arguments.py 35.2 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
22
from megatron import fused_kernels
Raul Puri's avatar
Raul Puri committed
23

24
25
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Neel Kant's avatar
Neel Kant committed
42
    parser = _add_realm_args(parser)
43
    parser = _add_vit_args(parser)
44
    parser = _add_logging_args(parser)
Mohammad's avatar
Mohammad committed
45
46
47
48

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
    # Parse.
51
52
53
54
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
55

Mohammad's avatar
Mohammad committed
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
59
    # Tensor model parallel size.
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
62
63
64
65
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
66
67
68
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
mohammad's avatar
mohammad committed
69
    # Checks.
70
71
72
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
73
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
74
75
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
76
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
77
    if args.rank == 0:
mohammad's avatar
mohammad committed
78
79
80
81
82
83
84
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)

85
86
87
88
89
90
91
92
93
94
95
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size

Jared Casper's avatar
Jared Casper committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
110
111
112
113
114
115
116
117
118
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
119
120
121
122
    if args.virtual_pipeline_model_parallel_size is not None:
        assert args.global_batch_size % args.pipeline_model_parallel_size == 0, \
            'global batch size is not divisible by pipeline parallel size when '\
            'using interleaved schedule'
Mohammad's avatar
Mohammad committed
123

124
125
126
127
128
129
130
131
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        args.params_dtype = torch.half
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

132
133
134
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

135
136
137
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
138

139
140
141
142
143
144
145
146
147
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
148
            'expected iteration-based learning rate warmup'
149
150
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
151
        if args.lr_warmup_fraction is not None:
152
            assert args.lr_warmup_iters == 0, \
153
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
154
155
156
157
158
159
160
161
162
163
164

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
165
        if args.lr_warmup_fraction is not None:
166
            assert args.lr_warmup_samples == 0, \
167
168
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
169

170
    # Check required arguments.
Mohammad's avatar
Mohammad committed
171
172
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
173
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
174
        _check_arg_is_not_none(args, req_arg)
175

Mohammad's avatar
Mohammad committed
176
    # Checks.
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
 
Mohammad's avatar
Mohammad committed
191
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
192
193
194
195
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
196
197
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
198
199
200
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
201
202
    if args.fp32_residual_connection:
        assert args.fp16, \
mshoeybi's avatar
mshoeybi committed
203
            'residual connection in fp32 only supported when using fp16.'
mohammad's avatar
mohammad committed
204
205
206
207
208
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.checkpoint_activations, \
            'for distribute-checkpointed-activations to work you '\
            'need to enable checkpoint-activations'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

    # custom kernel constraints check
    seq_len = args.seq_length
    attn_batch_size = \
        (args.num_attention_heads / args.tensor_model_parallel_size) * \
        args.micro_batch_size

    # constraints on sequence length and attn_batch_size to enable warp based
    # optimization and upper triangular optimization (for causal mask)
    custom_kernel_constraint = seq_len > 16 and seq_len <=2048 and \
        seq_len % 4 == 0 and attn_batch_size % 4 == 0

    if args.fp16 and custom_kernel_constraint and args.masked_softmax_fusion:
        print('WARNING: constraints for invoking optimized'
            ' fused softmax kernel are not met. We default back to unfused'
            ' kernel invocations.')

226
227
228
229
    # Load scaled_masked_softmax_fusion_kernels
    if args.masked_softmax_fusion:
        fused_kernels.load_scaled_upper_triang_masked_softmax_fusion_kernel()
        fused_kernels.load_scaled_masked_softmax_fusion_kernel()
230

231
232
233
234
    # Load mixed precision fused layer norm.
    if args.fp32_residual_connection:
        fused_kernels.load_fused_mix_prec_layer_norm_kernel()

Mohammad's avatar
Mohammad committed
235
236
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
237
238


Mohammad's avatar
Mohammad committed
239
240
241
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
242
243
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
244
245
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
246
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
247
248
249
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
250
251
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
252
253


254
255
256
257
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
258
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
259
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
260

261
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
262
                       help='Number of transformer layers.')
263
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
264
                       help='Tansformer hidden size.')
265
    group.add_argument('--ffn-hidden-size', type=int, default=None,
266
267
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
268
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
269
                       help='Number of transformer attention heads.')
270
    group.add_argument('--kv-channels', type=int, default=None,
271
272
273
274
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
275
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
276
277
278
279
280
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
281
282
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
283
284
285
286
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
287
288
289
290
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
291
    group.add_argument('--onnx-safe', type=bool, required=False,
292
293
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
294
295
296
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
Mohammad's avatar
Mohammad committed
297

Mohammad's avatar
Mohammad committed
298
299
300
    return parser


301
302
303
304
305
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
306
307
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
308
309
310
311
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
328
329
330
331

    return parser


Mohammad's avatar
Mohammad committed
332
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
333
334
335
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
336
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
337
338
339
340
341
342
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
343
    group.add_argument('--adam-beta1', type=float, default=0.9,
344
345
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
346
    group.add_argument('--adam-beta2', type=float, default=0.999,
347
348
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
349
    group.add_argument('--adam-eps', type=float, default=1e-08,
350
                       help='Term added to the denominator to improve'
351
                       'numerical stability')
352
353
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
354
355
356

    return parser

Mohammad's avatar
Mohammad committed
357
358

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
359
360
    group = parser.add_argument_group(title='training')

