functional.py 66.8 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
5
from typing import List, Tuple, Any, Optional
6
7
8

import numpy as np
import torch
9
from PIL import Image
10
11
from torch import Tensor

12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

17
from ..utils import _log_api_usage_once
18
19
20
from . import functional_pil as F_pil
from . import functional_tensor as F_t

21

22
class InterpolationMode(Enum):
23
    """Interpolation modes
24
    Available interpolation methods are ``nearest``, ``bilinear``, ``bicubic``, ``box``, ``hamming``, and ``lanczos``.
25
    """
26

27
28
29
30
31
32
33
34
35
36
    NEAREST = "nearest"
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
37
38
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
39
    inverse_modes_mapping = {
40
41
42
43
44
45
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
46
47
48
49
50
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
51
52
53
54
55
56
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
57
58
}

vfdev's avatar
vfdev committed
59
60
61
_is_pil_image = F_pil._is_pil_image


62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def get_dimensions(img: Tensor) -> List[int]:
    """Returns the dimensions of an image as [channels, height, width].

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        List[int]: The image dimensions.
    """
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_dimensions)
    if isinstance(img, torch.Tensor):
        return F_t.get_dimensions(img)

    return F_pil.get_dimensions(img)


79
80
81
82
83
84
85
86
def get_image_size(img: Tensor) -> List[int]:
    """Returns the size of an image as [width, height].

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        List[int]: The image size.
vfdev's avatar
vfdev committed
87
    """
88
89
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_image_size)
vfdev's avatar
vfdev committed
90
    if isinstance(img, torch.Tensor):
91
        return F_t.get_image_size(img)
92

93
    return F_pil.get_image_size(img)
94

vfdev's avatar
vfdev committed
95

96
97
98
99
100
101
102
103
def get_image_num_channels(img: Tensor) -> int:
    """Returns the number of channels of an image.

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        int: The number of channels.
104
    """
105
106
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_image_num_channels)
107
    if isinstance(img, torch.Tensor):
108
        return F_t.get_image_num_channels(img)
109

110
    return F_pil.get_image_num_channels(img)
111
112


vfdev's avatar
vfdev committed
113
114
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
115
116
117
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
118
119
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
120
    return img.ndim in {2, 3}
121
122


123
def to_tensor(pic) -> Tensor:
124
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
125
    This function does not support torchscript.
126

127
    See :class:`~torchvision.transforms.ToTensor` for more details.
128
129
130
131
132
133
134

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
135
136
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_tensor)
137
    if not (F_pil._is_pil_image(pic) or _is_numpy(pic)):
138
        raise TypeError(f"pic should be PIL Image or ndarray. Got {type(pic)}")
139

140
    if _is_numpy(pic) and not _is_numpy_image(pic):
141
        raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndim} dimensions.")
142

143
144
    default_float_dtype = torch.get_default_dtype()

145
146
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
147
148
149
        if pic.ndim == 2:
            pic = pic[:, :, None]

150
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
151
        # backward compatibility
152
        if isinstance(img, torch.ByteTensor):
153
            return img.to(dtype=default_float_dtype).div(255)
154
155
        else:
            return img
156
157

    if accimage is not None and isinstance(pic, accimage.Image):
158
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
159
        pic.copyto(nppic)
160
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
161
162

    # handle PIL Image
163
164
    mode_to_nptype = {"I": np.int32, "I;16": np.int16, "F": np.float32}
    img = torch.from_numpy(np.array(pic, mode_to_nptype.get(pic.mode, np.uint8), copy=True))
165

166
    if pic.mode == "1":
167
        img = 255 * img
168
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
169
    # put it from HWC to CHW format
170
    img = img.permute((2, 0, 1)).contiguous()
171
    if isinstance(img, torch.ByteTensor):
172
        return img.to(dtype=default_float_dtype).div(255)
173
174
175
176
    else:
        return img


177
178
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.
179
    This function does not support torchscript.
180

vfdev's avatar
vfdev committed
181
    See :class:`~torchvision.transforms.PILToTensor` for more details.
182

183
184
185
186
    .. note::

        A deep copy of the underlying array is performed.

