training.py 41.3 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
28
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Neel Kant's avatar
Neel Kant committed
29
from megatron import get_args
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
41
42
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
47
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
Neel Kant's avatar
Neel Kant committed
48
from megatron.model.realm_model import ICTBertModel
49
from megatron.utils import check_adlr_autoresume_termination
50
from megatron.data.data_loaders import build_pretraining_data_loader
51
from megatron.utils import report_memory
52
53


54
55
56
57
58
59
60
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


61
def pretrain(train_valid_test_dataset_provider, model_provider,
62
             forward_step_func, extra_args_provider=None, args_defaults={}):
63
64
65
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
66
67
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
68
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
69
        4) train the modle using the forward_step_func.
70
71

    Arguments:
72
73
74
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
75
76
77
78
79
80
81
82
83
84
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
85
86
    """

87
    # Initalize and get arguments, timers, and Tensorboard writer.
88
89
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
90

91
92
93
94
95
96
97
98
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
99
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
100
101
102
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

103
    args = get_args()
Mohammad's avatar
Mohammad committed
104
    timers = get_timers()
105
106

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
107
108
109
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
110
111
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
112
113

    # Data stuff.
114
115
116
117
118
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
mshoeybi's avatar
mshoeybi committed
119
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
120
121
122

    # Print setup timing.
    print_rank_0('done with setups ...')
123
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
124
    print_rank_0('training ...')
125
126

    iteration = 0
127
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
128
129
130
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
131
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
132

133
134
135
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
136
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
137
                                   iteration, False)
138
139

    if args.save and iteration != 0:
140
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
141
142
143
144
145
146

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
147
                                   0, True)
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
165
166
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
167
168
            iterations += 1
        # Reset
169
        update_num_microbatches(0, consistency_check=False)
170
171
172
173
174
175
176
177
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

178

Mohammad's avatar
Mohammad committed
179
def get_model(model_provider_func):
180
    """Build the model."""
Mohammad's avatar
Mohammad committed
181
    args = get_args()
182
183

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
184
    model = model_provider_func()
185
186
187

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
188
        print(' > number of parameters on (tensor, pipeline) '
189
              'model parallel rank ({}, {}): {}'.format(
190
191
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
192
193
194
195
196
197
198
199
200
201
202
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
203
204
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
205
206
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
207
        model = LocalDDP(model)
208
209
        return model

210
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
211
                              'Exiting.'.format(args.DDP_impl))
212
213


Mohammad's avatar
Mohammad committed
214
def get_optimizer(model):
215
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
216
    args = get_args()
217
218

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
219
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
220
221
222
223
224
225
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
226
227
            if not hasattr(param, 'tensor_model_parallel'):
                param.tensor_model_parallel = False
228
229

    # Use Adam.
230
231
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay,
        betas=(args.adam_beta1, args.adam_beta2), eps=args.adam_eps)
232
233
234
235
236
237
238
239

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
Neel Kant's avatar
Neel Kant committed
240
                                       'min_scale': args.min_scale,
241
242
243
244
245
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
246
def get_learning_rate_scheduler(optimizer):
247
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
248
    args = get_args()
249

250
251
252
253
254
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
255
256
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
257
258
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
259
260
261
262
263
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
264
        update_train_iters(args)
265
266
267
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
268
269
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
270
271
        else:
            warmup_steps = args.lr_warmup_samples
272
    else:
273
274
275
        raise Exception(
            'either train-iters or train-samples should be provided.')

276
277
    lr_scheduler = AnnealingLR(
        optimizer,
278
        max_lr=args.lr,
279
        min_lr=args.min_lr,
280
281
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
282
        decay_style=args.lr_decay_style,
283
284
285
286
287
288
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
289
def setup_model_and_optimizer(model_provider_func):
290
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
291
    args = get_args()
292

Mohammad's avatar
Mohammad committed
293
294
295
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
296
297

    if args.load is not None:
298
299
300
301
302
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
        timers('load checkpoint').start()
303
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
304
305
306
        torch.distributed.barrier()
        timers('load checkpoint').stop()
        timers.log(['load checkpoint'])
307
308
309
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
310
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
311
312
313
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
314
315
316
317
318
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

319
320
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
321
        print("Initializing ICT from pretrained BERT model", flush=True)
322
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
323

324
325
326
    return model, optimizer, lr_scheduler


327
328
329
330
331
332
333
334
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
    """Communicate tensors between stages using torch.distributed.ring_exchange(.) API."""
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
335
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
336
337
338
    dtype = args.params_dtype
    if args.fp32_residual_connection:
        dtype = torch.float
339
340
341
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
342
                                       device=torch.cuda.current_device(),
343
                                       dtype=dtype)
344
345
346
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
347
                                       device=torch.cuda.current_device(),
348
                                       dtype=dtype)
349
350
351
352
353
354

