main.rs 47.5 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
3
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
4
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
5
use std::env;
6
use std::ffi::OsString;
7
use std::io::{BufRead, BufReader, Lines};
8
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
9
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
10
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
12
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
13
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14
15
16
17
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
18
use tracing_subscriber::EnvFilter;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19

20
21
mod env_runtime;

22
23
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
24
    /// 4 bit quantization. Requires a specific AWQ quantized model:
25
    ///   https://hf.co/models?search=awq.
26
    /// Should replace GPTQ models wherever possible because of the better latency
27
28
29
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
30
    /// Kernels are from https://github.com/NetEase-FuXi/EETQ.git
31
    Eetq,
32
    /// 4 bit quantization. Requires a specific GTPQ quantized model: https://hf.co/models?search=gptq.
33
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
34
35
36
37
38
39
40
41
42
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
43
    Bitsandbytes,
44
45
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
46
    BitsandbytesNF4,
47
48
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
49
    BitsandbytesFP4,
Nicolas Patry's avatar
Nicolas Patry committed
50
51
52
53
54
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
55
56
57
58
59
60
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
61
62
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
63
64
65
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
66
67
68
69
70
71
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
72
73
74
            Quantization::Gptq => {
                write!(f, "gptq")
            }
75
76
77
            Quantization::Awq => {
                write!(f, "awq")
            }
78
79
80
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
81
82
83
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
84
85
86
87
        }
    }
}

88
89
90
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
91
    #[clap(name = "bfloat16")]
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
129
130
131
132
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
133
134
135
136
137
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
138
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
139
    model_id: String,
140
141
142

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
143
    #[clap(long, env)]
144
    revision: Option<String>,
145

146
147
148
149
150
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

151
    /// Whether to shard the model across multiple GPUs
152
153
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
154
155
    #[clap(long, env)]
    sharded: Option<bool>,
156
157

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
158
159
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
160
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
161
162
    #[clap(long, env)]
    num_shard: Option<usize>,
163

164
    /// Whether you want the model to be quantized.
165
166
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
167

Nicolas Patry's avatar
Nicolas Patry committed
168
169
170
171
172
173
174
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

175
176
177
178
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

179
180
181
182
183
184
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

185
186
187
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
188
189
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
190
191
192
193

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
194
195
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
196
197
198
199
200
201

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
202
203
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
204

Nicolas Patry's avatar
Nicolas Patry committed
205
206
207
208
209
210
211
212
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
    /// `top_n_tokens is used to return information about the the `n` most likely
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

213
214
215
216
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
217
218
    #[clap(default_value = "1024", long, env)]
    max_input_length: usize,
219
220
221
222
223
224
225
226
227

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
228
229
    #[clap(default_value = "2048", long, env)]
    max_total_tokens: usize,
230
231
232
233
234
235
236
237
238
239
240

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
241
242
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
243

244
245
246
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
247
248
    #[clap(default_value = "4096", long, env)]
    max_batch_prefill_tokens: u32,
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
267
268
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
287
288
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
289

290
291
292
293
294
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

295
296
297
298
299
300
301
302
303
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
    #[clap(
        long,
        env,
        value_delimiter = ',',
        default_value = "1,2,4,8,16,32,64,96,128"
    )]
    cuda_graphs: Vec<usize>,
304

305
306
307
308
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

309
    /// The port to listen on.
310
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
311
    port: u16,
312
313
314

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
315
316
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
317
318

    /// The address the master shard will listen on. (setting used by torch distributed)
319
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
320
    master_addr: String,
321
322

    /// The address the master port will listen on. (setting used by torch distributed)
323
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
324
    master_port: usize,
325
326
327

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
328
    #[clap(long, env)]
329
    huggingface_hub_cache: Option<String>,
330
331
332

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
333
334
    #[clap(long, env)]
    weights_cache_override: Option<String>,
335
336
337
338
339

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
340
    #[clap(long, env)]
341
    disable_custom_kernels: bool,
342

343
344
345
346
347
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

368
    /// Outputs the logs in JSON format (useful for telemetry)
369
    #[clap(long, env)]
370
    json_output: bool,
371

372
373
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
374

375
376
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
377
378
379
380
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
381

382
383
384
385
386
387
388
389
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

390
    /// ngrok edge
391
    #[clap(long, env)]
392
    ngrok_edge: Option<String>,
393

394
395
396
397
398
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
399
400
401
402
403
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

