main.rs 53.3 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
use hf_hub::{api::sync::Api, Repo, RepoType};
3
4
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
5
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
6
use std::env;
7
use std::ffi::OsString;
8
use std::io::{BufRead, BufReader, Lines};
9
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
11
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
12
13
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
14
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
19
use tracing_subscriber::EnvFilter;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
20

21
22
mod env_runtime;

23
24
25
26
27
28
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
    max_seq_len: Option<usize>,
}

29
30
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
31
    /// 4 bit quantization. Requires a specific AWQ quantized model:
32
    ///   <https://hf.co/models?search=awq>.
33
    /// Should replace GPTQ models wherever possible because of the better latency
34
35
36
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
37
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
38
    Eetq,
39
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
40
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
41
42
43
44
45
46
47
48
49
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
50
    Bitsandbytes,
51
52
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
53
    BitsandbytesNF4,
54
55
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
56
    BitsandbytesFP4,
Nicolas Patry's avatar
Nicolas Patry committed
57
58
59
60
61
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
62
63
64
65
66
67
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
68
69
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
70
71
72
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
73
74
75
76
77
78
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
79
80
81
            Quantization::Gptq => {
                write!(f, "gptq")
            }
82
83
84
            Quantization::Awq => {
                write!(f, "awq")
            }
85
86
87
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
88
89
90
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
91
92
93
94
        }
    }
}

95
96
97
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
98
    #[clap(name = "bfloat16")]
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
136
137
138
139
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
140
141
142
143
144
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
145
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
146
    model_id: String,
147
148
149

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
150
    #[clap(long, env)]
151
    revision: Option<String>,
152

153
154
155
156
157
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

158
    /// Whether to shard the model across multiple GPUs
159
160
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
161
162
    #[clap(long, env)]
    sharded: Option<bool>,
163
164

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
165
166
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
167
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
168
169
    #[clap(long, env)]
    num_shard: Option<usize>,
170

171
    /// Whether you want the model to be quantized.
172
173
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
174

Nicolas Patry's avatar
Nicolas Patry committed
175
176
177
178
179
180
181
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

182
183
184
185
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

186
187
188
189
190
191
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

192
193
194
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
195
196
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
197
198
199
200

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
201
202
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
203
204
205
206
207
208

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
209
210
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
211

Nicolas Patry's avatar
Nicolas Patry committed
212
213
214
215
216
217
218
219
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
    /// `top_n_tokens is used to return information about the the `n` most likely
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

220
221
222
223
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
224
225
226
227
228
229
230
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
231
232
233
234
235
236
237
238
239

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
240
241
242
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
243
244
245
246
247
248
249
250
251
252
253

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
254
255
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
256

257
258
259
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
260
261
262
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
281
282
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
301
302
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
303

304
305
306
307
308
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

309
310
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
311
312
313
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
314

315
316
317
318
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

319
    /// The port to listen on.
320
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
321
    port: u16,
322
323
324

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
325
326
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
327
328

    /// The address the master shard will listen on. (setting used by torch distributed)
329
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
330
    master_addr: String,
331
332

    /// The address the master port will listen on. (setting used by torch distributed)
333
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
334
    master_port: usize,
335
336
337

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
338
    #[clap(long, env)]
339
    huggingface_hub_cache: Option<String>,
340
341
342

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
343
344
    #[clap(long, env)]
    weights_cache_override: Option<String>,
345
346
347
348
349

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
350
    #[clap(long, env)]
351
    disable_custom_kernels: bool,
352

353
354
355
356
357
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

378
    /// Outputs the logs in JSON format (useful for telemetry)
379
    #[clap(long, env)]
380
    json_output: bool,
381

382
383
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
384

385
386
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
387
388
389
390
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
391

392
393
394
395
396
397
398
399
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

400
    /// ngrok edge
401
    #[clap(long, env)]
402
    ngrok_edge: Option<String>,
403