187
188
189
190
191
192
    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
193
194
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(pil_to_tensor)
195
    if not F_pil._is_pil_image(pic):
196
        raise TypeError(f"pic should be PIL Image. Got {type(pic)}")
197
198

    if accimage is not None and isinstance(pic, accimage.Image):
199
200
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
201
202
203
204
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
205
    img = torch.as_tensor(np.array(pic, copy=True))
206
207
208
209
210
211
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


212
213
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
214
    This function does not support PIL Image.
215
216
217
218
219
220

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
221
        Tensor: Converted image
222
223
224
225
226
227
228
229
230
231
232
233

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
234
235
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(convert_image_dtype)
236
    if not isinstance(image, torch.Tensor):
237
        raise TypeError("Input img should be Tensor Image")
238
239

    return F_t.convert_image_dtype(image, dtype)
240
241


242
def to_pil_image(pic, mode=None):
243
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
244

245
    See :class:`~torchvision.transforms.ToPILImage` for more details.
246
247
248
249
250

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

251
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
252
253
254
255

    Returns:
        PIL Image: Image converted to PIL Image.
    """
256
257
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_pil_image)
258
    if not (isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
259
        raise TypeError(f"pic should be Tensor or ndarray. Got {type(pic)}.")
260

Varun Agrawal's avatar
Varun Agrawal committed
261
262
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
263
            raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndimension()} dimensions.")
Varun Agrawal's avatar
Varun Agrawal committed
264
265
266

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
267
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
268

269
270
        # check number of channels
        if pic.shape[-3] > 4:
271
            raise ValueError(f"pic should not have > 4 channels. Got {pic.shape[-3]} channels.")
272

Varun Agrawal's avatar
Varun Agrawal committed
273
274
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
275
            raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndim} dimensions.")
Varun Agrawal's avatar
Varun Agrawal committed
276
277
278
279
280

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

281
282
        # check number of channels
        if pic.shape[-1] > 4:
283
            raise ValueError(f"pic should not have > 4 channels. Got {pic.shape[-1]} channels.")
284

285
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
286
    if isinstance(pic, torch.Tensor):
287
        if pic.is_floating_point() and mode != "F":
288
289
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
290
291

    if not isinstance(npimg, np.ndarray):
292
        raise TypeError("Input pic must be a torch.Tensor or NumPy ndarray, not {type(npimg)}")
293
294
295
296
297

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
298
            expected_mode = "L"
vfdev's avatar
vfdev committed
299
        elif npimg.dtype == np.int16:
300
            expected_mode = "I;16"
vfdev's avatar
vfdev committed
301
        elif npimg.dtype == np.int32:
302
            expected_mode = "I"
303
        elif npimg.dtype == np.float32:
304
            expected_mode = "F"
305
        if mode is not None and mode != expected_mode:
306
            raise ValueError(f"Incorrect mode ({mode}) supplied for input type {np.dtype}. Should be {expected_mode}")
307
308
        mode = expected_mode

surgan12's avatar
surgan12 committed
309
    elif npimg.shape[2] == 2:
310
        permitted_2_channel_modes = ["LA"]
surgan12's avatar
surgan12 committed
311
        if mode is not None and mode not in permitted_2_channel_modes:
312
            raise ValueError(f"Only modes {permitted_2_channel_modes} are supported for 2D inputs")
surgan12's avatar
surgan12 committed
313
314

        if mode is None and npimg.dtype == np.uint8:
315
            mode = "LA"
surgan12's avatar
surgan12 committed
316

317
    elif npimg.shape[2] == 4:
318
        permitted_4_channel_modes = ["RGBA", "CMYK", "RGBX"]
319
        if mode is not None and mode not in permitted_4_channel_modes:
320
            raise ValueError(f"Only modes {permitted_4_channel_modes} are supported for 4D inputs")
321
322

        if mode is None and npimg.dtype == np.uint8:
323
            mode = "RGBA"
324
    else:
325
        permitted_3_channel_modes = ["RGB", "YCbCr", "HSV"]
326
        if mode is not None and mode not in permitted_3_channel_modes:
327
            raise ValueError(f"Only modes {permitted_3_channel_modes} are supported for 3D inputs")
328
        if mode is None and npimg.dtype == np.uint8:
329
            mode = "RGB"
330
331

    if mode is None:
332
        raise TypeError(f"Input type {npimg.dtype} is not supported")
333
334
335
336

    return Image.fromarray(npimg, mode=mode)