    # Send tensors in both the forward and backward directions as appropriate.
    torch.distributed.ring_exchange(tensor_send_prev=tensor_send_prev,
                                    tensor_recv_prev=tensor_recv_prev,
                                    tensor_send_next=tensor_send_next,
                                    tensor_recv_next=tensor_recv_next,
355
                                    group=mpu.get_pipeline_model_parallel_group())
356
357
358
359
360

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
361
    """Backward step."""
Mohammad's avatar
Mohammad committed
362
363
    args = get_args()
    timers = get_timers()
364

365
366
367
368
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

369
    # Backward pass.
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    if args.fp16:
        optimizer.backward(output_tensor, update_master_grads=False,
                           output_tensor_grad=output_tensor_grad)
    else:
        torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


384
385
386
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
387
388
    args = get_args()

389
    if not mpu.is_pipeline_first_stage():
390
        timers('forward-recv').start()
391
392
393
394
395
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
396
        timers('forward-recv').stop()
397
398
399
400
    else:
        input_tensor = None

    # Forward model for one step.
401
    timers('forward-compute').start()
402
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
403
    timers('forward-compute').stop()
404
405
406

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
407
        output_tensor = loss / get_num_microbatches()
408
409
        losses_reduced.append(loss_reduced)
    else:
410
        timers('forward-send').start()
411
412
413
414
415
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
416
        timers('forward-send').stop()
417
418
419
420
421
422
423
424
425
426
427
428

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
429
        timers('backward-recv').start()
430
431
432
433
434
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
435
        timers('backward-recv').stop()
436
437

    # Backward pass for one step.
438
    timers('backward-compute').start()
439
440
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
441
    timers('backward-compute').stop()
442
443

    if not mpu.is_pipeline_first_stage():
444
        timers('backward-send').start()
445
446
447
448
449
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
450
        timers('backward-send').stop()
451
452


453
454
455
456
457
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
458
459
    args = get_args()

460
461
462
463
464
465
466
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
467
        output_tensor = loss / get_num_microbatches()
468
469
470
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
471
        timers('forward-send-backward-recv').start()
472
473
474
475
476
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
477
        timers('forward-send-backward-recv').stop()
478
479
480
481
482
483
484
485
486
487
488
489
490
491

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
492
        timers('backward-send-forward-recv').start()
493
494
495
496
497
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
498
        timers('backward-send-forward-recv').stop()
499
500
501
502
503
504
    else:
        input_tensor = None

    return input_tensor


505
506
507
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
508
509
    args = get_args()

510
    losses_reduced = []
mohammad's avatar
mohammad committed
511
    for i in range(get_num_microbatches()):
512
513
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
514
        output_tensor = loss / get_num_microbatches()
515
516
517
518
519
520
521
522
523
524
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
525

526
527
528
529
530
531
532

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
533
    num_microbatches = get_num_microbatches()
534
535
536
537
538
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
539
540
541
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
542
543
544
545
546

    input_tensors = []
    output_tensors = []
    losses_reduced = []

547
548
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
549
550
551
552
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
553

554
    # Before running 1F1B, need to receive first forward tensor.
555
556
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
557
    if num_microbatches_remaining > 0:
558
559
560
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
561
            timers('forward-recv').start()
562
563
564
565
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
566
            timers('forward-recv').stop()
567
568

    # Run 1F1B.
569
570
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
571
572
573
574
575
576
577
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

578
579
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
    if args.fp16:
        optimizer.zero_grad(set_grads_to_None=True)
    else:
        optimizer.zero_grad()

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
604
605
606

    # All-reduce if needed.
    if args.DDP_impl == 'local':
607
        timers('backward-params-all-reduce').start()
608
609
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
610
        timers('backward-params-all-reduce').stop()
611

612
613
614
615
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
616
    timers('backward-embedding-all-reduce').start()
617
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
618
            mpu.get_pipeline_model_parallel_world_size() > 1:
619
620
621
622
        unwrapped_model = model
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16_Module)):
            unwrapped_model = unwrapped_model.module

623
624
625
626
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
627
    timers('backward-embedding-all-reduce').stop()
628

629
630
631
632
633
634
    # Update master gradients.
    timers('backward-master-grad').start()
    if args.fp16:
        optimizer.update_master_grads()
    timers('backward-master-grad').stop()

635
    # Clipping gradients helps prevent the exploding gradient.
636
    timers('backward-clip-grad').start()
637
    if args.clip_grad > 0.:
638
        if not args.fp16:
639
640
641
642
643
644
645
646
            named_parameters = model.named_parameters()
            parameters = []
            parameter_names = []
            for parameter_name, parameter in model.named_parameters():
                parameters.append(parameter)
                parameter_names.append(parameter_name)
            mpu.clip_grad_norm(parameters, args.clip_grad,
                               parameter_names=parameter_names)
647
648
        else:
            optimizer.clip_master_grads(args.clip_grad)
649
    timers('backward-clip-grad').stop()
650
651
652
653
654
655
656
657
658

