main.rs 52.8 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
use hf_hub::{api::sync::Api, Repo, RepoType};
3
4
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
5
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
6
use std::env;
7
use std::ffi::OsString;
8
use std::io::{BufRead, BufReader, Lines};
9
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
11
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
12
13
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
14
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
19
use tracing_subscriber::EnvFilter;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
20

21
22
mod env_runtime;

23
24
25
26
27
28
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
    max_seq_len: Option<usize>,
}

29
30
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
31
    /// 4 bit quantization. Requires a specific AWQ quantized model:
32
    ///   <https://hf.co/models?search=awq>.
33
    /// Should replace GPTQ models wherever possible because of the better latency
34
35
36
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
37
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
38
    Eetq,
39
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
40
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
41
42
43
44
45
46
47
48
49
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
50
    Bitsandbytes,
51
52
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
53
    BitsandbytesNF4,
54
55
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
56
    BitsandbytesFP4,
Nicolas Patry's avatar
Nicolas Patry committed
57
58
59
60
61
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
62
63
64
65
66
67
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
68
69
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
70
71
72
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
73
74
75
76
77
78
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
79
80
81
            Quantization::Gptq => {
                write!(f, "gptq")
            }
82
83
84
            Quantization::Awq => {
                write!(f, "awq")
            }
85
86
87
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
88
89
90
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
91
92
93
94
        }
    }
}

95
96
97
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
98
    #[clap(name = "bfloat16")]
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
136
137
138
139
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
140
141
142
143
144
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
145
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
146
    model_id: String,
147
148
149

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
150
    #[clap(long, env)]
151
    revision: Option<String>,
152

153
154
155
156
157
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

158
    /// Whether to shard the model across multiple GPUs
159
160
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
161
162
    #[clap(long, env)]
    sharded: Option<bool>,
163
164

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
165
166
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
167
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
168
169
    #[clap(long, env)]
    num_shard: Option<usize>,
170

171
    /// Whether you want the model to be quantized.
172
173
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
174

Nicolas Patry's avatar
Nicolas Patry committed
175
176
177
178
179
180
181
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

182
183
184
185
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

186
187
188
189
190
191
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

192
193
194
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
195
196
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
197
198
199
200

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
201
202
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
203
204
205
206
207
208

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
209
210
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
211

Nicolas Patry's avatar
Nicolas Patry committed
212
213
214
215
216
217
218
219
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
    /// `top_n_tokens is used to return information about the the `n` most likely
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

220
221
222
223
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
224
225
226
227
228
229
230
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
231
232
233
234
235
236
237
238
239

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
240
241
242
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
243
244
245
246
247
248
249
250
251
252
253

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
254
255
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
256

257
258
259
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
260
261
262
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
281
282
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
301
302
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
303

304
305
306
307
308
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

309
310
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
311
312
313
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
314

315
316
317
318
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

319
    /// The port to listen on.
320
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
321
    port: u16,
322
323
324

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
325
326
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
327
328

    /// The address the master shard will listen on. (setting used by torch distributed)
329
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
330
    master_addr: String,
331
332

    /// The address the master port will listen on. (setting used by torch distributed)
333
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
334
    master_port: usize,
335
336
337

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
338
    #[clap(long, env)]
339
    huggingface_hub_cache: Option<String>,
340
341
342

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
343
344
    #[clap(long, env)]
    weights_cache_override: Option<String>,
345
346
347
348
349

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
350
    #[clap(long, env)]
351
    disable_custom_kernels: bool,
352

353
354
355
356
357
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

378
    /// Outputs the logs in JSON format (useful for telemetry)
379
    #[clap(long, env)]
380
    json_output: bool,
381

382
383
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
384

385
386
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
387
388
389
390
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
391

392
393
394
395
396
397
398
399
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

400
    /// ngrok edge
401
    #[clap(long, env)]
402
    ngrok_edge: Option<String>,
403

404
405
406
407
408
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
409
410
411
412
413
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

414
415
416
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
417
418
419
420

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
421
422
}

423
424
425
#[derive(Debug)]
enum ShardStatus {
    Ready,
426
    Failed(usize),
427
}
428

429
430
431
432
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
433
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
434
    speculate: Option<usize>,
435
    dtype: Option<Dtype>,
436
    trust_remote_code: bool,
437
438
439
440
441
442
443
444
445
446
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
447
    cuda_graphs: Vec<usize>,
448
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
449
450
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
451
452
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
453
    shutdown: Arc<AtomicBool>,
454
455
    _shutdown_sender: mpsc::Sender<()>,
) {
456
457
458
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

459
460
461
462
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
463
464
465
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
466
467

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
468
    let mut shard_args = vec![
469
470
471
472
473
474
475
476
477
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