337
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
338
    """Normalize a float tensor image with mean and standard deviation.
339
    This transform does not support PIL Image.
340

341
    .. note::
surgan12's avatar
surgan12 committed
342
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
343

344
    See :class:`~torchvision.transforms.Normalize` for more details.
345
346

    Args:
347
        tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
348
        mean (sequence): Sequence of means for each channel.
349
        std (sequence): Sequence of standard deviations for each channel.
350
        inplace(bool,optional): Bool to make this operation inplace.
351
352
353
354

    Returns:
        Tensor: Normalized Tensor image.
    """
355
356
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(normalize)
357
    if not isinstance(tensor, torch.Tensor):
358
        raise TypeError(f"img should be Tensor Image. Got {type(tensor)}")
359

360
    return F_t.normalize(tensor, mean=mean, std=std, inplace=inplace)
361
362


363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
def _compute_output_size(image_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None) -> List[int]:
    if len(size) == 1:  # specified size only for the smallest edge
        h, w = image_size
        short, long = (w, h) if w <= h else (h, w)
        requested_new_short = size if isinstance(size, int) else size[0]

        new_short, new_long = requested_new_short, int(requested_new_short * long / short)

        if max_size is not None:
            if max_size <= requested_new_short:
                raise ValueError(
                    f"max_size = {max_size} must be strictly greater than the requested "
                    f"size for the smaller edge size = {size}"
                )
            if new_long > max_size:
                new_short, new_long = int(max_size * new_short / new_long), max_size

        new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short)
    else:  # specified both h and w
        new_w, new_h = size[1], size[0]
    return [new_h, new_w]


386
387
388
389
390
391
392
def resize(
    img: Tensor,
    size: List[int],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[bool] = None,
) -> Tensor:
vfdev's avatar
vfdev committed
393
    r"""Resize the input image to the given size.
394
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
395
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
396

397
398
399
400
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
401
402
        types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors
        closer.
403

404
    Args:
vfdev's avatar
vfdev committed
405
        img (PIL Image or Tensor): Image to be resized.
406
407
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
408
            the smaller edge of the image will be matched to this number maintaining
409
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
410
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
411
412
413

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
414
415
416
417
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
418
419
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
420
421
422
423
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
424
            ``max_size``. As a result, ``size`` might be overruled, i.e the
425
426
427
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
428
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
429
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
430
431
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` modes.
            This can help making the output for PIL images and tensors closer.
432
433

    Returns:
vfdev's avatar
vfdev committed
434
        PIL Image or Tensor: Resized image.
435
    """
436
437
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(resize)
438
439
440
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
441
442
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
443
444
445
        )
        interpolation = _interpolation_modes_from_int(interpolation)

446
447
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
448

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    if isinstance(size, (list, tuple)):
        if len(size) not in [1, 2]:
            raise ValueError(
                f"Size must be an int or a 1 or 2 element tuple/list, not a {len(size)} element tuple/list"
            )
        if max_size is not None and len(size) != 1:
            raise ValueError(
                "max_size should only be passed if size specifies the length of the smaller edge, "
                "i.e. size should be an int or a sequence of length 1 in torchscript mode."
            )

    _, image_height, image_width = get_dimensions(img)
    if isinstance(size, int):
        size = [size]
    output_size = _compute_output_size((image_height, image_width), size, max_size)

    if (image_height, image_width) == output_size:
        return img

vfdev's avatar
vfdev committed
468
    if not isinstance(img, torch.Tensor):
469
        if antialias is not None and not antialias:
470
            warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
471
        pil_interpolation = pil_modes_mapping[interpolation]
472
        return F_pil.resize(img, size=output_size, interpolation=pil_interpolation)
vfdev's avatar
vfdev committed
473

474
    return F_t.resize(img, size=output_size, interpolation=interpolation.value, antialias=antialias)
475
476


477
478
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
479
    If the image is torch Tensor, it is expected
480
481
482
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
483
484