404
405
406
407
408
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
409
410
411
412
413
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

414
415
416
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
417
418
419
420

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
421
422
}

423
424
425
#[derive(Debug)]
enum ShardStatus {
    Ready,
426
    Failed(usize),
427
}
428

429
430
431
432
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
433
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
434
    speculate: Option<usize>,
435
    dtype: Option<Dtype>,
436
    trust_remote_code: bool,
437
438
439
440
441
442
443
444
445
446
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
447
    cuda_graphs: Vec<usize>,
448
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
449
450
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
451
452
    max_total_tokens: usize,
    max_batch_size: Option<usize>,
453
454
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
455
    shutdown: Arc<AtomicBool>,
456
457
    _shutdown_sender: mpsc::Sender<()>,
) {
458
459
460
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

461
462
463
464
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
465
466
467
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
468
469

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
470
    let mut shard_args = vec![
471
472
473
474
475
476
477
478
479
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

480
481
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
482
        shard_args.push("--trust-remote-code".to_string());
483
484
    }

485
486
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
487
        shard_args.push("--sharded".to_string());
488
489
    }

490
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
491
492
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
493
    }
494

Nicolas Patry's avatar
Nicolas Patry committed
495
496
497
498
499
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

500
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
501
502
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
503
504
    }

505
506
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
507
508
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
509
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
510

Nicolas Patry's avatar
Nicolas Patry committed
511
512
513
514
515
516
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
517

518
519
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
520
521
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
522
523
524
    }

    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
525
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
526

527
528
529
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

530
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
531
532
533
534
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
535
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
536

537
538
539
540
541
542
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

543
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
544
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
545

546
547
548
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

549
550
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
551
    envs.push((
552
553
554
555
556
557
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
558
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
559
560
    };

Nicolas Patry's avatar
Nicolas Patry committed
561
562
563
564
565
566
567
568
569
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

570
571
572
573
574
575
576
577
    envs.push((
        "MAX_TOTAL_TOKENS".into(),
        max_total_tokens.to_string().into(),
    ));
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

578
579
580
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
581
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
582
583
584
585
586
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
587
        envs.push((
588
589
590
591
592
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

593
    // Enable experimental support for cuda graphs
594
595
596
597
598
599
600
601
602
603
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
604
605
    }

606
607
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
608
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
609
610
611
612
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
613
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
614
615
616
617
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
618
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
619
620
621
    }

    // Start process
622
    tracing::info!("Starting shard");
623
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
624
        .args(shard_args)
625
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
626
        .envs(envs)
627
628
629
630
631
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
632
633
        Ok(p) => p,
        Err(err) => {
634
635
636
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
637
638
            }
            {
639
                tracing::error!("{}", err);
640
            }
641

642
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
643
644
645
646
647
            return;
        }
    };

    // Redirect STDOUT to the console
648
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
649
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
650

651
    //stdout tracing thread
652
    thread::spawn(move || {
653
        log_lines(shard_stdout_reader.lines());
654
    });
655
656
657
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
658
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
659
660
661
            err_sender.send(line).unwrap_or(());
        }
    });
662
663
664
665
666
667

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
668
        if let Some(exit_status) = p.try_wait().unwrap() {
669
670
671
672
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
673

674
            tracing::error!("Shard complete standard error output:\n{err}");
675

676
            if let Some(signal) = exit_status.signal() {
677
678
679
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

680
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
681
682
683
684
            return;
        }

        // We received a shutdown signal
685
        if shutdown.load(Ordering::SeqCst) {
686
            p.kill().unwrap();
687
            let _ = p.wait();
688
            tracing::info!("Shard terminated");
689
690
691
692
693
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
694
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
695
696
697
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
698
            tracing::info!("Waiting for shard to be ready...");
699
700
701
702
703
704
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

705
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
706
707
708
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
709
    shutdown.store(true, Ordering::SeqCst);
710
711
712
713
714
715
716

