functional.py 56.4 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
5
6

import numpy as np
vfdev's avatar
vfdev committed
7
from PIL import Image
8
9
10

import torch
from torch import Tensor
11
from typing import List, Tuple, Any, Optional
12

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
from . import functional_pil as F_pil
from . import functional_tensor as F_t

21

22
class InterpolationMode(Enum):
23
    """Interpolation modes
24
    Available interpolation methods are ``nearest``, ``bilinear``, ``bicubic``, ``box``, ``hamming``, and ``lanczos``.
25
26
27
28
29
30
31
32
33
34
35
    """
    NEAREST = "nearest"
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
36
37
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
38
    inverse_modes_mapping = {
39
40
41
42
43
44
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
45
46
47
48
49
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
50
51
52
53
54
55
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
56
57
}

vfdev's avatar
vfdev committed
58
59
60
61
_is_pil_image = F_pil._is_pil_image


def _get_image_size(img: Tensor) -> List[int]:
62
    """Returns image size as [w, h]
vfdev's avatar
vfdev committed
63
64
65
    """
    if isinstance(img, torch.Tensor):
        return F_t._get_image_size(img)
66

vfdev's avatar
vfdev committed
67
    return F_pil._get_image_size(img)
68

vfdev's avatar
vfdev committed
69

70
def _get_image_num_channels(img: Tensor) -> int:
71
72
    """Returns number of image channels
    """
73
74
75
76
77
78
    if isinstance(img, torch.Tensor):
        return F_t._get_image_num_channels(img)

    return F_pil._get_image_num_channels(img)


vfdev's avatar
vfdev committed
79
80
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
81
82
83
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
84
85
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
86
    return img.ndim in {2, 3}
87
88
89
90


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
91
    This function does not support torchscript.
92

93
    See :class:`~torchvision.transforms.ToTensor` for more details.
94
95
96
97
98
99
100

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
101
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
102
103
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

104
105
106
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

107
108
    default_float_dtype = torch.get_default_dtype()

109
110
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
111
112
113
        if pic.ndim == 2:
            pic = pic[:, :, None]

114
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
115
        # backward compatibility
116
        if isinstance(img, torch.ByteTensor):
117
            return img.to(dtype=default_float_dtype).div(255)
118
119
        else:
            return img
120
121

    if accimage is not None and isinstance(pic, accimage.Image):
122
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
123
        pic.copyto(nppic)
124
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
125
126
127
128
129
130

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
131
132
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
133
134
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
135
136
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
137
138

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
139
    # put it from HWC to CHW format
140
    img = img.permute((2, 0, 1)).contiguous()
141
    if isinstance(img, torch.ByteTensor):
142
        return img.to(dtype=default_float_dtype).div(255)
143
144
145
146
    else:
        return img


147
148
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.
149
    This function does not support torchscript.
150

vfdev's avatar
vfdev committed
151
    See :class:`~torchvision.transforms.PILToTensor` for more details.
152
153
154
155
156
157
158

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
159
    if not F_pil._is_pil_image(pic):
160
161
162
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
163
164
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
165
166
167
168
169
170
171
172
173
174
175
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


176
177
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
178
    This function does not support PIL Image.
179
180
181
182
183
184

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
185
        Tensor: Converted image
186
187
188
189
190
191
192
193
194
195
196
197

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
198
199
200
201
    if not isinstance(image, torch.Tensor):
        raise TypeError('Input img should be Tensor Image')

    return F_t.convert_image_dtype(image, dtype)
202
203


204
def to_pil_image(pic, mode=None):
205
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
206

207
    See :class:`~torchvision.transforms.ToPILImage` for more details.
208
209
210
211
212

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

213
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
214
215
216
217

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
218
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
219
220
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
221
222
223
224
225
226
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
227
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
228

229
230
231
232
        # check number of channels
        if pic.shape[-3] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-3]))