    Args:
485
        img (PIL Image or Tensor): Image to be padded.
486
487
488
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
489
            this is the padding for the left, top, right and bottom borders respectively.
490
491
492
493

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
494
        fill (number or tuple): Pixel fill value for constant fill. Default is 0.
495
496
497
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
498
            Only int or tuple value is supported for PIL Image.
499
500
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
501
502
503

            - constant: pads with a constant value, this value is specified with fill

504
505
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
506

507
508
509
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
510

511
512
513
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
514
515

    Returns:
516
        PIL Image or Tensor: Padded image.
517
    """
518
519
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(pad)
520
521
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
522

523
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
524
525


vfdev's avatar
vfdev committed
526
527
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
528
    If the image is torch Tensor, it is expected
529
530
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then cropped.
531

532
    Args:
vfdev's avatar
vfdev committed
533
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
534
535
536
537
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
538

539
    Returns:
vfdev's avatar
vfdev committed
540
        PIL Image or Tensor: Cropped image.
541
542
    """

543
544
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(crop)
vfdev's avatar
vfdev committed
545
546
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
547

vfdev's avatar
vfdev committed
548
    return F_t.crop(img, top, left, height, width)
549

vfdev's avatar
vfdev committed
550
551
552

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
553
    If the image is torch Tensor, it is expected
554
555
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
556

557
    Args:
vfdev's avatar
vfdev committed
558
        img (PIL Image or Tensor): Image to be cropped.
559
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
560
561
            it is used for both directions.

562
    Returns:
vfdev's avatar
vfdev committed
563
        PIL Image or Tensor: Cropped image.
564
    """
565
566
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(center_crop)
567
568
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
569
570
571
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

572
    _, image_height, image_width = get_dimensions(img)
573
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
574

575
576
577
578
579
580
581
582
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
583
        _, image_height, image_width = get_dimensions(img)
584
585
586
        if crop_width == image_width and crop_height == image_height:
            return img

587
588
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
589
    return crop(img, crop_top, crop_left, crop_height, crop_width)
590
591


592
def resized_crop(
593
594
595
596
597
598
599
    img: Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
600
    antialias: Optional[bool] = None,
601
602
) -> Tensor:
    """Crop the given image and resize it to desired size.
603
    If the image is torch Tensor, it is expected
604
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
605

606
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
607
608

    Args:
609
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
610
611
612
613
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
614
        size (sequence or int): Desired output size. Same semantics as ``resize``.
615
616
617
618
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
619
620
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
621
622
623
624
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` modes.
            This can help making the output for PIL images and tensors closer.
625
    Returns:
626
        PIL Image or Tensor: Cropped image.
627
    """
628
629
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(resized_crop)
630
    img = crop(img, top, left, height, width)
631
    img = resize(img, size, interpolation, antialias=antialias)
632
633
634
    return img


635
def hflip(img: Tensor) -> Tensor:
636
    """Horizontally flip the given image.
637
638

    Args:
vfdev's avatar
vfdev committed
639
        img (PIL Image or Tensor): Image to be flipped. If img
640
            is a Tensor, it is expected to be in [..., H, W] format,
641
            where ... means it can have an arbitrary number of leading
642
            dimensions.
643
644

    Returns:
vfdev's avatar
vfdev committed
645
        PIL Image or Tensor:  Horizontally flipped image.
646
    """
647
648
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(hflip)
649
650
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
651

652
    return F_t.hflip(img)
653
654


655
def _get_perspective_coeffs(startpoints: List[List[int]], endpoints: List[List[int]]) -> List[float]:
656
657
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
658
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
659
660
661
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
662
663
664
665
666
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

667
668
669
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
670
671
672
673
674
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
675

676
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
677
    res = torch.linalg.lstsq(a_matrix, b_matrix, driver="gels").solution
678

679
    output: List[float] = res.tolist()
680
    return output
681
682


683
def perspective(
684
685
686
687
688
    img: Tensor,
    startpoints: List[List[int]],
    endpoints: List[List[int]],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    fill: Optional[List[float]] = None,
689
690
) -> Tensor:
    """Perform perspective transform of the given image.
691
    If the image is torch Tensor, it is expected
692
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
693
694

    Args:
695
696
697
698
699
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
700
701
702
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
703
704
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
705
706
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
707
708
709
710

