True)
    with pytest.raises(TypeError, match=r"sigma should be a sequence of floats"):
        transforms.ElasticTransform(alpha=2.0, sigma=[1.0, True])
    with pytest.raises(ValueError, match=r"sigma is a sequence its length should be 2"):
        transforms.ElasticTransform(alpha=2.0, sigma=[1.0, 0.0, 1.0])

2237
2238
    t = transforms.transforms.ElasticTransform(alpha=2.0, sigma=2.0, interpolation=Image.BILINEAR)
    assert t.interpolation == transforms.InterpolationMode.BILINEAR
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257

    with pytest.raises(TypeError, match=r"fill should be int or float"):
        transforms.ElasticTransform(alpha=1.0, sigma=1.0, fill={})

    x = torch.randint(0, 256, (3, 32, 32), dtype=torch.uint8)
    img = F.to_pil_image(x)
    t = transforms.ElasticTransform(alpha=0.0, sigma=0.0)
    transformed_img = t(img)
    assert transformed_img == img

    # Smoke test on PIL images
    t = transforms.ElasticTransform(alpha=0.5, sigma=0.23)
    transformed_img = t(img)
    assert isinstance(transformed_img, Image.Image)

    # Checking if ElasticTransform can be printed as string
    t.__repr__()


2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
def test_random_grayscale_with_grayscale_input():
    transform = transforms.RandomGrayscale(p=1.0)

    image_tensor = torch.randint(0, 256, (1, 16, 16), dtype=torch.uint8)
    output_tensor = transform(image_tensor)
    torch.testing.assert_close(output_tensor, image_tensor)

    image_pil = F.to_pil_image(image_tensor)
    output_pil = transform(image_pil)
    torch.testing.assert_close(F.pil_to_tensor(output_pil), image_tensor)


2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
# TODO: remove in 0.17 when we can delete functional_pil.py and functional_tensor.py
@pytest.mark.parametrize(
    "import_statement",
    (
        "from torchvision.transforms import functional_pil",
        "from torchvision.transforms import functional_tensor",
        "from torchvision.transforms.functional_tensor import resize",
        "from torchvision.transforms.functional_pil import resize",
    ),
)
@pytest.mark.parametrize("from_private", (True, False))
def test_functional_deprecation_warning(import_statement, from_private):
    if from_private:
        import_statement = import_statement.replace("functional", "_functional")
        source = f"""
        import warnings

        with warnings.catch_warnings():
            warnings.simplefilter("error")
            {import_statement}
        """
    else:
        source = f"""
        import pytest
        with pytest.warns(UserWarning, match="removed in 0.17"):
            {import_statement}
        """
    assert_run_python_script(textwrap.dedent(source))


2300
if __name__ == "__main__":
2301
    pytest.main([__file__])