"megatron/vscode:/vscode.git/clone" did not exist on "862d70fceededcbe3170abf2a3eaaf4df3c14575"
functional.py 56.3 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
5
6

import numpy as np
vfdev's avatar
vfdev committed
7
from PIL import Image
8
9
10

import torch
from torch import Tensor
11
from typing import List, Tuple, Any, Optional
12

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
from . import functional_pil as F_pil
from . import functional_tensor as F_t

21

22
class InterpolationMode(Enum):
23
    """Interpolation modes
24
    Available interpolation methods are ``nearest``, ``bilinear``, ``bicubic``, ``box``, ``hamming``, and ``lanczos``.
25
26
27
28
29
30
31
32
33
34
35
    """
    NEAREST = "nearest"
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
36
37
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
38
    inverse_modes_mapping = {
39
40
41
42
43
44
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
45
46
47
48
49
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
50
51
52
53
54
55
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
56
57
}

vfdev's avatar
vfdev committed
58
59
60
61
_is_pil_image = F_pil._is_pil_image


def _get_image_size(img: Tensor) -> List[int]:
62
    """Returns image size as [w, h]
vfdev's avatar
vfdev committed
63
64
65
    """
    if isinstance(img, torch.Tensor):
        return F_t._get_image_size(img)
66

vfdev's avatar
vfdev committed
67
    return F_pil._get_image_size(img)
68

vfdev's avatar
vfdev committed
69

70
def _get_image_num_channels(img: Tensor) -> int:
71
72
    """Returns number of image channels
    """
73
74
75
76
77
78
    if isinstance(img, torch.Tensor):
        return F_t._get_image_num_channels(img)

    return F_pil._get_image_num_channels(img)


vfdev's avatar
vfdev committed
79
80
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
81
82
83
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
84
85
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
86
    return img.ndim in {2, 3}
87
88
89
90


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
91
    This function does not support torchscript.
92

93
    See :class:`~torchvision.transforms.ToTensor` for more details.
94
95
96
97
98
99
100

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
101
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
102
103
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

104
105
106
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

107
108
    default_float_dtype = torch.get_default_dtype()

109
110
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
111
112
113
        if pic.ndim == 2:
            pic = pic[:, :, None]

114
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
115
        # backward compatibility
116
        if isinstance(img, torch.ByteTensor):
117
            return img.to(dtype=default_float_dtype).div(255)
118
119
        else:
            return img
120
121

    if accimage is not None and isinstance(pic, accimage.Image):
122
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
123
        pic.copyto(nppic)
124
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
125
126
127
128
129
130

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
131
132
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
133
134
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
135
136
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
137
138

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
139
    # put it from HWC to CHW format
140
    img = img.permute((2, 0, 1)).contiguous()
141
    if isinstance(img, torch.ByteTensor):
142
        return img.to(dtype=default_float_dtype).div(255)
143
144
145
146
    else:
        return img


147
148
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.
149
    This function does not support torchscript.
150

vfdev's avatar
vfdev committed
151
    See :class:`~torchvision.transforms.PILToTensor` for more details.
152
153
154
155
156
157
158

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
159
    if not F_pil._is_pil_image(pic):
160
161
162
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
163
164
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
165
166
167
168
169
170
171
172
173
174
175
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


176
177
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
178
    This function does not support PIL Image.
179
180
181
182
183
184

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
185
        Tensor: Converted image
186
187
188
189
190
191
192
193
194
195
196
197

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
198
199
200
201
    if not isinstance(image, torch.Tensor):
        raise TypeError('Input img should be Tensor Image')

    return F_t.convert_image_dtype(image, dtype)
202
203


204
def to_pil_image(pic, mode=None):
205
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
206

207
    See :class:`~torchvision.transforms.ToPILImage` for more details.
208
209
210
211
212

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

213
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
214
215
216
217

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
218
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
219
220
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
221
222
223
224
225
226
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
227
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
228