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
717
718
719
720
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
721
722
    let n_devices = devices.split(',').count();
    Some(n_devices)
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

767
768
769
770
771
772
773
774
775
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
776
    for line in lines.map_while(Result::ok) {
777
778
779
780
781
782
783
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

784
785
786
787
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
788
789
790
791
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
792
793
794
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
795
            if n_devices <= 1 {
796
797
798
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
799
            }
800
            n_devices
801
        }
802
803
804
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
805
806
807
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
808
809
            }
            num_shard
810
        }
811
812
813
814
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
815
    };
816
    if num_shard < 1 {
817
818
819
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
820
    }
821
    Ok(num_shard)
822
}
823

824
825
#[derive(Debug)]
enum LauncherError {
826
827
    ArgumentValidation(String),
    NotEnoughCUDADevices(String),
828
829
830
831
832
833
834
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
835

836
837
838
839
840
841
842
843
impl core::fmt::Display for LauncherError {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(f, "{self:?}")
    }
}

impl std::error::Error for LauncherError {}

844
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
845
846
847
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
848
    let mut download_args = vec![
849
850
851
852
853
854
855
856
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
857

858
859
    // Model optional revision
    if let Some(revision) = &args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
860
861
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
862
    }
863

864
865
866
867
868
    // Trust remote code for automatic peft fusion
    if args.trust_remote_code {
        download_args.push("--trust-remote-code".to_string());
    }

869
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
870
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
871

872
873
874
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

875
876
877
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

878
    // If huggingface_hub_cache is set, pass it to the download process
879
880
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
881
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
882
    };
883

884
885
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
886
    envs.push((
887
888
889
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
890

891
892
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
893
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
894
    };
895

896
897
898
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
899
        envs.push((
900
901
902
903
904
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

905
906
    // Start process
    tracing::info!("Starting download process.");
907
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
908
        .args(download_args)
909
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
910
        .envs(envs)
911
912
913
914
915
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
916
917
        Ok(p) => p,
        Err(err) => {
918
919
920
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
921
922
            } else {
                tracing::error!("{}", err);
923
            }
924

925
926
927
            return Err(LauncherError::DownloadError);
        }
    };
928

929
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
930

931
    thread::spawn(move || {
932
933
934
935
936
937
938
939
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
940
        for line in download_stderr.lines().map_while(Result::ok) {
941
942
            err_sender.send(line).unwrap_or(());
        }
943
    });
944

945
    loop {
946
947
948
949
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
                tracing::info!("Successfully downloaded weights.");
                break;
950
            }
951
952

            let mut err = String::new();
953
954
955
956
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

957
958
959
960
961
962
963
964
965
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
966
        }
967
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
968
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
969
970
971
            return Ok(());
        }
        sleep(Duration::from_millis(100));
972
    }
973
974
    Ok(())
}
975

976
#[allow(clippy::too_many_arguments)]
977
978
979
fn spawn_shards(
    num_shard: usize,
    args: &Args,
980
    cuda_graphs: Vec<usize>,
981
    max_total_tokens: usize,
982
    shutdown: Arc<AtomicBool>,
983
984
985
986
987
988
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
989
990
    // Start shard processes
    for rank in 0..num_shard {
991
992
993
994
995
996
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
997
998
999
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1000
        let otlp_endpoint = args.otlp_endpoint.clone();
1001
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
1002
        let speculate = args.speculate;
1003
        let dtype = args.dtype;
1004
        let trust_remote_code = args.trust_remote_code;
1005
1006
1007
1008
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1009
        let cuda_graphs_clone = cuda_graphs.clone();
1010
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1011
1012
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1013
        let max_batch_size = args.max_batch_size;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1014
1015
        thread::spawn(move || {
            shard_manager(
1016
                model_id,
1017
                revision,
1018
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1019
                speculate,
1020
                dtype,
1021
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1022
1023
1024
1025
1026
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1027
1028
                huggingface_hub_cache,
                weights_cache_override,
1029
                disable_custom_kernels,
1030
1031
                watermark_gamma,
                watermark_delta,
1032
                cuda_graphs_clone,
1033
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1034
1035
                rope_scaling,
                rope_factor,
1036
1037
                max_total_tokens,
                max_batch_size,
1038
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1060
            Ok(ShardStatus::Failed(rank)) => {
1061
                tracing::error!("Shard {rank} failed to start");
1062
                shutdown_shards(shutdown, shutdown_receiver);
1063
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1064
1065
1066
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1067
                shutdown_shards(shutdown, shutdown_receiver);
1068
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1069
1070
1071
            }
        }
    }
1072
1073
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1074