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
711

712
    Returns:
713
        PIL Image or Tensor: transformed Image.
714
    """
715
716
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(perspective)
717

718
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
719

720
721
722
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
723
724
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
725
726
727
        )
        interpolation = _interpolation_modes_from_int(interpolation)

728
729
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
730

731
    if not isinstance(img, torch.Tensor):
732
733
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
734

735
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
736
737


738
def vflip(img: Tensor) -> Tensor:
739
    """Vertically flip the given image.
740
741

    Args:
vfdev's avatar
vfdev committed
742
        img (PIL Image or Tensor): Image to be flipped. If img
743
            is a Tensor, it is expected to be in [..., H, W] format,
744
            where ... means it can have an arbitrary number of leading
745
            dimensions.
746
747

    Returns:
748
        PIL Image or Tensor:  Vertically flipped image.
749
    """
750
751
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(vflip)
752
753
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
754

755
    return F_t.vflip(img)
756
757


vfdev's avatar
vfdev committed
758
759
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
760
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
761
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
762
763
764
765
766
767

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
768
769
770
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
771
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
772

773
    Returns:
774
       tuple: tuple (tl, tr, bl, br, center)
775
       Corresponding top left, top right, bottom left, bottom right and center crop.
776
    """
777
778
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(five_crop)
779
780
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
781
782
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
783

vfdev's avatar
vfdev committed
784
785
786
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

787
    _, image_height, image_width = get_dimensions(img)
788
789
790
791
792
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
793
794
795
796
797
798
799
800
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
801
802


vfdev's avatar
vfdev committed
803
804
805
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
806
    flipped version of these (horizontal flipping is used by default).
807
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
808
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
809
810
811
812
813

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

814
    Args:
vfdev's avatar
vfdev committed
815
        img (PIL Image or Tensor): Image to be cropped.
816
        size (sequence or int): Desired output size of the crop. If size is an
817
            int instead of sequence like (h, w), a square crop (size, size) is
818
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
819
        vertical_flip (bool): Use vertical flipping instead of horizontal
820
821

    Returns:
822
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
823
824
        Corresponding top left, top right, bottom left, bottom right and
        center crop and same for the flipped image.
825
    """
826
827
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(ten_crop)
828
829
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
830
831
832
833
834
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
835
836
837
838
839
840
841
842
843
844
845
846

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


847
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
848
    """Adjust brightness of an image.
849
850

    Args:
vfdev's avatar
vfdev committed
851
        img (PIL Image or Tensor): Image to be adjusted.
852
853
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
854
855
856
857
858
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
859
        PIL Image or Tensor: Brightness adjusted image.
860
    """
861
862
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_brightness)
863
864
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
865

866
    return F_t.adjust_brightness(img, brightness_factor)
867
868


869
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
870
    """Adjust contrast of an image.
871
872

    Args:
vfdev's avatar
vfdev committed
873
        img (PIL Image or Tensor): Image to be adjusted.
874
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
875
            where ... means it can have an arbitrary number of leading dimensions.
876
877
878
879
880
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
881
        PIL Image or Tensor: Contrast adjusted image.
882
    """
883
884
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_contrast)
885
886
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
887

888
    return F_t.adjust_contrast(img, contrast_factor)
889
890


891
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
892
893
894
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
895
        img (PIL Image or Tensor): Image to be adjusted.
896
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
897
            where ... means it can have an arbitrary number of leading dimensions.
898
899
900
901
902
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
903
        PIL Image or Tensor: Saturation adjusted image.
904
    """
905
906
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_saturation)
907
908
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
909

910
    return F_t.adjust_saturation(img, saturation_factor)
911
912


913
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
914
915
916
917
918
919
920
921
922
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

923
924
925
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
926
927

    Args:
928
        img (PIL Image or Tensor): Image to be adjusted.
929
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
930
            where ... means it can have an arbitrary number of leading dimensions.
931
            If img is PIL Image mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
932
933
934
            Note: the pixel values of the input image has to be non-negative for conversion to HSV space;
            thus it does not work if you normalize your image to an interval with negative values,
            or use an interpolation that generates negative values before using this function.
935
936
937
938
939
940
941
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
942
        PIL Image or Tensor: Hue adjusted image.
943
    """
944
945
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_hue)
946
947
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
948