229
230
231
232
        # check number of channels
        if pic.shape[-3] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-3]))

Varun Agrawal's avatar
Varun Agrawal committed
233
234
235
236
237
238
239
240
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

241
242
243
244
        # check number of channels
        if pic.shape[-1] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-1]))

245
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
246
    if isinstance(pic, torch.Tensor):
247
248
249
        if pic.is_floating_point() and mode != 'F':
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
250
251
252
253
254
255
256
257
258
259

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
260
        elif npimg.dtype == np.int16:
261
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
262
        elif npimg.dtype == np.int32:
263
264
265
266
267
268
269
270
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
271
272
273
274
275
276
277
278
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

279
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
280
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


299
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
300
    """Normalize a float tensor image with mean and standard deviation.
301
    This transform does not support PIL Image.
302

303
    .. note::
surgan12's avatar
surgan12 committed
304
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
305

306
    See :class:`~torchvision.transforms.Normalize` for more details.
307
308

    Args:
309
        tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
310
        mean (sequence): Sequence of means for each channel.
311
        std (sequence): Sequence of standard deviations for each channel.
312
        inplace(bool,optional): Bool to make this operation inplace.
313
314
315
316

    Returns:
        Tensor: Normalized Tensor image.
    """
317
318
    if not isinstance(tensor, torch.Tensor):
        raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
319

320
321
322
    if not tensor.is_floating_point():
        raise TypeError('Input tensor should be a float tensor. Got {}.'.format(tensor.dtype))

323
324
    if tensor.ndim < 3:
        raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
325
                         '{}.'.format(tensor.size()))
326

surgan12's avatar
surgan12 committed
327
328
329
    if not inplace:
        tensor = tensor.clone()

330
331
332
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
333
334
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
335
    if mean.ndim == 1:
336
        mean = mean.view(-1, 1, 1)
337
    if std.ndim == 1:
338
        std = std.view(-1, 1, 1)
339
    tensor.sub_(mean).div_(std)
340
    return tensor
341
342


343
def resize(img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR,
344
           max_size: Optional[int] = None, antialias: Optional[bool] = None) -> Tensor:
vfdev's avatar
vfdev committed
345
    r"""Resize the input image to the given size.
346
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
347
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
348

349
350
351
352
353
354
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
        types.

355
    Args:
vfdev's avatar
vfdev committed
356
        img (PIL Image or Tensor): Image to be resized.
357
358
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
359
            the smaller edge of the image will be matched to this number maintaining
360
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
361
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
362
363
364

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
365
366
367
368
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
369
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
370
371
372
373
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
374
            ``max_size``. As a result, ``size`` might be overruled, i.e the
375
376
377
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
378
379
380
381
382
383
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
            is always used. If ``img`` is Tensor, the flag is False by default and can be set True for
            ``InterpolationMode.BILINEAR`` only mode.

            .. warning::
                There is no autodiff support for ``antialias=True`` option with input ``img`` as Tensor.
384
385

    Returns:
vfdev's avatar
vfdev committed
386
        PIL Image or Tensor: Resized image.
387
    """
388
389
390
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
391
392
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
393
394
395
        )
        interpolation = _interpolation_modes_from_int(interpolation)

396
397
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
398

vfdev's avatar
vfdev committed
399
    if not isinstance(img, torch.Tensor):
400
401
402
403
        if antialias is not None and not antialias:
            warnings.warn(
                "Anti-alias option is always applied for PIL Image input. Argument antialias is ignored."
            )
404
        pil_interpolation = pil_modes_mapping[interpolation]
405
        return F_pil.resize(img, size=size, interpolation=pil_interpolation, max_size=max_size)
vfdev's avatar
vfdev committed
406

407
    return F_t.resize(img, size=size, interpolation=interpolation.value, max_size=max_size, antialias=antialias)
408
409
410
411
412
413
414
415


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


416
417
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
418
    If the image is torch Tensor, it is expected
419
420
421
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
422
423