1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1087
fn spawn_webserver(
1088
    num_shard: usize,
1089
    args: Args,
1090
1091
1092
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1093
    shutdown: Arc<AtomicBool>,
1094
    shutdown_receiver: &mpsc::Receiver<()>,
1095
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1096
1097
1098
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1099
    let mut router_args = vec![
1100
1101
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1102
        "--max-concurrent-requests".to_string(),
1103
        args.max_concurrent_requests.to_string(),
1104
        "--max-best-of".to_string(),
1105
        args.max_best_of.to_string(),
1106
        "--max-stop-sequences".to_string(),
1107
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1108
1109
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1110
1111
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1112
        "--max-total-tokens".to_string(),
1113
        max_total_tokens.to_string(),
1114
        "--max-batch-prefill-tokens".to_string(),
1115
        max_batch_prefill_tokens.to_string(),
1116
        "--waiting-served-ratio".to_string(),
1117
        args.waiting_served_ratio.to_string(),
1118
        "--max-waiting-tokens".to_string(),
1119
        args.max_waiting_tokens.to_string(),
1120
1121
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1122
1123
        "--hostname".to_string(),
        args.hostname.to_string(),
1124
        "--port".to_string(),
1125
        args.port.to_string(),
1126
        "--master-shard-uds-path".to_string(),
1127
        format!("{}-0", args.shard_uds_path),
1128
        "--tokenizer-name".to_string(),
1129
        args.model_id,
1130
1131
    ];

drbh's avatar
drbh committed
1132
1133
1134
1135
1136
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1137
1138
1139
1140
1141
1142
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1143
1144
1145
1146
1147
1148
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1149
1150
1151
1152
1153
1154
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1155
1156
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1157
1158
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1159
1160
    }

1161
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1162
        router_args.push("--json-output".to_string());
1163
1164
    }

1165
    // OpenTelemetry
1166
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1167
1168
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1169
1170
1171
1172
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1173
1174
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1175
1176
    }

1177
1178
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1179
1180
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1181
1182
1183
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1184
1185
    }

1186
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1187
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1188

1189
1190
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
1191
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
1192
    };
1193

1194
1195
1196
1197
1198
1199
1200
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1201
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1202
1203
        .args(router_args)
        .envs(envs)
1204
1205
1206
1207
1208
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1209
1210
        Ok(p) => p,
        Err(err) => {
1211
            tracing::error!("Failed to start webserver: {}", err);
1212
1213
1214
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1215
1216
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1217
            }
1218

1219
            shutdown_shards(shutdown, shutdown_receiver);
1220
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1221
1222
1223
        }
    };

1224
1225
1226
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1227
1228

    thread::spawn(move || {
1229
1230
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1231
        for line in stdout.lines() {
1232
            println!("{}", line.unwrap());
1233
        }
1234
1235
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1236
        }
1237
1238
1239
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1240

OlivierDehaene's avatar
OlivierDehaene committed
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");

    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }

    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1266
1267
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1268
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1269

1270
1271
1272
1273
    // Filter events with LOG_LEVEL
    let env_filter =
        EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));