949
    return F_t.adjust_hue(img, hue_factor)
950
951


952
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
953
    r"""Perform gamma correction on an image.
954
955
956
957

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

958
959
960
961
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
962

963
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
964
965

    Args:
966
        img (PIL Image or Tensor): PIL Image to be adjusted.
967
968
969
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, modes with transparency (alpha channel) are not supported.
970
971
972
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
973
        gain (float): The constant multiplier.
974
975
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
976
    """
977
978
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_gamma)
979
980
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
981

982
    return F_t.adjust_gamma(img, gamma, gain)
983
984


vfdev's avatar
vfdev committed
985
def _get_inverse_affine_matrix(
986
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
vfdev's avatar
vfdev committed
987
) -> List[float]:
988
989
    # Helper method to compute inverse matrix for affine transformation

990
991
992
    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
993
994
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
995
996
997
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
998
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
999
1000
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
1001
1002
1003
1004
1005
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
1006
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1
1007

1008
    rot = math.radians(angle)
1009
1010
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])
1011
1012
1013
1014
1015

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
1016
1017
1018
1019
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
1020

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d, -b, 0.0, -c, a, 0.0]
        matrix = [x / scale for x in matrix]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
        matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
        # Apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx
        matrix[5] += cy
    else:
        matrix = [a, b, 0.0, c, d, 0.0]
        matrix = [x * scale for x in matrix]
        # Apply inverse of center translation: RSS * C^-1
        matrix[2] += matrix[0] * (-cx) + matrix[1] * (-cy)
        matrix[5] += matrix[3] * (-cx) + matrix[4] * (-cy)
        # Apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx + tx
        matrix[5] += cy + ty
1041

vfdev's avatar
vfdev committed
1042
    return matrix
1043

vfdev's avatar
vfdev committed
1044

vfdev's avatar
vfdev committed
1045
def rotate(
1046
1047
1048
1049
1050
1051
1052
    img: Tensor,
    angle: float,
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    expand: bool = False,
    center: Optional[List[int]] = None,
    fill: Optional[List[float]] = None,
    resample: Optional[int] = None,
vfdev's avatar
vfdev committed
1053
1054
) -> Tensor:
    """Rotate the image by angle.
1055
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1056
1057
1058
1059
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
1060
        angle (number): rotation angle value in degrees, counter-clockwise.
1061
1062
1063
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1064
1065
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
vfdev's avatar
vfdev committed
1066
1067
1068
1069
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1070
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
1071
            Default is the center of the image.
1072
1073
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1074
1075
1076
1077

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
1078
1079
1080
1081
        resample (int, optional):
            .. warning::
                This parameter was deprecated in ``0.12`` and will be removed in ``0.14``. Please use ``interpolation``
                instead.
vfdev's avatar
vfdev committed
1082
1083
1084
1085
1086
1087
1088

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
1089
1090
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(rotate)
1091
1092
    if resample is not None:
        warnings.warn(
1093
1094
            "The parameter 'resample' is deprecated since 0.12 and will be removed 0.14. "
            "Please use 'interpolation' instead."
1095
1096
1097
1098
1099
1100
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1101
1102
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
1103
1104
1105
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
1106
1107
1108
1109
1110
1111
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

1112
1113
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1114

vfdev's avatar
vfdev committed
1115
    if not isinstance(img, torch.Tensor):
1116
1117
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
1118
1119
1120

    center_f = [0.0, 0.0]
    if center is not None:
1121
        _, height, width = get_dimensions(img)
1122
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
1123
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, [width, height])]
1124

vfdev's avatar
vfdev committed
1125
1126
1127
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
1128
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
1129
1130


vfdev's avatar
vfdev committed
1131
def affine(
1132
1133
1134
1135
1136
1137
1138
1139
1140
    img: Tensor,
    angle: float,
    translate: List[int],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    fill: Optional[List[float]] = None,
    resample: Optional[int] = None,
    fillcolor: Optional[List[float]] = None,
1141
    center: Optional[List[int]] = None,
vfdev's avatar
vfdev committed
1142
1143
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
1144
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1145
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1146
1147