    Args:
424
        img (PIL Image or Tensor): Image to be padded.
425
426
427
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
428
            this is the padding for the left, top, right and bottom borders respectively.
429
430
431
432

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
433
434
435
436
437
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
438
439
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
440
441
442

            - constant: pads with a constant value, this value is specified with fill

443
444
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
445

446
447
448
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
449

450
451
452
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
453
454

    Returns:
455
        PIL Image or Tensor: Padded image.
456
    """
457
458
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
459

460
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
461
462


vfdev's avatar
vfdev committed
463
464
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
465
466
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
467

468
    Args:
vfdev's avatar
vfdev committed
469
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
470
471
472
473
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
474

475
    Returns:
vfdev's avatar
vfdev committed
476
        PIL Image or Tensor: Cropped image.
477
478
    """

vfdev's avatar
vfdev committed
479
480
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
481

vfdev's avatar
vfdev committed
482
    return F_t.crop(img, top, left, height, width)
483

vfdev's avatar
vfdev committed
484
485
486

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
487
    If the image is torch Tensor, it is expected
488
489
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
490

491
    Args:
vfdev's avatar
vfdev committed
492
        img (PIL Image or Tensor): Image to be cropped.
493
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
494
495
            it is used for both directions.

496
    Returns:
vfdev's avatar
vfdev committed
497
        PIL Image or Tensor: Cropped image.
498
    """
499
500
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
501
502
503
504
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    image_width, image_height = _get_image_size(img)
505
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
506

507
508
509
510
511
512
513
514
515
516
517
518
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
        image_width, image_height = _get_image_size(img)
        if crop_width == image_width and crop_height == image_height:
            return img

519
520
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
521
    return crop(img, crop_top, crop_left, crop_height, crop_width)
522
523


524
def resized_crop(
525
        img: Tensor, top: int, left: int, height: int, width: int, size: List[int],
526
        interpolation: InterpolationMode = InterpolationMode.BILINEAR
527
528
) -> Tensor:
    """Crop the given image and resize it to desired size.
529
    If the image is torch Tensor, it is expected
530
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
531

532
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
533
534

    Args:
535
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
536
537
538
539
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
540
        size (sequence or int): Desired output size. Same semantics as ``resize``.
541
542
543
544
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
545
546
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

547
    Returns:
548
        PIL Image or Tensor: Cropped image.
549
    """
550
    img = crop(img, top, left, height, width)
551
552
553
554
    img = resize(img, size, interpolation)
    return img


555
def hflip(img: Tensor) -> Tensor:
556
    """Horizontally flip the given image.
557
558

    Args:
vfdev's avatar
vfdev committed
559
        img (PIL Image or Tensor): Image to be flipped. If img
560
            is a Tensor, it is expected to be in [..., H, W] format,
561
            where ... means it can have an arbitrary number of leading
562
            dimensions.
563
564

    Returns:
vfdev's avatar
vfdev committed
565
        PIL Image or Tensor:  Horizontally flipped image.
566
    """
567
568
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
569

570
    return F_t.hflip(img)
571
572


573
574
575
def _get_perspective_coeffs(
        startpoints: List[List[int]], endpoints: List[List[int]]
) -> List[float]:
576
577
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
578
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
579
580
581
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
582
583
584
585
586
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

587
588
589
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
590
591
592
593
594
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
595

596
597
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
    res = torch.lstsq(b_matrix, a_matrix)[0]
598

599
600
    output: List[float] = res.squeeze(1).tolist()
    return output
601
602


603
604
605
606
def perspective(
        img: Tensor,
        startpoints: List[List[int]],
        endpoints: List[List[int]],
607
        interpolation: InterpolationMode = InterpolationMode.BILINEAR,
608
        fill: Optional[List[float]] = None
609
610
) -> Tensor:
    """Perform perspective transform of the given image.
611
    If the image is torch Tensor, it is expected
612
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
613
614