Varun Agrawal's avatar
Varun Agrawal committed
233
234
235
236
237
238
239
240
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

241
242
243
244
        # check number of channels
        if pic.shape[-1] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-1]))

245
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
246
    if isinstance(pic, torch.Tensor):
247
248
249
        if pic.is_floating_point() and mode != 'F':
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
250
251
252
253
254
255
256
257
258
259

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
260
        elif npimg.dtype == np.int16:
261
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
262
        elif npimg.dtype == np.int32:
263
264
265
266
267
268
269
270
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
271
272
273
274
275
276
277
278
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

279
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
280
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


299
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
300
    """Normalize a float tensor image with mean and standard deviation.
301
    This transform does not support PIL Image.
302

303
    .. note::
surgan12's avatar
surgan12 committed
304
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
305

306
    See :class:`~torchvision.transforms.Normalize` for more details.
307
308

    Args:
309
        tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
310
        mean (sequence): Sequence of means for each channel.
311
        std (sequence): Sequence of standard deviations for each channel.
312
        inplace(bool,optional): Bool to make this operation inplace.
313
314
315
316

    Returns:
        Tensor: Normalized Tensor image.
    """
317
318
    if not isinstance(tensor, torch.Tensor):
        raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
319

320
321
322
    if not tensor.is_floating_point():
        raise TypeError('Input tensor should be a float tensor. Got {}.'.format(tensor.dtype))

323
324
    if tensor.ndim < 3:
        raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
325
                         '{}.'.format(tensor.size()))
326

surgan12's avatar
surgan12 committed
327
328
329
    if not inplace:
        tensor = tensor.clone()

330
331
332
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
333
334
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
335
    if mean.ndim == 1:
336
        mean = mean.view(-1, 1, 1)
337
    if std.ndim == 1:
338
        std = std.view(-1, 1, 1)
339
    tensor.sub_(mean).div_(std)
340
    return tensor
341
342


343
def resize(img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR,
344
           max_size: Optional[int] = None, antialias: Optional[bool] = None) -> Tensor:
vfdev's avatar
vfdev committed
345
    r"""Resize the input image to the given size.
346
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
347
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
348

349
350
351
352
353
354
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
        types.

355
    Args:
vfdev's avatar
vfdev committed
356
        img (PIL Image or Tensor): Image to be resized.
357
358
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
359
            the smaller edge of the image will be matched to this number maintaining
360
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
361
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
362
363
364

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
365
366
367
368
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
369
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
370
371
372
373
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
374
            ``max_size``. As a result, ``size`` might be overruled, i.e the
375
376
377
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
378
379
380
381
382
383
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
            is always used. If ``img`` is Tensor, the flag is False by default and can be set True for
            ``InterpolationMode.BILINEAR`` only mode.

            .. warning::
                There is no autodiff support for ``antialias=True`` option with input ``img`` as Tensor.
384
385

    Returns:
vfdev's avatar
vfdev committed
386
        PIL Image or Tensor: Resized image.
387
    """
388
389
390
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
391
392
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
393
394
395
        )
        interpolation = _interpolation_modes_from_int(interpolation)

396
397
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
398

vfdev's avatar
vfdev committed
399
    if not isinstance(img, torch.Tensor):
400
401
402
403
        if antialias is not None and not antialias:
            warnings.warn(
                "Anti-alias option is always applied for PIL Image input. Argument antialias is ignored."
            )
404
        pil_interpolation = pil_modes_mapping[interpolation]
405
        return F_pil.resize(img, size=size, interpolation=pil_interpolation, max_size=max_size)
vfdev's avatar
vfdev committed
406

407
    return F_t.resize(img, size=size, interpolation=interpolation.value, max_size=max_size, antialias=antialias)
408
409
410
411
412
413
414
415


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


416
417
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
418
    If the image is torch Tensor, it is expected
419
420
421
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
422
423