404
405
406
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
407
408
}

409
410
411
#[derive(Debug)]
enum ShardStatus {
    Ready,
412
    Failed(usize),
413
}
414

415
416
417
418
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
419
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
420
    speculate: Option<usize>,
421
    dtype: Option<Dtype>,
422
    trust_remote_code: bool,
423
424
425
426
427
428
429
430
431
432
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
433
    cuda_graphs: Vec<usize>,
434
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
435
436
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
437
438
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
439
    shutdown: Arc<AtomicBool>,
440
441
    _shutdown_sender: mpsc::Sender<()>,
) {
442
443
444
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

445
446
447
448
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
449
450
451
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
452
453

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
454
    let mut shard_args = vec![
455
456
457
458
459
460
461
462
463
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

464
465
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
466
        shard_args.push("--trust-remote-code".to_string());
467
468
    }

469
470
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
471
        shard_args.push("--sharded".to_string());
472
473
    }

474
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
475
476
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
477
    }
478

Nicolas Patry's avatar
Nicolas Patry committed
479
480
481
482
483
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

484
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
485
486
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
487
488
    }

489
490
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
491
492
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
493
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
494

Nicolas Patry's avatar
Nicolas Patry committed
495
496
497
498
499
500
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
501
502
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
503
504
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
505
506
507
    }

    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
508
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
509

510
511
512
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

513
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
514
515
516
517
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
518
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
519

520
521
522
523
524
525
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

526
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
527
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
528

529
530
531
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

532
533
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
534
    envs.push((
535
536
537
538
539
540
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
541
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
542
543
    };

Nicolas Patry's avatar
Nicolas Patry committed
544
545
546
547
548
549
550
551
552
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

553
554
555
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
556
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
557
558
559
560
561
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
562
        envs.push((
563
564
565
566
567
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

568
    // Enable experimental support for cuda graphs
569
570
571
572
573
574
575
576
577
578
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
579
580
    }

581
582
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
583
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
584
585
586
587
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
588
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
589
590
591
592
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
593
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
594
595
596
    }

    // Start process
597
    tracing::info!("Starting shard");
598
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
599
        .args(shard_args)
600
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
601
        .envs(envs)
602
603
604
605
606
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
607
608
        Ok(p) => p,
        Err(err) => {
609
610
611
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
612
613
            }
            {
614
                tracing::error!("{}", err);
615
            }
616

617
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
618
619
620
621
622
            return;
        }
    };

    // Redirect STDOUT to the console
623
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
624
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
625

626
    //stdout tracing thread
627
    thread::spawn(move || {
628
        log_lines(shard_stdout_reader.lines());
629
    });
630
631
632
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
633
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
634
635
636
            err_sender.send(line).unwrap_or(());
        }
    });
637
638
639
640
641
642

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
643
        if let Some(exit_status) = p.try_wait().unwrap() {
644
645
646
647
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
648

649
            tracing::error!("Shard complete standard error output:\n{err}");
650

651
            if let Some(signal) = exit_status.signal() {
652
653
654
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

655
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
656
657
658
659
            return;
        }

        // We received a shutdown signal
660
        if shutdown.load(Ordering::SeqCst) {
661
            p.kill().unwrap();
662
            let _ = p.wait();
663
            tracing::info!("Shard terminated");
664
665
666
667
668
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
669
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
670
671
672
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
673
            tracing::info!("Waiting for shard to be ready...");
674
675
676
677
678
679
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

680
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
681
682
683
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
684
    shutdown.store(true, Ordering::SeqCst);
685
686
687
688
689
690
691

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
692
693
694
695
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
696
697
    let n_devices = devices.split(',').count();
    Some(n_devices)
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

742
743
744
745
746
747
748
749
750
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
751
    for line in lines.map_while(Result::ok) {
752
753
754
755
756
757
758
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

759
760
761
762
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
763
764
765
766
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
767
768
769
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
770
            if n_devices <= 1 {
771
772
773
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
774
            }
775
            n_devices
776
        }
777
778
779
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
780
781
782
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
783
784
            }
            num_shard
785
        }
786
787
788
789
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
790
    };
791
    if num_shard < 1 {
792
793
794
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
795
    }
796
    Ok(num_shard)
797
}
798

799
800
#[derive(Debug)]
enum LauncherError {
801
802
    ArgumentValidation(String),
    NotEnoughCUDADevices(String),
803
804
805
806
807
808
809
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
810

811
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
812
813
814
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
815
    let mut download_args = vec![
816
817
818
819
820
821
822
823
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
824