478
479
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
480
        shard_args.push("--trust-remote-code".to_string());
481
482
    }

483
484
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
485
        shard_args.push("--sharded".to_string());
486
487
    }

488
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
489
490
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
491
    }
492

Nicolas Patry's avatar
Nicolas Patry committed
493
494
495
496
497
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

498
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
499
500
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
501
502
    }

503
504
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
505
506
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
507
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
508

Nicolas Patry's avatar
Nicolas Patry committed
509
510
511
512
513
514
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
515
516
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
517
518
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
519
520
521
    }

    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
522
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
523

524
525
526
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

527
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
528
529
530
531
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
532
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
533

534
535
536
537
538
539
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

540
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
541
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
542

543
544
545
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

546
547
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
548
    envs.push((
549
550
551
552
553
554
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
555
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
556
557
    };

Nicolas Patry's avatar
Nicolas Patry committed
558
559
560
561
562
563
564
565
566
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

567
568
569
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
570
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
571
572
573
574
575
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
576
        envs.push((
577
578
579
580
581
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

582
    // Enable experimental support for cuda graphs
583
584
585
586
587
588
589
590
591
592
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
593
594
    }

595
596
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
597
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
598
599
600
601
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
602
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
603
604
605
606
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
607
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
608
609
610
    }

    // Start process
611
    tracing::info!("Starting shard");
612
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
613
        .args(shard_args)
614
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
615
        .envs(envs)
616
617
618
619
620
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
621
622
        Ok(p) => p,
        Err(err) => {
623
624
625
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
626
627
            }
            {
628
                tracing::error!("{}", err);
629
            }
630

631
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
632
633
634
635
636
            return;
        }
    };

    // Redirect STDOUT to the console
637
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
638
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
639

640
    //stdout tracing thread
641
    thread::spawn(move || {
642
        log_lines(shard_stdout_reader.lines());
643
    });
644
645
646
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
647
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
648
649
650
            err_sender.send(line).unwrap_or(());
        }
    });
651
652
653
654
655
656

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
657
        if let Some(exit_status) = p.try_wait().unwrap() {
658
659
660
661
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
662

663
            tracing::error!("Shard complete standard error output:\n{err}");
664

665
            if let Some(signal) = exit_status.signal() {
666
667
668
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

669
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
670
671
672
673
            return;
        }

        // We received a shutdown signal
674
        if shutdown.load(Ordering::SeqCst) {
675
            p.kill().unwrap();
676
            let _ = p.wait();
677
            tracing::info!("Shard terminated");
678
679
680
681
682
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
683
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
684
685
686
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
687
            tracing::info!("Waiting for shard to be ready...");
688
689
690
691
692
693
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

694
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
695
696
697
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
698
    shutdown.store(true, Ordering::SeqCst);
699
700
701
702
703
704
705

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
706
707
708
709
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
710
711
    let n_devices = devices.split(',').count();
    Some(n_devices)
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

756
757
758
759
760
761
762
763
764
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
765
    for line in lines.map_while(Result::ok) {
766
767
768
769
770
771
772
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

773
774
775
776
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
777
778
779
780
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
781
782
783
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
784
            if n_devices <= 1 {
785
786
787
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
788
            }
789
            n_devices
790
        }
791
792
793
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
794
795
796
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
797
798
            }
            num_shard
799
        }
800
801
802
803
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
804
    };
805
    if num_shard < 1 {
806
807
808
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
809
    }
810
    Ok(num_shard)
811
}
812

813
814
#[derive(Debug)]
enum LauncherError {
815
816
    ArgumentValidation(String),
    NotEnoughCUDADevices(String),
817
818
819
820
821
822
823
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
824

825
826
827
828
829
830
831
832
impl core::fmt::Display for LauncherError {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(f, "{self:?}")
    }
}

impl std::error::Error for LauncherError {}

833
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
834
835
836
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
837
    let mut download_args = vec![
838
839
840
841
842
843
844
845
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
846

847
848
    // Model optional revision
    if let Some(revision) = &args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
849
850
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
851
    }
852

853
854
855
856
857
    // Trust remote code for automatic peft fusion
    if args.trust_remote_code {
        download_args.push("--trust-remote-code".to_string());
    }

858
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
859
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
860

861
862
863
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

864
865
866
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

867
    // If huggingface_hub_cache is set, pass it to the download process
868
869
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
870
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
871
    };
872

873
874
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
875
    envs.push((
876
877
878
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
879

880
881
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
882
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
883
    };
884

885
886
887
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
888
        envs.push((
889
890
891
892
893
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