    Args:
615
616
617
618
619
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
620
621
622
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
623
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
624
625
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
626
627
628
629

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
630

631
    Returns:
632
        PIL Image or Tensor: transformed Image.
633
    """
634

635
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
636

637
638
639
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
640
641
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
642
643
644
        )
        interpolation = _interpolation_modes_from_int(interpolation)

645
646
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
647

648
    if not isinstance(img, torch.Tensor):
649
650
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
651

652
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
653
654


655
def vflip(img: Tensor) -> Tensor:
656
    """Vertically flip the given image.
657
658

    Args:
vfdev's avatar
vfdev committed
659
        img (PIL Image or Tensor): Image to be flipped. If img
660
            is a Tensor, it is expected to be in [..., H, W] format,
661
            where ... means it can have an arbitrary number of leading
662
            dimensions.
663
664

    Returns:
665
        PIL Image or Tensor:  Vertically flipped image.
666
    """
667
668
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
669

670
    return F_t.vflip(img)
671
672


vfdev's avatar
vfdev committed
673
674
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
675
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
676
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
677
678
679
680
681
682

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
683
684
685
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
686
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
687

688
    Returns:
689
       tuple: tuple (tl, tr, bl, br, center)
690
       Corresponding top left, top right, bottom left, bottom right and center crop.
691
692
693
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
694
695
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
696

vfdev's avatar
vfdev committed
697
698
699
700
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    image_width, image_height = _get_image_size(img)
701
702
703
704
705
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
706
707
708
709
710
711
712
713
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
714
715


vfdev's avatar
vfdev committed
716
717
718
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
719
    flipped version of these (horizontal flipping is used by default).
720
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
721
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
722
723
724
725
726

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

727
    Args:
vfdev's avatar
vfdev committed
728
        img (PIL Image or Tensor): Image to be cropped.
729
        size (sequence or int): Desired output size of the crop. If size is an
730
            int instead of sequence like (h, w), a square crop (size, size) is
731
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
732
        vertical_flip (bool): Use vertical flipping instead of horizontal
733
734

    Returns:
735
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
736
737
        Corresponding top left, top right, bottom left, bottom right and
        center crop and same for the flipped image.
738
739
740
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
741
742
743
744
745
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
746
747
748
749
750
751
752
753
754
755
756
757

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


758
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
759
    """Adjust brightness of an image.
760
761

    Args:
vfdev's avatar
vfdev committed
762
        img (PIL Image or Tensor): Image to be adjusted.
763
764
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
765
766
767
768
769
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
770
        PIL Image or Tensor: Brightness adjusted image.
771
    """
772
773
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
774

775
    return F_t.adjust_brightness(img, brightness_factor)
776
777


778
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
779
    """Adjust contrast of an image.
780
781

    Args:
vfdev's avatar
vfdev committed
782
        img (PIL Image or Tensor): Image to be adjusted.
783
784
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
785
786
787
788
789
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
790
        PIL Image or Tensor: Contrast adjusted image.
791
    """
792
793
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
794

795
    return F_t.adjust_contrast(img, contrast_factor)
796
797


798
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
799
800
801
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
802
        img (PIL Image or Tensor): Image to be adjusted.
803
804
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
805
806
807
808
809
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
810
        PIL Image or Tensor: Saturation adjusted image.
811
    """
812
813
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
814

815
    return F_t.adjust_saturation(img, saturation_factor)
816
817


818
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
819
820
821
822
823
824
825
826
827
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

828
829
830
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
831
832

    Args:
833
        img (PIL Image or Tensor): Image to be adjusted.
834
835
836
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
837
838
839
840
841
842
843
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
844
        PIL Image or Tensor: Hue adjusted image.
845
    """
846
847
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
848

849
    return F_t.adjust_hue(img, hue_factor)
850
851


852
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
853
    r"""Perform gamma correction on an image.
854
855
856
857