    Args:
vfdev's avatar
vfdev committed
1148
        img (PIL Image or Tensor): image to transform.
1149
1150
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
1151
        scale (float): overall scale
1152
1153
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
vfdev's avatar
vfdev committed
1154
            the second value corresponds to a shear parallel to the y axis.
1155
1156
1157
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1158
1159
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
1160
1161
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1162
1163
1164
1165

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
1166
1167
1168
1169
1170
1171
1172
        fillcolor (sequence or number, optional):
            .. warning::
                This parameter was deprecated in ``0.12`` and will be removed in ``0.14``. Please use ``fill`` instead.
        resample (int, optional):
            .. warning::
                This parameter was deprecated in ``0.12`` and will be removed in ``0.14``. Please use ``interpolation``
                instead.
1173
1174
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
            Default is the center of the image.
vfdev's avatar
vfdev committed
1175
1176
1177

    Returns:
        PIL Image or Tensor: Transformed image.
1178
    """
1179
1180
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(affine)
1181
1182
    if resample is not None:
        warnings.warn(
1183
1184
            "The parameter 'resample' is deprecated since 0.12 and will be removed in 0.14. "
            "Please use 'interpolation' instead."
1185
1186
1187
1188
1189
1190
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1191
1192
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
1193
1194
1195
1196
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if fillcolor is not None:
1197
1198
1199
1200
        warnings.warn(
            "The parameter 'fillcolor' is deprecated since 0.12 and will be removed in 0.14. "
            "Please use 'fill' instead."
        )
1201
1202
        fill = fillcolor

vfdev's avatar
vfdev committed
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1218
1219
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1220

vfdev's avatar
vfdev committed
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
1237
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")
vfdev's avatar
vfdev committed
1238

1239
1240
1241
    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

1242
    _, height, width = get_dimensions(img)
vfdev's avatar
vfdev committed
1243
    if not isinstance(img, torch.Tensor):
1244
        # center = (width * 0.5 + 0.5, height * 0.5 + 0.5)
vfdev's avatar
vfdev committed
1245
1246
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
1247
        if center is None:
1248
            center = [width * 0.5, height * 0.5]
vfdev's avatar
vfdev committed
1249
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1250
1251
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1252

1253
1254
    center_f = [0.0, 0.0]
    if center is not None:
1255
        _, height, width = get_dimensions(img)
1256
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
1257
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, [width, height])]
1258

1259
    translate_f = [1.0 * t for t in translate]
1260
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)
1261
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1262
1263


1264
@torch.jit.unused
1265
def to_grayscale(img, num_output_channels=1):
1266
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1267
    This transform does not support torch Tensor.
1268
1269

    Args:
1270
        img (PIL Image): PIL Image to be converted to grayscale.
1271
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1272
1273

    Returns:
1274
1275
        PIL Image: Grayscale version of the image.

1276
1277
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1278
    """
1279
1280
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_grayscale)
1281
1282
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1283

1284
1285
1286
1287
1288
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1289
1290
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.

1303
1304
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1305
    """
1306
1307
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(rgb_to_grayscale)
1308
1309
1310
1311
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1312
1313


1314
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1315
    """Erase the input Tensor Image with given value.
1316
    This transform does not support PIL Image.
1317
1318
1319
1320
1321
1322
1323
1324

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1325
        inplace(bool, optional): For in-place operations. By default is set False.
1326
1327
1328
1329

    Returns:
        Tensor Image: Erased image.
    """
1330
1331
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(erase)
1332
    if not isinstance(img, torch.Tensor):
1333
        raise TypeError(f"img should be Tensor Image. Got {type(img)}")
1334

1335
    return F_t.erase(img, i, j, h, w, v, inplace=inplace)
1336
1337
1338


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1339
1340
1341
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1342
1343
1344
1345
1346

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1347
1348
1349
1350

            .. note::
                In torchscript mode kernel_size as single int is not supported, use a sequence of
                length 1: ``[ksize, ]``.
1351
1352
1353
1354
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
1355
1356
1357
1358
1359
            Default, None.

