main.rs 50.8 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
3
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
4
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
5
use std::env;
6
use std::ffi::OsString;
7
use std::io::{BufRead, BufReader, Lines};
8
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
9
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
10
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
12
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
13
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14
15
16
17
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
18
use tracing_subscriber::EnvFilter;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19

20
21
mod env_runtime;

22
23
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
24
    /// 4 bit quantization. Requires a specific AWQ quantized model:
25
    ///   <https://hf.co/models?search=awq>.
26
    /// Should replace GPTQ models wherever possible because of the better latency
27
28
29
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
30
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
31
    Eetq,
32
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
33
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
34
35
36
37
38
39
40
41
42
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
43
    Bitsandbytes,
44
45
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
46
    BitsandbytesNF4,
47
48
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
49
    BitsandbytesFP4,
50
51
52
53
54
55
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
56
57
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
58
59
60
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
61
62
63
64
65
66
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
67
68
69
            Quantization::Gptq => {
                write!(f, "gptq")
            }
70
71
72
            Quantization::Awq => {
                write!(f, "awq")
            }
73
74
75
            Quantization::Eetq => {
                write!(f, "eetq")
            }
76
77
78
79
        }
    }
}

80
81
82
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
83
    #[clap(name = "bfloat16")]
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
121
122
123
124
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
125
126
127
128
129
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
130
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
131
    model_id: String,
132
133
134

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
135
    #[clap(long, env)]
136
    revision: Option<String>,
137

138
139
140
141
142
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

143
    /// Whether to shard the model across multiple GPUs
144
145
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
146
147
    #[clap(long, env)]
    sharded: Option<bool>,
148
149

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
150
151
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
152
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
153
154
    #[clap(long, env)]
    num_shard: Option<usize>,
155

156
    /// Whether you want the model to be quantized.
157
158
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
159

Nicolas Patry's avatar
Nicolas Patry committed
160
161
162
163
164
165
166
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

167
168
169
170
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

171
172
173
174
175
176
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

177
178
179
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
180
181
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
182
183
184
185

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
186
187
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
188
189
190
191
192
193

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
194
195
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
196

Nicolas Patry's avatar
Nicolas Patry committed
197
198
199
200
201
202
203
204
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
    /// `top_n_tokens is used to return information about the the `n` most likely
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

205
206
207
208
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
209
210
211
212
213
214
215
    /// Default to min(max_position_embeddings - 1, 13383)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
216
217
218
219
220
221
222
223
224

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
225
226
227
    /// Default to min(max_position_embeddings - 1, 16384)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
228
229
230
231
232
233
234
235
236
237
238

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
239
240
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
241

242
243
244
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
245
246
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
265
266
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
285
286
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
287

288
289
290
291
292
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

293
294
295
296
297
298
299
300
301
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
    #[clap(
        long,
        env,
        value_delimiter = ',',
        default_value = "1,2,4,8,16,32,64,96,128"
    )]
    cuda_graphs: Vec<usize>,
302

303
304
305
306
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

307
    /// The port to listen on.
308
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
309
    port: u16,
310
311
312

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
313
314
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
315
316

    /// The address the master shard will listen on. (setting used by torch distributed)
317
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
318
    master_addr: String,
319
320

    /// The address the master port will listen on. (setting used by torch distributed)
321
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
322
    master_port: usize,
323
324
325

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
326
    #[clap(long, env)]
327
    huggingface_hub_cache: Option<String>,
328
329
330

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
331
332
    #[clap(long, env)]
    weights_cache_override: Option<String>,
333
334
335
336
337

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
338
    #[clap(long, env)]
339
    disable_custom_kernels: bool,
340

341
342
343
344
345
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

366
    /// Outputs the logs in JSON format (useful for telemetry)
367
    #[clap(long, env)]
368
    json_output: bool,
369

370
371
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
372

373
374
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
375
376
377
378
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
379

380
381
382
383
384
385
386
387
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

388
    /// ngrok edge
389
    #[clap(long, env)]
390
    ngrok_edge: Option<String>,
391

392
393
394
395
396
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
397
398
399
400
401
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

402
403
404
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
405
406
}

407
408
409
#[derive(Debug)]
enum ShardStatus {
    Ready,
410
    Failed(usize),
411
}
412

413
414
415
416
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
417
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
418
    speculate: Option<usize>,
419
    dtype: Option<Dtype>,
420
    trust_remote_code: bool,
421
422
423
424
425
426
427
428
429
430
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
431
    cuda_graphs: Vec<usize>,
432
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
433
434
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
435
436
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
437
    shutdown: Arc<AtomicBool>,
438
439
    _shutdown_sender: mpsc::Sender<()>,
) {
440
441
442
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