825
826
    // Model optional revision
    if let Some(revision) = &args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
827
828
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
829
    }
830

831
832
833
834
835
    // Trust remote code for automatic peft fusion
    if args.trust_remote_code {
        download_args.push("--trust-remote-code".to_string());
    }

836
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
837
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
838

839
840
841
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

842
843
844
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

845
    // If huggingface_hub_cache is set, pass it to the download process
846
847
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
848
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
849
    };
850

851
852
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
853
    envs.push((
854
855
856
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
857

858
859
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
860
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
861
    };
862

863
864
865
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
866
        envs.push((
867
868
869
870
871
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

872
873
    // Start process
    tracing::info!("Starting download process.");
874
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
875
        .args(download_args)
876
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
877
        .envs(envs)
878
879
880
881
882
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
883
884
        Ok(p) => p,
        Err(err) => {
885
886
887
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
888
889
            } else {
                tracing::error!("{}", err);
890
            }
891

892
893
894
            return Err(LauncherError::DownloadError);
        }
    };
895

896
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
897

898
    thread::spawn(move || {
899
900
901
902
903
904
905
906
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
907
        for line in download_stderr.lines().map_while(Result::ok) {
908
909
            err_sender.send(line).unwrap_or(());
        }
910
    });
911

912
    loop {
913
914
915
916
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
                tracing::info!("Successfully downloaded weights.");
                break;
917
            }
918
919

            let mut err = String::new();
920
921
922
923
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

924
925
926
927
928
929
930
931
932
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
933
        }
934
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
935
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
936
937
938
            return Ok(());
        }
        sleep(Duration::from_millis(100));
939
    }
940
941
    Ok(())
}
942

943
#[allow(clippy::too_many_arguments)]
944
945
946
fn spawn_shards(
    num_shard: usize,
    args: &Args,
947
    shutdown: Arc<AtomicBool>,
948
949
950
951
952
953
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
954
955
    // Start shard processes
    for rank in 0..num_shard {
956
957
958
959
960
961
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
962
963
964
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
965
        let otlp_endpoint = args.otlp_endpoint.clone();
966
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
967
        let speculate = args.speculate;
968
        let dtype = args.dtype;
969
        let trust_remote_code = args.trust_remote_code;
970
971
972
973
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
974
975
976
977
978
        let cuda_graphs: Vec<usize> = args
            .cuda_graphs
            .iter()
            .filter_map(|&c| if c > 0 { Some(c) } else { None })
            .collect();
979
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
980
981
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
982
983
        thread::spawn(move || {
            shard_manager(
984
                model_id,
985
                revision,
986
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
987
                speculate,
988
                dtype,
989
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
990
991
992
993
994
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
995
996
                huggingface_hub_cache,
                weights_cache_override,
997
                disable_custom_kernels,
998
999
                watermark_gamma,
                watermark_delta,
1000
                cuda_graphs,
1001
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1002
1003
                rope_scaling,
                rope_factor,
1004
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1026
            Ok(ShardStatus::Failed(rank)) => {
1027
                tracing::error!("Shard {rank} failed to start");
1028
                shutdown_shards(shutdown, shutdown_receiver);
1029
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1030
1031
1032
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1033
                shutdown_shards(shutdown, shutdown_receiver);
1034
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1035
1036
1037
            }
        }
    }
1038
1039
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1040

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1053
fn spawn_webserver(
1054
    num_shard: usize,
1055
    args: Args,
1056
    shutdown: Arc<AtomicBool>,
1057
    shutdown_receiver: &mpsc::Receiver<()>,
1058
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1059
1060
1061
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1062
    let mut router_args = vec![
1063
        "--max-concurrent-requests".to_string(),
1064
        args.max_concurrent_requests.to_string(),
1065
        "--max-best-of".to_string(),
1066
        args.max_best_of.to_string(),
1067
        "--max-stop-sequences".to_string(),
1068
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1069
1070
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1071
1072
        "--max-input-length".to_string(),
        args.max_input_length.to_string(),
1073
        "--max-total-tokens".to_string(),
1074
        args.max_total_tokens.to_string(),
1075
        "--max-batch-prefill-tokens".to_string(),
1076
        args.max_batch_prefill_tokens.to_string(),
1077
        "--waiting-served-ratio".to_string(),
1078
        args.waiting_served_ratio.to_string(),
1079
        "--max-waiting-tokens".to_string(),
1080
        args.max_waiting_tokens.to_string(),
1081
1082
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1083
1084
        "--hostname".to_string(),
        args.hostname.to_string(),
1085
        "--port".to_string(),
1086
        args.port.to_string(),
1087
        "--master-shard-uds-path".to_string(),
1088
        format!("{}-0", args.shard_uds_path),
1089
        "--tokenizer-name".to_string(),
1090
        args.model_id,
1091
1092
    ];

drbh's avatar
drbh committed
1093
1094
1095
1096
1097
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1098
1099
1100
1101
1102
1103
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1104
1105
1106
1107
1108
1109
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1110
1111
1112
1113
1114
1115
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1116
1117
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1118
1119
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1120
1121
    }

