arguments.py 34.6 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
22
from megatron import fused_kernels
Raul Puri's avatar
Raul Puri committed
23

24
25
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Neel Kant's avatar
Neel Kant committed
42
    parser = _add_realm_args(parser)
43
    parser = _add_vit_args(parser)
44
    parser = _add_logging_args(parser)
Mohammad's avatar
Mohammad committed
45
46
47
48

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
    # Parse.
51
52
53
54
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
55

Mohammad's avatar
Mohammad committed
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
59
    # Tensor model parallel size.
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
62
63
64
65
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
66
67
68
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
mohammad's avatar
mohammad committed
69
    # Checks.
70
71
72
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
mohammad's avatar
mohammad committed
73
74
75
        ' divisible by tensor parallel size ({}) times pipeline paralle ' \
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
76
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
77
    if args.rank == 0:
mohammad's avatar
mohammad committed
78
79
80
81
82
83
84
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)

85
86
87
88
89
90
91
92
93
94
95
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size

Jared Casper's avatar
Jared Casper committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
110
111
112
113
114
115
116
117
118
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
Mohammad's avatar
Mohammad committed
119

120
121
122
123
124
125
126
127
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        args.params_dtype = torch.half
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

128
129
130
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

131
132
133
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
134

135
136
137
138
139
140
141
142
143
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
144
            'expected iteration-based learning rate warmup'
145
146
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
147
        if args.lr_warmup_fraction is not None:
148
            assert args.lr_warmup_iters == 0, \
149
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
150
151
152
153
154
155
156
157
158
159
160

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
161
        if args.lr_warmup_fraction is not None:
162
            assert args.lr_warmup_samples == 0, \
163
164
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
165

166
    # Check required arguments.
Mohammad's avatar
Mohammad committed
167
168
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
169
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
170
        _check_arg_is_not_none(args, req_arg)
171

Mohammad's avatar
Mohammad committed
172
    # Checks.
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
 
Mohammad's avatar
Mohammad committed
187
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
188
189
190
191
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
192
193
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
194
195
196
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
197
198
    if args.fp32_residual_connection:
        assert args.fp16, \
mshoeybi's avatar
mshoeybi committed
199
            'residual connection in fp32 only supported when using fp16.'
mohammad's avatar
mohammad committed
200
201
202
203
204
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.checkpoint_activations, \
            'for distribute-checkpointed-activations to work you '\
            'need to enable checkpoint-activations'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    # custom kernel constraints check
    seq_len = args.seq_length
    attn_batch_size = \
        (args.num_attention_heads / args.tensor_model_parallel_size) * \
        args.micro_batch_size

    # constraints on sequence length and attn_batch_size to enable warp based
    # optimization and upper triangular optimization (for causal mask)
    custom_kernel_constraint = seq_len > 16 and seq_len <=2048 and \
        seq_len % 4 == 0 and attn_batch_size % 4 == 0

    if args.fp16 and custom_kernel_constraint and args.masked_softmax_fusion:
        print('WARNING: constraints for invoking optimized'
            ' fused softmax kernel are not met. We default back to unfused'
            ' kernel invocations.')

222
223
224
225
    # Load scaled_masked_softmax_fusion_kernels
    if args.masked_softmax_fusion:
        fused_kernels.load_scaled_upper_triang_masked_softmax_fusion_kernel()
        fused_kernels.load_scaled_masked_softmax_fusion_kernel()
226

227
228
229
230
    # Load mixed precision fused layer norm.
    if args.fp32_residual_connection:
        fused_kernels.load_fused_mix_prec_layer_norm_kernel()

Mohammad's avatar
Mohammad committed
231
232
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
233
234


Mohammad's avatar
Mohammad committed
235
236
237
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
238
239
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
240
241
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
242
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
243
244
245
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
246
247
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
248
249


250
251
252
253
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
254
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
255
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
256

257
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
258
                       help='Number of transformer layers.')
259
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
260
                       help='Tansformer hidden size.')
261
    group.add_argument('--ffn-hidden-size', type=int, default=None,
262
263
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
264
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
265
                       help='Number of transformer attention heads.')
266
    group.add_argument('--kv-channels', type=int, default=None,
267
268
269
270
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
271
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
272
273
274
275
276
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
277
278
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
279
280
281
282
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
283
284
285
286
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
287
    group.add_argument('--onnx-safe', type=bool, required=False,
288
289
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
290
291
292
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
Mohammad's avatar
Mohammad committed
293

Mohammad's avatar
Mohammad committed
294
295
296
    return parser


297
298
299
300
301
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
302
303
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
304
305
306
307
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
324
325
326
327

    return parser


Mohammad's avatar
Mohammad committed
328
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
329
330
331
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
332
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
333
334
335
336
337
338
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
339
    group.add_argument('--adam-beta1', type=float, default=0.9,
340
341
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
342
    group.add_argument('--adam-beta2', type=float, default=0.999,
343
344
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
345
    group.add_argument('--adam-eps', type=float, default=1e-08,
346
                       help='Term added to the denominator to improve'
347
                       'numerical stability')
348
349
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
350
351
352

    return parser

Mohammad's avatar
Mohammad committed
353
354

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
355
356
    group = parser.add_argument_group(title='training')