443
444
445
446
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
447
448
449
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
450
451

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
452
    let mut shard_args = vec![
453
454
455
456
457
458
459
460
461
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

462
463
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
464
        shard_args.push("--trust-remote-code".to_string());
465
466
    }

467
468
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
469
        shard_args.push("--sharded".to_string());
470
471
    }

472
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
473
474
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
475
    }
476

Nicolas Patry's avatar
Nicolas Patry committed
477
478
479
480
481
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

482
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
483
484
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
485
486
    }

487
488
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
489
490
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
491
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
492

Nicolas Patry's avatar
Nicolas Patry committed
493
494
495
496
497
498
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
499
500
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
501
502
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
503
504
505
    }

    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
506
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
507

508
509
510
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

511
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
512
513
514
515
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
516
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
517

518
519
520
521
522
523
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

524
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
525
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
526

527
528
529
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

530
531
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
532
    envs.push((
533
534
535
536
537
538
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
539
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
540
541
    };

Nicolas Patry's avatar
Nicolas Patry committed
542
543
544
545
546
547
548
549
550
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

551
552
553
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
554
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
555
556
557
558
559
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
560
        envs.push((
561
562
563
564
565
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

566
    // Enable experimental support for cuda graphs
567
568
569
570
571
572
573
574
575
576
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
577
578
    }

579
580
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
581
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
582
583
584
585
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
586
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
587
588
589
590
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
591
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
592
593
594
    }

    // Start process
595
    tracing::info!("Starting shard");
596
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
597
        .args(shard_args)
598
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
599
        .envs(envs)
600
601
602
603
604
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
605
606
        Ok(p) => p,
        Err(err) => {
607
608
609
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
610
611
            }
            {
612
                tracing::error!("{}", err);
613
            }
614

615
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
616
617
618
619
620
            return;
        }
    };

    // Redirect STDOUT to the console
621
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
622
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
623

624
    //stdout tracing thread
625
    thread::spawn(move || {
626
        log_lines(shard_stdout_reader.lines());
627
    });
628
629
630
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
631
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
632
633
634
            err_sender.send(line).unwrap_or(());
        }
    });
635
636
637
638
639
640

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
641
        if let Some(exit_status) = p.try_wait().unwrap() {
642
643
644
645
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
646

647
            tracing::error!("Shard complete standard error output:\n{err}");
648

649
            if let Some(signal) = exit_status.signal() {
650
651
652
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

653
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
654
655
656
657
            return;
        }

        // We received a shutdown signal
658
        if shutdown.load(Ordering::SeqCst) {
659
            p.kill().unwrap();
660
            let _ = p.wait();
661
            tracing::info!("Shard terminated");
662
663
664
665
666
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
667
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
668
669
670
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
671
            tracing::info!("Waiting for shard to be ready...");
672
673
674
675
676
677
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

678
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
679
680
681
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
682
    shutdown.store(true, Ordering::SeqCst);
683
684
685
686
687
688
689

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
690
691
692
693
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
694
695
    let n_devices = devices.split(',').count();
    Some(n_devices)
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

740
741
742
743
744
745
746
747
748
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
749
    for line in lines.map_while(Result::ok) {
750
751
752
753
754
755
756
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

757
758
759
760
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
761
762
763
764
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
765
766
767
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
768
            if n_devices <= 1 {
769
770
771
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
772
            }
773
            n_devices
774
        }
775
776
777
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
778
779
780
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
781
782
            }
            num_shard
783
        }
784
785
786
787
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
788
    };
789
    if num_shard < 1 {
790
791
792
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
793
    }
794
    Ok(num_shard)
795
}
796

797
798
#[derive(Debug)]
enum LauncherError {
799
800
    ArgumentValidation(String),
    NotEnoughCUDADevices(String),
801
802
803
804
805
806
807
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
808

809
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
810
811
812
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
813
    let mut download_args = vec![
814
815
816
817
818
819
820
821
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
822

823
824
    // Model optional revision
    if let Some(revision) = &args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
825
826
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
827
    }
828

829
830
831
832
833
    // Trust remote code for automatic peft fusion
    if args.trust_remote_code {
        download_args.push("--trust-remote-code".to_string());
    }

834
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
835
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
836

837
838
839
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

840
841
842
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

843
    // If huggingface_hub_cache is set, pass it to the download process
844
845
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
846
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
847
    };
848

849
850
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
851
    envs.push((
852
853
854
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
855

856
857
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
858
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
859
    };
860

861
862
863
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
864
        envs.push((
865
866
867
868
869
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