1274
    if args.json_output {
1275
1276
1277
1278
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1279
    } else {
1280
1281
1282
1283
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1284
1285
    }

1286
1287
1288
1289
1290
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

1291
1292
    tracing::info!("{:?}", args);

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
    let get_max_position_embeddings = || -> Result<usize, Box<dyn std::error::Error>> {
        let model_id = args.model_id.clone();
        let mut path = std::path::Path::new(&args.model_id).to_path_buf();
        let filename = if !path.exists() {
            // Assume it's a hub id
            let api = Api::new()?;
            let repo = if let Some(ref revision) = args.revision {
                api.repo(Repo::with_revision(
                    model_id,
                    RepoType::Model,
                    revision.to_string(),
                ))
            } else {
                api.model(model_id)
            };
            repo.get("config.json")?
        } else {
            path.push("config.json");
            path
        };

        let content = std::fs::read_to_string(filename)?;
        let config: Config = serde_json::from_str(&content)?;

        // Quantization usually means you're even more RAM constrained.
        let max_default = 4096;

        let max_position_embeddings = match (config.max_position_embeddings, config.max_seq_len) {
            (Some(max_position_embeddings), _) | (None, Some(max_position_embeddings)) => {
                if max_position_embeddings > max_default {
                    let max = max_position_embeddings;
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
                    max_default
                } else {
                    max_position_embeddings
                }
            }
            _ => {
                return Err(Box::new(LauncherError::ArgumentValidation(
                    "no max defined".to_string(),
                )));
            }
        };
        Ok(max_position_embeddings)
    };
    let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096);

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1382
    // Validate args
1383
    if max_input_tokens >= max_total_tokens {
1384
        return Err(LauncherError::ArgumentValidation(
1385
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1386
1387
        ));
    }
1388
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1389
        return Err(LauncherError::ArgumentValidation(format!(
1390
1391
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1392
1393
        )));
    }
1394

1395
1396
    let cuda_graphs = match (&args.cuda_graphs, &args.quantize) {
        (Some(cuda_graphs), Some(_q)) => cuda_graphs.clone(),
1397
        (Some(cuda_graphs), None) => cuda_graphs.clone(),
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
                | Quantization::BitsandbytesNF4
                | Quantization::BitsandbytesFP4,
            ),
        ) => {
            tracing::info!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1417
1418
1419
1420
1421
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1422
1423
1424
1425
1426
1427
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1428
1429

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1430
1431
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1432
1433
    }

1434
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1435
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1436
1437
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1438
                max_batch_prefill_tokens, max_batch_total_tokens
1439
1440
            )));
        }
1441
        if max_total_tokens as u32 > *max_batch_total_tokens {
1442
1443
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1444
                max_total_tokens, max_batch_total_tokens
1445
1446
1447
1448
            )));
        }
    }

1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1463
1464
1465
1466
1467
1468
1469
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1470

1471
    // Download and convert model weights
1472
    download_convert_model(&args, running.clone())?;
1473

OlivierDehaene's avatar
OlivierDehaene committed
1474
1475
1476
1477
1478
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1479
    // Shared shutdown bool
1480
    let shutdown = Arc::new(AtomicBool::new(false));
1481
1482
1483
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1484

1485
1486
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1487

1488
1489
1490
    spawn_shards(
        num_shard,
        &args,
1491
        cuda_graphs,
1492
        max_total_tokens,
1493
1494
1495
1496
1497
1498
1499
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1500

1501
1502
1503
1504
1505
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1506

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
    .map_err(|err| {
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
        err
    })?;
1520
1521
1522
1523
1524

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1525
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1526
            tracing::error!("Shard {rank} crashed");
1527
1528
1529
1530
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1531
        match webserver.try_wait().unwrap() {
1532
1533
1534
1535
1536
1537
1538
1539
1540
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1541
    }
1542
1543

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1544
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1545
1546
1547
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1548
}