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

858
859
860
861
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
862

863
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
864
865

    Args:
866
        img (PIL Image or Tensor): PIL Image to be adjusted.
867
868
869
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, modes with transparency (alpha channel) are not supported.
870
871
872
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
873
        gain (float): The constant multiplier.
874
875
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
876
    """
877
878
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
879

880
    return F_t.adjust_gamma(img, gamma, gain)
881
882


vfdev's avatar
vfdev committed
883
def _get_inverse_affine_matrix(
vfdev's avatar
vfdev committed
884
        center: List[float], angle: float, translate: List[float], scale: float, shear: List[float]
vfdev's avatar
vfdev committed
885
) -> List[float]:
886
887
888
889
890
891
892
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
893
894
895
896
897
898
899
900
901
902
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
903
904
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

905
906
907
908
909
910
911
    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
912
913
914
915
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
916
917

    # Inverted rotation matrix with scale and shear
918
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
vfdev's avatar
vfdev committed
919
920
    matrix = [d, -b, 0.0, -c, a, 0.0]
    matrix = [x / scale for x in matrix]
921
922

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
923
924
    matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
    matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
925
926

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
927
928
    matrix[2] += cx
    matrix[5] += cy
929

vfdev's avatar
vfdev committed
930
    return matrix
931

vfdev's avatar
vfdev committed
932

vfdev's avatar
vfdev committed
933
def rotate(
934
        img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST,
935
        expand: bool = False, center: Optional[List[int]] = None,
936
        fill: Optional[List[float]] = None, resample: Optional[int] = None
vfdev's avatar
vfdev committed
937
938
) -> Tensor:
    """Rotate the image by angle.
939
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
940
941
942
943
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
944
        angle (number): rotation angle value in degrees, counter-clockwise.
945
946
947
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
948
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
vfdev's avatar
vfdev committed
949
950
951
952
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
953
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
954
            Default is the center of the image.
955
956
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
957
958
959
960

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
vfdev's avatar
vfdev committed
961
962
963
964
965
966
967

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
968
969
970
971
972
973
974
975
976
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
977
978
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
979
980
981
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
982
983
984
985
986
987
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

988
989
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
990

vfdev's avatar
vfdev committed
991
    if not isinstance(img, torch.Tensor):
992
993
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
994
995
996
997

    center_f = [0.0, 0.0]
    if center is not None:
        img_size = _get_image_size(img)
998
999
1000
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)]

vfdev's avatar
vfdev committed
1001
1002
1003
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
1004
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
1005
1006


vfdev's avatar
vfdev committed
1007
1008
def affine(
        img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float],
1009
1010
        interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: Optional[List[float]] = None,
        resample: Optional[int] = None, fillcolor: Optional[List[float]] = None
vfdev's avatar
vfdev committed
1011
1012
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
1013
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1014
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1015
1016

    Args:
vfdev's avatar
vfdev committed
1017
        img (PIL Image or Tensor): image to transform.
1018
1019
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
1020
        scale (float): overall scale
1021
1022
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
vfdev's avatar
vfdev committed
1023
            the second value corresponds to a shear parallel to the y axis.
1024
1025
1026
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1027
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1028
1029
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1030
1031
1032
1033

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
1034
        fillcolor (sequence, int, float): deprecated argument and will be removed since v0.10.0.
1035
            Please use the ``fill`` parameter instead.
1036
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1037
            Please use the ``interpolation`` parameter instead.
vfdev's avatar
vfdev committed
1038
1039
1040

    Returns:
        PIL Image or Tensor: Transformed image.
1041
    """
1042
1043
1044
1045
1046
1047
1048
1049
1050
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1051
1052
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
1053
1054
1055
1056
1057
1058
1059
1060
1061
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if fillcolor is not None:
        warnings.warn(
            "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
        )
        fill = fillcolor

vfdev's avatar
vfdev committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1077
1078
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1079

vfdev's avatar
vfdev committed
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError("Shear should be a sequence containing two values. Got {}".format(shear))

    img_size = _get_image_size(img)
    if not isinstance(img, torch.Tensor):
        # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
        center = [img_size[0] * 0.5, img_size[1] * 0.5]
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1105
1106
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1107