870
871
    // Start process
    tracing::info!("Starting download process.");
872
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
873
        .args(download_args)
874
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
875
        .envs(envs)
876
877
878
879
880
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
881
882
        Ok(p) => p,
        Err(err) => {
883
884
885
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
886
887
            } else {
                tracing::error!("{}", err);
888
            }
889

890
891
892
            return Err(LauncherError::DownloadError);
        }
    };
893

894
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
895

896
    thread::spawn(move || {
897
898
899
900
901
902
903
904
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
905
        for line in download_stderr.lines().map_while(Result::ok) {
906
907
            err_sender.send(line).unwrap_or(());
        }
908
    });
909

910
    loop {
911
912
913
914
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
                tracing::info!("Successfully downloaded weights.");
                break;
915
            }
916
917

            let mut err = String::new();
918
919
920
921
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

922
923
924
925
926
927
928
929
930
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
931
        }
932
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
933
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
934
935
936
            return Ok(());
        }
        sleep(Duration::from_millis(100));
937
    }
938
939
    Ok(())
}
940

941
#[allow(clippy::too_many_arguments)]
942
943
944
fn spawn_shards(
    num_shard: usize,
    args: &Args,
945
    shutdown: Arc<AtomicBool>,
946
947
948
949
950
951
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
952
953
    // Start shard processes
    for rank in 0..num_shard {
954
955
956
957
958
959
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
960
961
962
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
963
        let otlp_endpoint = args.otlp_endpoint.clone();
964
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
965
        let speculate = args.speculate;
966
        let dtype = args.dtype;
967
        let trust_remote_code = args.trust_remote_code;
968
969
970
971
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
972
973
974
975
976
        let cuda_graphs: Vec<usize> = args
            .cuda_graphs
            .iter()
            .filter_map(|&c| if c > 0 { Some(c) } else { None })
            .collect();
977
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
978
979
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
980
981
        thread::spawn(move || {
            shard_manager(
982
                model_id,
983
                revision,
984
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
985
                speculate,
986
                dtype,
987
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
988
989
990
991
992
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
993
994
                huggingface_hub_cache,
                weights_cache_override,
995
                disable_custom_kernels,
996
997
                watermark_gamma,
                watermark_delta,
998
                cuda_graphs,
999
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1000
1001
                rope_scaling,
                rope_factor,
1002
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1024
            Ok(ShardStatus::Failed(rank)) => {
1025
                tracing::error!("Shard {rank} failed to start");
1026
                shutdown_shards(shutdown, shutdown_receiver);
1027
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1028
1029
1030
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1031
                shutdown_shards(shutdown, shutdown_receiver);
1032
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1033
1034
1035
            }
        }
    }
1036
1037
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1038

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1051
fn spawn_webserver(
1052
    num_shard: usize,
1053
    args: Args,
1054
1055
1056
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1057
    shutdown: Arc<AtomicBool>,
1058
    shutdown_receiver: &mpsc::Receiver<()>,
1059
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1060
1061
1062
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1063
    let mut router_args = vec![
1064
        "--max-concurrent-requests".to_string(),
1065
        args.max_concurrent_requests.to_string(),
1066
        "--max-best-of".to_string(),
1067
        args.max_best_of.to_string(),
1068
        "--max-stop-sequences".to_string(),
1069
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1070
1071
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1072
1073
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1074
        "--max-total-tokens".to_string(),
1075
        max_total_tokens.to_string(),
1076
        "--max-batch-prefill-tokens".to_string(),
1077
        max_batch_prefill_tokens.to_string(),
1078
        "--waiting-served-ratio".to_string(),
1079
        args.waiting_served_ratio.to_string(),
1080
        "--max-waiting-tokens".to_string(),
1081
        args.max_waiting_tokens.to_string(),
1082
1083
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1084
1085
        "--hostname".to_string(),
        args.hostname.to_string(),
1086
        "--port".to_string(),
1087
        args.port.to_string(),
1088
        "--master-shard-uds-path".to_string(),
1089
        format!("{}-0", args.shard_uds_path),
1090
        "--tokenizer-name".to_string(),
1091
        args.model_id,
1092
1093
    ];

drbh's avatar
drbh committed
1094
1095
1096
1097
1098
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1099
1100
1101
1102
1103
1104
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1105
1106
1107
1108
1109
1110
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1111
1112
1113
1114
1115
1116
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1117
1118
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1119
1120
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1121
1122
    }

1123
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1124
        router_args.push("--json-output".to_string());
1125
1126
    }

1127
    // OpenTelemetry
1128
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1129
1130
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1131
1132
1133
1134
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1135
1136
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1137
1138
    }

1139
1140
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1141
1142
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1143
1144
1145
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1146
1147
    }