    Args:
424
        img (PIL Image or Tensor): Image to be padded.
425
426
427
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
428
            this is the padding for the left, top, right and bottom borders respectively.
429
430
431
432

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
433
434
435
436
437
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
438
439
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
440
441
442

            - constant: pads with a constant value, this value is specified with fill

443
444
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
445

446
447
448
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
449

450
451
452
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
453
454

    Returns:
455
        PIL Image or Tensor: Padded image.
456
    """
457
458
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
459

460
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
461
462


vfdev's avatar
vfdev committed
463
464
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
465
    If the image is torch Tensor, it is expected
466
467
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then cropped.
468

469
    Args:
vfdev's avatar
vfdev committed
470
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
471
472
473
474
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
475

476
    Returns:
vfdev's avatar
vfdev committed
477
        PIL Image or Tensor: Cropped image.
478
479
    """

vfdev's avatar
vfdev committed
480
481
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
482

vfdev's avatar
vfdev committed
483
    return F_t.crop(img, top, left, height, width)
484

vfdev's avatar
vfdev committed
485
486
487

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
488
    If the image is torch Tensor, it is expected
489
490
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
491

492
    Args:
vfdev's avatar
vfdev committed
493
        img (PIL Image or Tensor): Image to be cropped.
494
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
495
496
            it is used for both directions.

497
    Returns:
vfdev's avatar
vfdev committed
498
        PIL Image or Tensor: Cropped image.
499
    """
500
501
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
502
503
504
505
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    image_width, image_height = _get_image_size(img)
506
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
507

508
509
510
511
512
513
514
515
516
517
518
519
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
        image_width, image_height = _get_image_size(img)
        if crop_width == image_width and crop_height == image_height:
            return img

520
521
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
522
    return crop(img, crop_top, crop_left, crop_height, crop_width)
523
524


525
def resized_crop(
526
        img: Tensor, top: int, left: int, height: int, width: int, size: List[int],
527
        interpolation: InterpolationMode = InterpolationMode.BILINEAR
528
529
) -> Tensor:
    """Crop the given image and resize it to desired size.
530
    If the image is torch Tensor, it is expected
531
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
532

533
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
534
535

    Args:
536
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
537
538
539
540
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
541
        size (sequence or int): Desired output size. Same semantics as ``resize``.
542
543
544
545
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
546
547
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

548
    Returns:
549
        PIL Image or Tensor: Cropped image.
550
    """
551
    img = crop(img, top, left, height, width)
552
553
554
555
    img = resize(img, size, interpolation)
    return img


556
def hflip(img: Tensor) -> Tensor:
557
    """Horizontally flip the given image.
558
559

    Args:
vfdev's avatar
vfdev committed
560
        img (PIL Image or Tensor): Image to be flipped. If img
561
            is a Tensor, it is expected to be in [..., H, W] format,
562
            where ... means it can have an arbitrary number of leading
563
            dimensions.
564
565

    Returns:
vfdev's avatar
vfdev committed
566
        PIL Image or Tensor:  Horizontally flipped image.
567
    """
568
569
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
570

571
    return F_t.hflip(img)
572
573


574
575
576
def _get_perspective_coeffs(
        startpoints: List[List[int]], endpoints: List[List[int]]
) -> List[float]:
577
578
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
579
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
580
581
582
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
583
584
585
586
587
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

588
589
590
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
591
592
593
594
595
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
596

597
598
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
    res = torch.lstsq(b_matrix, a_matrix)[0]
599

600
601
    output: List[float] = res.squeeze(1).tolist()
    return output
602
603


604
605
606
607
def perspective(
        img: Tensor,
        startpoints: List[List[int]],
        endpoints: List[List[int]],
608
        interpolation: InterpolationMode = InterpolationMode.BILINEAR,
609
        fill: Optional[List[float]] = None
610
611
) -> Tensor:
    """Perform perspective transform of the given image.
612
    If the image is torch Tensor, it is expected
613
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
614
615