1122
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1123
        router_args.push("--json-output".to_string());
1124
1125
    }

1126
    // OpenTelemetry
1127
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1128
1129
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1130
1131
1132
1133
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1134
1135
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1136
1137
    }

1138
1139
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1140
1141
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1142
1143
1144
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1145
1146
    }

1147
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1148
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1149

1150
1151
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
1152
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
1153
    };
1154

1155
1156
1157
1158
1159
1160
1161
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1162
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1163
1164
        .args(router_args)
        .envs(envs)
1165
1166
1167
1168
1169
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1170
1171
        Ok(p) => p,
        Err(err) => {
1172
            tracing::error!("Failed to start webserver: {}", err);
1173
1174
1175
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1176
1177
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1178
            }
1179

1180
            shutdown_shards(shutdown, shutdown_receiver);
1181
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1182
1183
1184
        }
    };

1185
1186
1187
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1188
1189

    thread::spawn(move || {
1190
1191
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1192
        for line in stdout.lines() {
1193
            println!("{}", line.unwrap());
1194
        }
1195
1196
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1197
        }
1198
1199
1200
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1201

OlivierDehaene's avatar
OlivierDehaene committed
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");

    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }

    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1227
1228
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1229
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1230

1231
1232
1233
1234
    // Filter events with LOG_LEVEL
    let env_filter =
        EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));

1235
    if args.json_output {
1236
1237
1238
1239
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1240
    } else {
1241
1242
1243
1244
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1245
1246
    }

1247
1248
1249
1250
1251
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

1252
1253
    tracing::info!("{:?}", args);

1254
    // Validate args
1255
    if args.max_input_length >= args.max_total_tokens {
1256
        return Err(LauncherError::ArgumentValidation(
1257
            "`max_input_length` must be < `max_total_tokens`".to_string(),
1258
1259
        ));
    }
1260
    if args.max_input_length as u32 > args.max_batch_prefill_tokens {
1261
        return Err(LauncherError::ArgumentValidation(format!(
1262
1263
            "`max_batch_prefill_tokens` must be >= `max_input_length`. Given: {} and {}",
            args.max_batch_prefill_tokens, args.max_input_length
1264
1265
        )));
    }
1266

1267
1268
1269
1270
1271
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1272
1273
1274
1275
1276
1277
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1278
1279

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1280
1281
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1282
1283
    }

1284
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1285
        if args.max_batch_prefill_tokens > *max_batch_total_tokens {
1286
1287
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1288
                args.max_batch_prefill_tokens, max_batch_total_tokens
1289
1290
            )));
        }
1291
        if args.max_total_tokens as u32 > *max_batch_total_tokens {
1292
1293
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1294
                args.max_total_tokens, max_batch_total_tokens
1295
1296
1297
1298
            )));
        }
    }

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1313
1314
1315
1316
1317
1318
1319
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1320

1321
    // Download and convert model weights
1322
    download_convert_model(&args, running.clone())?;
1323

OlivierDehaene's avatar
OlivierDehaene committed
1324
1325
1326
1327
1328
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1329
    // Shared shutdown bool
1330
    let shutdown = Arc::new(AtomicBool::new(false));
1331
1332
1333
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1334

1335
1336
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1337

1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1348

1349
1350
1351
1352
1353
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1354

1355
1356
1357
1358
1359
    let mut webserver = spawn_webserver(num_shard, args, shutdown.clone(), &shutdown_receiver)
        .map_err(|err| {
            shutdown_shards(shutdown.clone(), &shutdown_receiver);
            err
        })?;
1360
1361
1362
1363
1364

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1365
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1366
            tracing::error!("Shard {rank} crashed");
1367
1368
1369
1370
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1371
        match webserver.try_wait().unwrap() {
1372
1373
1374
1375
1376
1377
1378
1379
1380
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1381
    }
1382
1383

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1384
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1385
1386
1387
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1388
}