894
895
    // Start process
    tracing::info!("Starting download process.");
896
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
897
        .args(download_args)
898
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
899
        .envs(envs)
900
901
902
903
904
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
905
906
        Ok(p) => p,
        Err(err) => {
907
908
909
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
910
911
            } else {
                tracing::error!("{}", err);
912
            }
913

914
915
916
            return Err(LauncherError::DownloadError);
        }
    };
917

918
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
919

920
    thread::spawn(move || {
921
922
923
924
925
926
927
928
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
929
        for line in download_stderr.lines().map_while(Result::ok) {
930
931
            err_sender.send(line).unwrap_or(());
        }
932
    });
933

934
    loop {
935
936
937
938
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
                tracing::info!("Successfully downloaded weights.");
                break;
939
            }
940
941

            let mut err = String::new();
942
943
944
945
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

946
947
948
949
950
951
952
953
954
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
955
        }
956
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
957
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
958
959
960
            return Ok(());
        }
        sleep(Duration::from_millis(100));
961
    }
962
963
    Ok(())
}
964

965
#[allow(clippy::too_many_arguments)]
966
967
968
fn spawn_shards(
    num_shard: usize,
    args: &Args,
969
    cuda_graphs: Vec<usize>,
970
    shutdown: Arc<AtomicBool>,
971
972
973
974
975
976
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
977
978
    // Start shard processes
    for rank in 0..num_shard {
979
980
981
982
983
984
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
985
986
987
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
988
        let otlp_endpoint = args.otlp_endpoint.clone();
989
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
990
        let speculate = args.speculate;
991
        let dtype = args.dtype;
992
        let trust_remote_code = args.trust_remote_code;
993
994
995
996
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
997
        let cuda_graphs_clone = cuda_graphs.clone();
998
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
999
1000
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1001
1002
        thread::spawn(move || {
            shard_manager(
1003
                model_id,
1004
                revision,
1005
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1006
                speculate,
1007
                dtype,
1008
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1009
1010
1011
1012
1013
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1014
1015
                huggingface_hub_cache,
                weights_cache_override,
1016
                disable_custom_kernels,
1017
1018
                watermark_gamma,
                watermark_delta,
1019
                cuda_graphs_clone,
1020
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1021
1022
                rope_scaling,
                rope_factor,
1023
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1045
            Ok(ShardStatus::Failed(rank)) => {
1046
                tracing::error!("Shard {rank} failed to start");
1047
                shutdown_shards(shutdown, shutdown_receiver);
1048
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1049
1050
1051
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1052
                shutdown_shards(shutdown, shutdown_receiver);
1053
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1054
1055
1056
            }
        }
    }
1057
1058
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1059

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1072
fn spawn_webserver(
1073
    num_shard: usize,
1074
    args: Args,
1075
1076
1077
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1078
    shutdown: Arc<AtomicBool>,
1079
    shutdown_receiver: &mpsc::Receiver<()>,
1080
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1081
1082
1083
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1084
    let mut router_args = vec![
1085
1086
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1087
        "--max-concurrent-requests".to_string(),
1088
        args.max_concurrent_requests.to_string(),
1089
        "--max-best-of".to_string(),
1090
        args.max_best_of.to_string(),
1091
        "--max-stop-sequences".to_string(),
1092
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1093
1094
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1095
1096
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1097
        "--max-total-tokens".to_string(),
1098
        max_total_tokens.to_string(),
1099
        "--max-batch-prefill-tokens".to_string(),
1100
        max_batch_prefill_tokens.to_string(),
1101
        "--waiting-served-ratio".to_string(),
1102
        args.waiting_served_ratio.to_string(),
1103
        "--max-waiting-tokens".to_string(),
1104
        args.max_waiting_tokens.to_string(),
1105
1106
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1107
1108
        "--hostname".to_string(),
        args.hostname.to_string(),
1109
        "--port".to_string(),
1110
        args.port.to_string(),
1111
        "--master-shard-uds-path".to_string(),
1112
        format!("{}-0", args.shard_uds_path),
1113
        "--tokenizer-name".to_string(),
1114
        args.model_id,
1115
1116
    ];

drbh's avatar
drbh committed
1117
1118
1119
1120
1121
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1122
1123
1124
1125
1126
1127
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1128
1129
1130
1131
1132
1133
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1134
1135
1136
1137
1138
1139
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1140
1141
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1142
1143
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1144
1145
    }

1146
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1147
        router_args.push("--json-output".to_string());
1148
1149
    }

1150
    // OpenTelemetry
1151
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1152
1153
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1154
1155
1156
1157
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1158
1159
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1160
1161
    }

1162
1163
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1164
1165
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1166
1167
1168
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1169
1170
    }

1171
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1172
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1173

1174
1175
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
1176
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
1177
    };
1178