    Args:
616
617
618
619
620
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
621
622
623
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
624
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
625
626
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
627
628
629
630

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
631

632
    Returns:
633
        PIL Image or Tensor: transformed Image.
634
    """
635

636
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
637

638
639
640
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
641
642
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
643
644
645
        )
        interpolation = _interpolation_modes_from_int(interpolation)

646
647
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
648

649
    if not isinstance(img, torch.Tensor):
650
651
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
652

653
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
654
655


656
def vflip(img: Tensor) -> Tensor:
657
    """Vertically flip the given image.
658
659

    Args:
vfdev's avatar
vfdev committed
660
        img (PIL Image or Tensor): Image to be flipped. If img
661
            is a Tensor, it is expected to be in [..., H, W] format,
662
            where ... means it can have an arbitrary number of leading
663
            dimensions.
664
665

    Returns:
666
        PIL Image or Tensor:  Vertically flipped image.
667
    """
668
669
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
670

671
    return F_t.vflip(img)
672
673


vfdev's avatar
vfdev committed
674
675
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
676
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
677
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
678
679
680
681
682
683

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
684
685
686
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
687
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
688

689
    Returns:
690
       tuple: tuple (tl, tr, bl, br, center)
691
       Corresponding top left, top right, bottom left, bottom right and center crop.
692
693
694
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
695
696
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
697

vfdev's avatar
vfdev committed
698
699
700
701
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    image_width, image_height = _get_image_size(img)
702
703
704
705
706
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
707
708
709
710
711
712
713
714
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
715
716


vfdev's avatar
vfdev committed
717
718
719
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
720
    flipped version of these (horizontal flipping is used by default).
721
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
722
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
723
724
725
726
727

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

728
    Args:
vfdev's avatar
vfdev committed
729
        img (PIL Image or Tensor): Image to be cropped.
730
        size (sequence or int): Desired output size of the crop. If size is an
731
            int instead of sequence like (h, w), a square crop (size, size) is
732
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
733
        vertical_flip (bool): Use vertical flipping instead of horizontal
734
735

    Returns:
736
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
737
738
        Corresponding top left, top right, bottom left, bottom right and
        center crop and same for the flipped image.
739
740
741
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
742
743
744
745
746
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
747
748
749
750
751
752
753
754
755
756
757
758

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


759
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
760
    """Adjust brightness of an image.
761
762

    Args:
vfdev's avatar
vfdev committed
763
        img (PIL Image or Tensor): Image to be adjusted.
764
765
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
766
767
768
769
770
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
771
        PIL Image or Tensor: Brightness adjusted image.
772
    """
773
774
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
775

776
    return F_t.adjust_brightness(img, brightness_factor)
777
778


779
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
780
    """Adjust contrast of an image.
781
782

    Args:
vfdev's avatar
vfdev committed
783
        img (PIL Image or Tensor): Image to be adjusted.
784
785
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
786
787
788
789
790
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
791
        PIL Image or Tensor: Contrast adjusted image.
792
    """
793
794
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
795

796
    return F_t.adjust_contrast(img, contrast_factor)
797
798


799
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
800
801
802
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
803
        img (PIL Image or Tensor): Image to be adjusted.
804
805
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
806
807
808
809
810
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
811
        PIL Image or Tensor: Saturation adjusted image.
812
    """
813
814
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
815

816
    return F_t.adjust_saturation(img, saturation_factor)
817
818


819
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
820
821
822
823
824
825
826
827
828
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

829
830
831
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
832
833

    Args:
834
        img (PIL Image or Tensor): Image to be adjusted.
835
836
837
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
838
839
840
841
842
843
844
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
845
        PIL Image or Tensor: Hue adjusted image.
846
    """
847
848
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
849

850
    return F_t.adjust_hue(img, hue_factor)
851
852


853
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
854
    r"""Perform gamma correction on an image.
855
856
857
858