1148
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1149
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1150

1151
1152
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
1153
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
1154
    };
1155

1156
1157
1158
1159
1160
1161
1162
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1163
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1164
1165
        .args(router_args)
        .envs(envs)
1166
1167
1168
1169
1170
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1171
1172
        Ok(p) => p,
        Err(err) => {
1173
            tracing::error!("Failed to start webserver: {}", err);
1174
1175
1176
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1177
1178
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1179
            }
1180

1181
            shutdown_shards(shutdown, shutdown_receiver);
1182
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1183
1184
1185
        }
    };

1186
1187
1188
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1189
1190

    thread::spawn(move || {
1191
1192
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1193
        for line in stdout.lines() {
1194
            println!("{}", line.unwrap());
1195
        }
1196
1197
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1198
        }
1199
1200
1201
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1202

OlivierDehaene's avatar
OlivierDehaene committed
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");

    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }

    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1228
fn main() -> Result<(), LauncherError> {
oOraph's avatar
oOraph committed
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
    match Command::new("ldconfig").spawn() {
        Ok(_) => {}
        Err(err) => {
            tracing::warn!(
                "Unable to refresh ldconfig cache. Skipping (useless in most cases). Details {:?}",
                err
            )
        }
    }

1239
    // Pattern match configuration
1240
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1241

1242
1243
1244
1245
    // Filter events with LOG_LEVEL
    let env_filter =
        EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));

1246
    if args.json_output {
1247
1248
1249
1250
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1251
    } else {
1252
1253
1254
1255
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1256
1257
    }

1258
1259
1260
1261
1262
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

1263
1264
    tracing::info!("{:?}", args);

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
    use hf_hub::{api::sync::Api, Repo, RepoType};

    #[derive(Deserialize)]
    struct Config {
        max_position_embeddings: usize,
    }

    let config: Config = {
        let model_id = args.model_id.clone();
        let mut path = std::path::Path::new(&args.model_id).to_path_buf();
        let filename = if !path.exists() {
            // Assume it's a hub id
            let api = Api::new().unwrap();
            let repo = if let Some(ref revision) = args.revision {
                api.repo(Repo::with_revision(
                    model_id,
                    RepoType::Model,
                    revision.to_string(),
                ))
            } else {
                api.model(model_id)
            };
            repo.get("config.json").unwrap()
        } else {
            path.push("config.json");
            path
        };

        let content = std::fs::read_to_string(filename).unwrap();
        let config: Config = serde_json::from_str(&content).unwrap();

        let max_default = 2usize.pow(14);

        let max_position_embeddings = if config.max_position_embeddings > max_default {
            let max = config.max_position_embeddings;
            tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max - 1, max - 1);
            max_default
        } else {
            config.max_position_embeddings
        };

        Config {
            max_position_embeddings,
        }
    };

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = config.max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = config.max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        // TODO get config.
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value = config.max_position_embeddings as u32 - 1;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1348
    // Validate args
1349
    if max_input_tokens >= max_total_tokens {
1350
        return Err(LauncherError::ArgumentValidation(
1351
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1352
1353
        ));
    }
1354
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1355
        return Err(LauncherError::ArgumentValidation(format!(
1356
1357
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1358
1359
        )));
    }
1360

1361
1362
1363
1364
1365
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1366
1367
1368
1369
1370
1371
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1372
1373

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1374
1375
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1376
1377
    }

1378
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1379
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1380
1381
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1382
                max_batch_prefill_tokens, max_batch_total_tokens
1383
1384
            )));
        }
1385
        if max_total_tokens as u32 > *max_batch_total_tokens {
1386
1387
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1388
                max_total_tokens, max_batch_total_tokens
1389
1390
1391
1392
            )));
        }
    }

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1407
1408
1409
1410
1411
1412
1413
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1414

1415
    // Download and convert model weights
1416
    download_convert_model(&args, running.clone())?;
1417

OlivierDehaene's avatar
OlivierDehaene committed
1418
1419
1420
1421
1422
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1423
    // Shared shutdown bool
1424
    let shutdown = Arc::new(AtomicBool::new(false));
1425
1426
1427
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1428

1429
1430
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1431

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1442

1443
1444
1445
1446
1447
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1448

1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
    .map_err(|err| {
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
        err
    })?;
1462
1463
1464
1465
1466

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1467
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1468
            tracing::error!("Shard {rank} crashed");
1469
1470
1471
1472
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1473
        match webserver.try_wait().unwrap() {
1474
1475
1476
1477
1478
1479
1480
1481
1482
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1483
    }
1484
1485

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1486
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1487
1488
1489
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1490
}