1179
1180
1181
1182
1183
1184
1185
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1186
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1187
1188
        .args(router_args)
        .envs(envs)
1189
1190
1191
1192
1193
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1194
1195
        Ok(p) => p,
        Err(err) => {
1196
            tracing::error!("Failed to start webserver: {}", err);
1197
1198
1199
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1200
1201
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1202
            }
1203

1204
            shutdown_shards(shutdown, shutdown_receiver);
1205
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1206
1207
1208
        }
    };

1209
1210
1211
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1212
1213

    thread::spawn(move || {
1214
1215
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1216
        for line in stdout.lines() {
1217
            println!("{}", line.unwrap());
1218
        }
1219
1220
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1221
        }
1222
1223
1224
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1225

OlivierDehaene's avatar
OlivierDehaene committed
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");

    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }

    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1251
1252
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1253
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1254

1255
1256
1257
1258
    // Filter events with LOG_LEVEL
    let env_filter =
        EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));

1259
    if args.json_output {
1260
1261
1262
1263
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1264
    } else {
1265
1266
1267
1268
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1269
1270
    }

1271
1272
1273
1274
1275
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

1276
1277
    tracing::info!("{:?}", args);

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
    let get_max_position_embeddings = || -> Result<usize, Box<dyn std::error::Error>> {
        let model_id = args.model_id.clone();
        let mut path = std::path::Path::new(&args.model_id).to_path_buf();
        let filename = if !path.exists() {
            // Assume it's a hub id
            let api = Api::new()?;
            let repo = if let Some(ref revision) = args.revision {
                api.repo(Repo::with_revision(
                    model_id,
                    RepoType::Model,
                    revision.to_string(),
                ))
            } else {
                api.model(model_id)
            };
            repo.get("config.json")?
        } else {
            path.push("config.json");
            path
        };

        let content = std::fs::read_to_string(filename)?;
        let config: Config = serde_json::from_str(&content)?;

        // Quantization usually means you're even more RAM constrained.
        let max_default = 4096;

        let max_position_embeddings = match (config.max_position_embeddings, config.max_seq_len) {
            (Some(max_position_embeddings), _) | (None, Some(max_position_embeddings)) => {
                if max_position_embeddings > max_default {
                    let max = max_position_embeddings;
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
                    max_default
                } else {
                    max_position_embeddings
                }
            }
            _ => {
                return Err(Box::new(LauncherError::ArgumentValidation(
                    "no max defined".to_string(),
                )));
            }
        };
        Ok(max_position_embeddings)
    };
    let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096);

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1367
    // Validate args
1368
    if max_input_tokens >= max_total_tokens {
1369
        return Err(LauncherError::ArgumentValidation(
1370
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1371
1372
        ));
    }
1373
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1374
        return Err(LauncherError::ArgumentValidation(format!(
1375
1376
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1377
1378
        )));
    }
1379

1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
    let cuda_graphs = match (&args.cuda_graphs, &args.quantize) {
        (Some(cuda_graphs), Some(_q)) => cuda_graphs.clone(),
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
                | Quantization::BitsandbytesNF4
                | Quantization::BitsandbytesFP4,
            ),
        ) => {
            tracing::info!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1401
1402
1403
1404
1405
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1406
1407
1408
1409
1410
1411
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1412
1413

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1414
1415
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1416
1417
    }

1418
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1419
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1420
1421
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1422
                max_batch_prefill_tokens, max_batch_total_tokens
1423
1424
            )));
        }
1425
        if max_total_tokens as u32 > *max_batch_total_tokens {
1426
1427
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1428
                max_total_tokens, max_batch_total_tokens
1429
1430
1431
1432
            )));
        }
    }

1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1447
1448
1449
1450
1451
1452
1453
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1454

1455
    // Download and convert model weights
1456
    download_convert_model(&args, running.clone())?;
1457

OlivierDehaene's avatar
OlivierDehaene committed
1458
1459
1460
1461
1462
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1463
    // Shared shutdown bool
1464
    let shutdown = Arc::new(AtomicBool::new(false));
1465
1466
1467
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1468

1469
1470
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1471

1472
1473
1474
    spawn_shards(
        num_shard,
        &args,
1475
        cuda_graphs,
1476
1477
1478
1479
1480
1481
1482
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1483

1484
1485
1486
1487
1488
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1489

1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
    .map_err(|err| {
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
        err
    })?;
1503
1504
1505
1506
1507

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1508
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1509
            tracing::error!("Shard {rank} crashed");
1510
1511
1512
1513
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1514
        match webserver.try_wait().unwrap() {
1515
1516
1517
1518
1519
1520
1521
1522
1523
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1524
    }
1525
1526

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1527
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1528
1529
1530
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1531
}