            .. note::
                In torchscript mode sigma as single float is
                not supported, use a sequence of length 1: ``[sigma, ]``.
1360
1361
1362
1363

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
1364
1365
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(gaussian_blur)
1366
    if not isinstance(kernel_size, (int, list, tuple)):
1367
        raise TypeError(f"kernel_size should be int or a sequence of integers. Got {type(kernel_size)}")
1368
1369
1370
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
1371
        raise ValueError(f"If kernel_size is a sequence its length should be 2. Got {len(kernel_size)}")
1372
1373
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
1374
            raise ValueError(f"kernel_size should have odd and positive integers. Got {kernel_size}")
1375
1376
1377
1378
1379

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
1380
        raise TypeError(f"sigma should be either float or sequence of floats. Got {type(sigma)}")
1381
1382
1383
1384
1385
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
1386
        raise ValueError(f"If sigma is a sequence, its length should be 2. Got {len(sigma)}")
1387
    for s in sigma:
1388
        if s <= 0.0:
1389
            raise ValueError(f"sigma should have positive values. Got {sigma}")
1390
1391
1392
1393

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
1394
            raise TypeError(f"img should be PIL Image or Tensor. Got {type(img)}")
1395

1396
        t_img = pil_to_tensor(img)
1397
1398
1399
1400

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
1401
        output = to_pil_image(output, mode=img.mode)
1402
    return output
1403
1404
1405


def invert(img: Tensor) -> Tensor:
1406
    """Invert the colors of an RGB/grayscale image.
1407
1408
1409

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1410
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1411
1412
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1413
1414
1415
1416

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
1417
1418
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(invert)
1419
1420
1421
1422
1423
1424
1425
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1426
    """Posterize an image by reducing the number of bits for each color channel.
1427
1428
1429

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1430
            If img is torch Tensor, it should be of type torch.uint8 and
1431
1432
1433
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1434
1435
1436
1437
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
1438
1439
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(posterize)
1440
    if not (0 <= bits <= 8):
1441
        raise ValueError(f"The number if bits should be between 0 and 8. Got {bits}")
1442
1443
1444
1445
1446
1447
1448
1449

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1450
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1451
1452
1453

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1454
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1455
1456
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1457
1458
1459
1460
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
1461
1462
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(solarize)
1463
1464
1465
1466
1467
1468
1469
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1470
    """Adjust the sharpness of an image.
1471
1472
1473

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1474
1475
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
1476
1477
1478
1479
1480
1481
1482
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
1483
1484
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_sharpness)
1485
1486
1487
1488
1489
1490
1491
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1492
    """Maximize contrast of an image by remapping its
1493
1494
1495
1496
1497
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1498
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1499
1500
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1501
1502
1503
1504

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
1505
1506
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(autocontrast)
1507
1508
1509
1510
1511
1512
1513
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1514
    """Equalize the histogram of an image by applying
1515
1516
1517
1518
1519
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1520
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1521
            where ... means it can have an arbitrary number of leading dimensions.
1522
            The tensor dtype must be ``torch.uint8`` and values are expected to be in ``[0, 255]``.
1523
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1524
1525
1526
1527

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
1528
1529
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(equalize)
1530
1531
1532
1533
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597


def elastic_transform(
    img: Tensor,
    displacement: Tensor,
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    fill: Optional[List[float]] = None,
) -> Tensor:
    """Transform a tensor image with elastic transformations.
    Given alpha and sigma, it will generate displacement
    vectors for all pixels based on random offsets. Alpha controls the strength
    and sigma controls the smoothness of the displacements.
    The displacements are added to an identity grid and the resulting grid is
    used to grid_sample from the image.

    Applications:
        Randomly transforms the morphology of objects in images and produces a
        see-through-water-like effect.

    Args:
        img (PIL Image or Tensor): Image on which elastic_transform is applied.
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
        displacement (Tensor): The displacement field.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``.
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
    """
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(elastic_transform)
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if not isinstance(displacement, torch.Tensor):
        raise TypeError("displacement should be a Tensor")

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError(f"img should be PIL Image or Tensor. Got {type(img)}")
        t_img = pil_to_tensor(img)

    output = F_t.elastic_transform(
        t_img,
        displacement,
        interpolation=interpolation.value,
        fill=fill,
    )

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output, mode=img.mode)
    return output