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

859
860
861
862
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
863

864
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
865
866

    Args:
867
        img (PIL Image or Tensor): PIL Image to be adjusted.
868
869
870
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, modes with transparency (alpha channel) are not supported.
871
872
873
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
874
        gain (float): The constant multiplier.
875
876
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
877
    """
878
879
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
880

881
    return F_t.adjust_gamma(img, gamma, gain)
882
883


vfdev's avatar
vfdev committed
884
def _get_inverse_affine_matrix(
vfdev's avatar
vfdev committed
885
        center: List[float], angle: float, translate: List[float], scale: float, shear: List[float]
vfdev's avatar
vfdev committed
886
) -> List[float]:
887
888
889
890
891
892
893
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
894
895
896
897
898
899
900
901
902
903
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
904
905
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

906
907
908
909
910
911
912
    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
913
914
915
916
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
917
918

    # Inverted rotation matrix with scale and shear
919
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
vfdev's avatar
vfdev committed
920
921
    matrix = [d, -b, 0.0, -c, a, 0.0]
    matrix = [x / scale for x in matrix]
922
923

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
924
925
    matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
    matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
926
927

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
928
929
    matrix[2] += cx
    matrix[5] += cy
930

vfdev's avatar
vfdev committed
931
    return matrix
932

vfdev's avatar
vfdev committed
933

vfdev's avatar
vfdev committed
934
def rotate(
935
        img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST,
936
        expand: bool = False, center: Optional[List[int]] = None,
937
        fill: Optional[List[float]] = None, resample: Optional[int] = None
vfdev's avatar
vfdev committed
938
939
) -> Tensor:
    """Rotate the image by angle.
940
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
941
942
943
944
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
945
        angle (number): rotation angle value in degrees, counter-clockwise.
946
947
948
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
949
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
vfdev's avatar
vfdev committed
950
951
952
953
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
954
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
955
            Default is the center of the image.
956
957
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
958
959
960
961

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
vfdev's avatar
vfdev committed
962
963
964
965
966
967
968

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
969
970
971
972
973
974
975
976
977
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
978
979
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
980
981
982
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
983
984
985
986
987
988
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

989
990
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
991

vfdev's avatar
vfdev committed
992
    if not isinstance(img, torch.Tensor):
993
994
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
995
996
997
998

    center_f = [0.0, 0.0]
    if center is not None:
        img_size = _get_image_size(img)
999
1000
1001
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)]

vfdev's avatar
vfdev committed
1002
1003
1004
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
1005
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
1006
1007


vfdev's avatar
vfdev committed
1008
1009
def affine(
        img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float],
1010
1011
        interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: Optional[List[float]] = None,
        resample: Optional[int] = None, fillcolor: Optional[List[float]] = None
vfdev's avatar
vfdev committed
1012
1013
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
1014
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1015
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1016
1017

    Args:
vfdev's avatar
vfdev committed
1018
        img (PIL Image or Tensor): image to transform.
1019
1020
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
1021
        scale (float): overall scale
1022
1023
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
vfdev's avatar
vfdev committed
1024
            the second value corresponds to a shear parallel to the y axis.
1025
1026
1027
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1028
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1029
1030
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1031
1032
1033
1034

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
1035
        fillcolor (sequence, int, float): deprecated argument and will be removed since v0.10.0.
1036
            Please use the ``fill`` parameter instead.
1037
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1038
            Please use the ``interpolation`` parameter instead.
vfdev's avatar
vfdev committed
1039
1040
1041

    Returns:
        PIL Image or Tensor: Transformed image.
1042
    """
1043
1044
1045
1046
1047
1048
1049
1050
1051
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1052
1053
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
1054
1055
1056
1057
1058
1059
1060
1061
1062
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if fillcolor is not None:
        warnings.warn(
            "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
        )
        fill = fillcolor

vfdev's avatar
vfdev committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1078
1079
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1080

vfdev's avatar
vfdev committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError("Shear should be a sequence containing two values. Got {}".format(shear))

    img_size = _get_image_size(img)
    if not isinstance(img, torch.Tensor):
        # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
        center = [img_size[0] * 0.5, img_size[1] * 0.5]
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1106
1107
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1108