361
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
362
363
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
364
                       'parallel size times number of micro batches.')
365
366
367
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
368
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
369
370
371
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
372
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
373
374
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
375
376
377
378
379
380
381
382
383
384
385
386
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
387
388
389
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
390
391
392
393
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
Mohammad's avatar
Mohammad committed
394
395
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
396
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
397
                       help='Total number of iterations to train over all '
398
399
400
401
402
403
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
404
405
406
407
408
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
409
410
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
Mohammad's avatar
Mohammad committed
411
412
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
413
    group.add_argument('--no-masked-softmax-fusion',
414
415
416
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
417
                       dest='masked_softmax_fusion')
418
419
420
421
422
423
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
424
425
426
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
427
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
428
429
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
Mohammad's avatar
Mohammad committed
430
431
432
    return parser


Mohammad's avatar
Mohammad committed
433
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
434
435
436
437
438
439
440
441
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
442
443
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
444

Mohammad's avatar
Mohammad committed
445
446
447
    return parser


Mohammad's avatar
Mohammad committed
448
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
449
450
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
451
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
452
453
454
455
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
456
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
457
458
459
460
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
461
462
463
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
464
465
466
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
467
468
469
470
471
472
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
473
    group.add_argument('--warmup', type=int, default=None,
474
                       help='Old lr warmup argument, do not use. Use one of the'
475
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
494
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
495
496
497
498
499
500
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
501
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
502
                       help='Do not save current optimizer.')
503
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
504
505
506
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
507
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
508
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
509
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
510
511
512
513
514
515
516
517
518
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
519
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
520
521
522
523
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
mohammad's avatar
mohammad committed
524
525
526
527
528
529
530
531
532
533
534
535
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
536
537
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
538
539
540
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
541
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
542
543
544
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad's avatar
Mohammad committed
545
546
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
547
548
549
550
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
551
552
553
    return parser


Mohammad's avatar
Mohammad committed
554
def _add_distributed_args(parser):
555
556
    group = parser.add_argument_group(title='distributed')

557
558
559
560
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
561
562
563
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
564
565
    group.add_argument('--virtual-pipeline-model-parallel-size', type=int, default=None,
                       help='Number of virtual pipeline stages in physical stage.')
Mohammad's avatar
Mohammad committed
566
567
568
569
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
570
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
571
572
                       help='which DistributedDataParallel implementation '
                       'to use.')
573
574
    group.add_argument('--scatter-gather-tensors-in-pipeline', action='store_true',
                       help='Use scatter/gather to optimize communication of tensors in pipeline')
Mohammad's avatar
Mohammad committed
575
576
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
577
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
578
579
580
581
582
583
584
585
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Mohammad's avatar
Mohammad committed
586
587
588
    return parser


Mohammad's avatar
Mohammad committed
589
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
590
591
592
593
594
595
596
597
598
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
599
600
601
    return parser


Mohammad's avatar
Mohammad committed
602
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
603
604
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
605
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
606
607
608
609
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
610
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
611
612
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
613
614
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
615
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
616
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
617
618
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
619
    group.add_argument('--seq-length', type=int, default=None,
620
                       help='Maximum sequence length to process.')
621
    group.add_argument('--encoder-seq-length', type=int, default=None,
622
623
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
624
625
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mohammad's avatar
Mohammad committed
626
627
628
629
630
631
632
633
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
634
635
636
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
637
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
638
639
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
640
641
642
643
644
645
646
647
648
649
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
650

Mohammad's avatar
Mohammad committed
651
652
    return parser

Raul Puri's avatar
Raul Puri committed
653

Mohammad's avatar
Mohammad committed
654
655
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
656

Mohammad's avatar
Mohammad committed
657
658
659
660
661
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
662

Mohammad's avatar
Mohammad committed
663
    return parser
Neel Kant's avatar
Neel Kant committed
664
665
666
667
668
669
670


def _add_realm_args(parser):
    group = parser.add_argument_group(title='realm')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
671
672
                       help='Size of block embeddings to be used in ICT and '
                       'REALM (paper default: 128)')
Neel Kant's avatar
Neel Kant committed
673
674
675
676
677

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
678
679
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
680
681
682
683
684

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
685
686
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
687
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
688
689
                       help='Whether to use one sentence documents in ICT')

690
691
692
693
    # training
    group.add_argument('--report-topk-accuracies', nargs='+', default=[],
                       help="Which top-k accuracies to report (e.g. '1 5 20')")

Neel Kant's avatar
Neel Kant committed
694
695
696
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Neel Kant's avatar
Neel Kant committed
697
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
698
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
699
700
701

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
702
703
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
704
    group.add_argument('--indexer-log-interval', type=int, default=1000,
705
706
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
707
    return parser
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722


def _add_vit_args(parser):
    group = parser.add_argument_group(title="vit")

    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
    group.add_argument('--img-dim', type=int, default=224,
                       help='Image size for vision classification task')
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
                       help='patch dimension used in vit')

    return parser