357
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
358
359
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
360
                       'parallel size times number of micro batches.')
361
362
363
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
364
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
365
366
367
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
368
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
369
370
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
371
372
373
374
375
376
377
378
379
380
381
382
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
383
384
385
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
386
387
388
389
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
Mohammad's avatar
Mohammad committed
390
391
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
392
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
393
                       help='Total number of iterations to train over all '
394
395
396
397
398
399
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
400
401
402
403
404
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
405
406
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
Mohammad's avatar
Mohammad committed
407
408
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
409
    group.add_argument('--no-masked-softmax-fusion',
410
411
412
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
413
                       dest='masked_softmax_fusion')
414
415
416
417
418
419
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
420
421
422
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
423
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
424
425
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
Mohammad's avatar
Mohammad committed
426
427
428
    return parser


Mohammad's avatar
Mohammad committed
429
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
430
431
432
433
434
435
436
437
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
438
439
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
440

Mohammad's avatar
Mohammad committed
441
442
443
    return parser


Mohammad's avatar
Mohammad committed
444
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
445
446
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
447
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
448
449
450
451
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
452
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
453
454
455
456
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
457
458
459
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
460
461
462
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
463
464
465
466
467
468
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
469
    group.add_argument('--warmup', type=int, default=None,
470
                       help='Old lr warmup argument, do not use. Use one of the'
471
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
490
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
491
492
493
494
495
496
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
497
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
498
                       help='Do not save current optimizer.')
499
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
500
501
502
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
503
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
504
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
505
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
506
507
508
509
510
511
512
513
514
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
515
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
516
517
518
519
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
mohammad's avatar
mohammad committed
520
521
522
523
524
525
526
527
528
529
530
531
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
532
533
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
534
535
536
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
537
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
538
539
540
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad's avatar
Mohammad committed
541
542
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
543
544
545
546
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
547
548
549
    return parser


Mohammad's avatar
Mohammad committed
550
def _add_distributed_args(parser):
551
552
    group = parser.add_argument_group(title='distributed')

553
554
555
556
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
557
558
559
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
Mohammad's avatar
Mohammad committed
560
561
562
563
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
564
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
565
566
567
568
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
569
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
570
571
572
573
574
575
576
577
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Mohammad's avatar
Mohammad committed
578
579
580
    return parser


Mohammad's avatar
Mohammad committed
581
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
582
583
584
585
586
587
588
589
590
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
591
592
593
    return parser


Mohammad's avatar
Mohammad committed
594
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
595
596
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
597
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
598
599
600
601
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
602
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
603
604
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
605
606
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
607
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
608
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
609
610
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
611
    group.add_argument('--seq-length', type=int, default=None,
612
                       help='Maximum sequence length to process.')
613
    group.add_argument('--encoder-seq-length', type=int, default=None,
614
615
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
616
617
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mohammad's avatar
Mohammad committed
618
619
620
621
622
623
624
625
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
626
627
628
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
629
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
630
631
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
632
633
634
635
636
637
638
639
640
641
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
642

Mohammad's avatar
Mohammad committed
643
644
    return parser

Raul Puri's avatar
Raul Puri committed
645

Mohammad's avatar
Mohammad committed
646
647
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
648

Mohammad's avatar
Mohammad committed
649
650
651
652
653
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
654

Mohammad's avatar
Mohammad committed
655
    return parser
Neel Kant's avatar
Neel Kant committed
656
657
658
659
660
661
662


def _add_realm_args(parser):
    group = parser.add_argument_group(title='realm')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
663
664
                       help='Size of block embeddings to be used in ICT and '
                       'REALM (paper default: 128)')
Neel Kant's avatar
Neel Kant committed
665
666
667
668
669

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
670
671
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
672
673
674
675
676

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
677
678
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
679
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
680
681
                       help='Whether to use one sentence documents in ICT')

682
683
684
685
    # training
    group.add_argument('--report-topk-accuracies', nargs='+', default=[],
                       help="Which top-k accuracies to report (e.g. '1 5 20')")

Neel Kant's avatar
Neel Kant committed
686
687
688
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Neel Kant's avatar
Neel Kant committed
689
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
690
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
691
692
693

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
694
695
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
696
    group.add_argument('--indexer-log-interval', type=int, default=1000,
697
698
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
699
    return parser
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714


def _add_vit_args(parser):
    group = parser.add_argument_group(title="vit")

    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
    group.add_argument('--img-dim', type=int, default=224,
                       help='Image size for vision classification task')
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
                       help='patch dimension used in vit')

    return parser