1109
1110
    translate_f = [1.0 * t for t in translate]
    matrix = _get_inverse_affine_matrix([0.0, 0.0], angle, translate_f, scale, shear)
1111
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1112
1113


1114
@torch.jit.unused
1115
def to_grayscale(img, num_output_channels=1):
1116
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1117
    This transform does not support torch Tensor.
1118
1119

    Args:
1120
        img (PIL Image): PIL Image to be converted to grayscale.
1121
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1122
1123

    Returns:
1124
1125
        PIL Image: Grayscale version of the image.

1126
1127
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1128
    """
1129
1130
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1131

1132
1133
1134
1135
1136
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1137
1138
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.

1151
1152
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1153
1154
1155
1156
1157
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1158
1159


1160
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1161
    """ Erase the input Tensor Image with given value.
1162
    This transform does not support PIL Image.
1163
1164
1165
1166
1167
1168
1169
1170

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1171
        inplace(bool, optional): For in-place operations. By default is set False.
1172
1173
1174
1175
1176
1177
1178

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

1179
1180
1181
    if not inplace:
        img = img.clone()

vfdev's avatar
vfdev committed
1182
    img[..., i:i + h, j:j + w] = v
1183
    return img
1184
1185
1186


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1187
1188
1189
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1190
1191
1192
1193
1194

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1195
1196
1197
1198

            .. note::
                In torchscript mode kernel_size as single int is not supported, use a sequence of
                length 1: ``[ksize, ]``.
1199
1200
1201
1202
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
1203
1204
1205
1206
1207
            Default, None.

            .. note::
                In torchscript mode sigma as single float is
                not supported, use a sequence of length 1: ``[sigma, ]``.
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
    if not isinstance(kernel_size, (int, list, tuple)):
        raise TypeError('kernel_size should be int or a sequence of integers. Got {}'.format(type(kernel_size)))
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
        raise ValueError('If kernel_size is a sequence its length should be 2. Got {}'.format(len(kernel_size)))
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError('kernel_size should have odd and positive integers. Got {}'.format(kernel_size))

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
        raise TypeError('sigma should be either float or sequence of floats. Got {}'.format(type(sigma)))
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
        raise ValueError('If sigma is a sequence, its length should be 2. Got {}'.format(len(sigma)))
    for s in sigma:
        if s <= 0.:
            raise ValueError('sigma should have positive values. Got {}'.format(sigma))

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError('img should be PIL Image or Tensor. Got {}'.format(type(img)))

        t_img = to_tensor(img)

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output)
    return output
1249
1250
1251


def invert(img: Tensor) -> Tensor:
1252
    """Invert the colors of an RGB/grayscale image.
1253
1254
1255

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1256
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1257
1258
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1270
    """Posterize an image by reducing the number of bits for each color channel.
1271
1272
1273

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1274
            If img is torch Tensor, it should be of type torch.uint8 and
1275
1276
1277
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
    if not (0 <= bits <= 8):
        raise ValueError('The number if bits should be between 0 and 8. Got {}'.format(bits))

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1292
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1293
1294
1295

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1296
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1297
1298
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1310
    """Adjust the sharpness of an image.
1311
1312
1313

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1314
1315
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1330
    """Maximize contrast of an image by remapping its
1331
1332
1333
1334
1335
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1336
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1337
1338
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1350
    """Equalize the histogram of an image by applying
1351
1352
1353
1354
1355
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1356
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1357
            where ... means it can have an arbitrary number of leading dimensions.
1358
            The tensor dtype must be ``torch.uint8`` and values are expected to be in ``[0, 255]``.
1359
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1360
1361
1362
1363
1364
1365
1366
1367

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)