1108
1109
    translate_f = [1.0 * t for t in translate]
    matrix = _get_inverse_affine_matrix([0.0, 0.0], angle, translate_f, scale, shear)
1110
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1111
1112


1113
@torch.jit.unused
1114
def to_grayscale(img, num_output_channels=1):
1115
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1116
    This transform does not support torch Tensor.
1117
1118

    Args:
1119
        img (PIL Image): PIL Image to be converted to grayscale.
1120
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1121
1122

    Returns:
1123
1124
        PIL Image: Grayscale version of the image.

1125
1126
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1127
    """
1128
1129
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1130

1131
1132
1133
1134
1135
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1136
1137
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.

1150
1151
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1152
1153
1154
1155
1156
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1157
1158


1159
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1160
    """ Erase the input Tensor Image with given value.
1161
    This transform does not support PIL Image.
1162
1163
1164
1165
1166
1167
1168
1169

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1170
        inplace(bool, optional): For in-place operations. By default is set False.
1171
1172
1173
1174
1175
1176
1177

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

1178
1179
1180
    if not inplace:
        img = img.clone()

vfdev's avatar
vfdev committed
1181
    img[..., i:i + h, j:j + w] = v
1182
    return img
1183
1184
1185


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1186
1187
1188
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1189
1190
1191
1192
1193

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1194
1195
1196
1197

            .. note::
                In torchscript mode kernel_size as single int is not supported, use a sequence of
                length 1: ``[ksize, ]``.
1198
1199
1200
1201
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
1202
1203
1204
1205
1206
            Default, None.

            .. note::
                In torchscript mode sigma as single float is
                not supported, use a sequence of length 1: ``[sigma, ]``.
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
    if not isinstance(kernel_size, (int, list, tuple)):
        raise TypeError('kernel_size should be int or a sequence of integers. Got {}'.format(type(kernel_size)))
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
        raise ValueError('If kernel_size is a sequence its length should be 2. Got {}'.format(len(kernel_size)))
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError('kernel_size should have odd and positive integers. Got {}'.format(kernel_size))

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
        raise TypeError('sigma should be either float or sequence of floats. Got {}'.format(type(sigma)))
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
        raise ValueError('If sigma is a sequence, its length should be 2. Got {}'.format(len(sigma)))
    for s in sigma:
        if s <= 0.:
            raise ValueError('sigma should have positive values. Got {}'.format(sigma))

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError('img should be PIL Image or Tensor. Got {}'.format(type(img)))

        t_img = to_tensor(img)

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output)
    return output
1248
1249
1250


def invert(img: Tensor) -> Tensor:
1251
    """Invert the colors of an RGB/grayscale image.
1252
1253
1254

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1255
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1256
1257
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1269
    """Posterize an image by reducing the number of bits for each color channel.
1270
1271
1272

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1273
            If img is torch Tensor, it should be of type torch.uint8 and
1274
1275
1276
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
    if not (0 <= bits <= 8):
        raise ValueError('The number if bits should be between 0 and 8. Got {}'.format(bits))

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1291
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1292
1293
1294

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1295
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1296
1297
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1309
    """Adjust the sharpness of an image.
1310
1311
1312

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1313
1314
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1329
    """Maximize contrast of an image by remapping its
1330
1331
1332
1333
1334
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1335
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1336
1337
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1349
    """Equalize the histogram of an image by applying
1350
1351
1352
1353
1354
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1355
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1356
            where ... means it can have an arbitrary number of leading dimensions.
1357
            The tensor dtype must be ``torch.uint8`` and values are expected to be in ``[0, 255]``.
1358
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1359
1360
1361
1362
1363
1364
1365
1366

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)