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
659
660
661
662
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
663
664
665
    else:
        skipped_iter = 1

666
    if mpu.is_pipeline_last_stage():
667
668
669
670
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
671
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
672
673
        return loss_reduced, skipped_iter
    return {}, skipped_iter
674
675


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
676
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
677
                 loss_scale, report_memory_flag, skipped_iter):
Mohammad's avatar
Mohammad committed
678
679
680
681
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
682

mohammad's avatar
mohammad committed
683
684
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
685
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
686
687
688
689
690
691
692
693
694
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
695
696
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
697
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
698
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
699
    for key in loss_dict:
mohammad's avatar
mohammad committed
700
        if not skipped_iter:
701
702
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
703
704
705
706
707
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
708
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
709
710
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
711
712
713

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
714

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
715
716
717
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
718
719
720
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
721
    add_to_logging('forward-send-backward-recv')
722
723
724
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
725
    add_to_logging('backward-send-forward-recv')
726
    add_to_logging('backward-master-grad')
727
    add_to_logging('backward-params-all-reduce')
728
    add_to_logging('backward-embedding-all-reduce')
729
    add_to_logging('backward-clip-grad')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
730
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
731
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
732

mohammad's avatar
mohammad committed
733
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
734
735
736
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
737
738
739
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
740
    # Tensorboard values.
mohammad's avatar
mohammad committed
741
742
743
    if writer and is_last_rank():
        writer.add_scalar('learning-rate', learning_rate, iteration)
        writer.add_scalar('learning-rate vs samples', learning_rate,
744
                          args.consumed_train_samples)
mohammad's avatar
mohammad committed
745
746
        writer.add_scalar('batch-size', batch_size, iteration)
        writer.add_scalar('batch-size vs samples', batch_size,
747
                          args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
748
        for key in loss_dict:
mohammad's avatar
mohammad committed
749
750
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
751
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
752
        if args.fp16:
mohammad's avatar
mohammad committed
753
754
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
755
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
756
        timers.write(timers_to_log, writer, iteration,
mohammad's avatar
mohammad committed
757
                     normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
758
759
760

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
mohammad's avatar
mohammad committed
761
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
762
        if writer and torch.distributed.get_rank() == 0:
mohammad's avatar
mohammad committed
763
764
            writer.add_scalar('iteration-time',
                              elapsed_time_per_iteration, iteration)
765
766
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
767
        log_string += ' consumed samples: {:12d} |'.format(
768
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
769
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
770
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
771
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
772
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
773
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
774
775
776
777
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
778
779
780
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
781
782
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
mohammad's avatar
mohammad committed
783
784
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
785
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
786
787
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
788
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
789
        total_loss_dict[nan_iters_key] = 0
790
        print_rank_last(log_string)
791
792
793
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
794
795
796
797
798
799
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


800
801
802
803
804
805
806
807
808
809
810
811
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
    timers('save checkpoint').start()
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
    timers('save checkpoint').stop()
    timers.log(['save checkpoint'])


812
def train(forward_step_func, model, optimizer, lr_scheduler,
813
          train_data_iterator, valid_data_iterator):
814
    """Train the model function."""
Mohammad's avatar
Mohammad committed
815
816
    args = get_args()
    timers = get_timers()
817

818
819
820
    # Write args to tensorboard
    write_args_to_tensorboard()

821
822
823
824
825
826
827
828
829
830
    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
831
    print_datetime('before the start of training step')
832
833
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
834
        update_num_microbatches(args.consumed_train_samples)
835
836
837
838
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
839
                                             lr_scheduler)
840
        iteration += 1
841
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
842
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
843
                                       get_num_microbatches()
844
845

        # Logging.
Mohammad's avatar
Mohammad committed
846
847
848
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
849
850
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
851
                                          iteration, loss_scale,
mohammad's avatar
mohammad committed
852
                                          report_memory_flag, skipped_iter)
853
854

        # Autoresume
855
856
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
857
            check_adlr_autoresume_termination(iteration, model, optimizer,
858
                                              lr_scheduler)
859
860
861
862
863
864

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
865
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
866
                                       iteration, False)
867

868
869
870
871
872
873
874
875
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
892
        if args.exit_interval and iteration % args.exit_interval == 0:
893
894
895
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
896
            torch.distributed.barrier()
897
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
898
            sys.exit()
899

900

mohammad's avatar
mohammad committed
901
    return iteration
902
903


Mohammad's avatar
Mohammad committed
904
def evaluate(forward_step_func, data_iterator, model, verbose=False):
905
    """Evaluation."""
Mohammad's avatar
Mohammad committed
906
    args = get_args()
907
908
909
910
911
912
913
914
915
916
917
918
919

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
920

mohammad's avatar
mohammad committed
921
            for _ in range(get_num_microbatches()):
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
946

947
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
948
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
949
                                           * get_num_microbatches()
950
951
952
953
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
954
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
955
956
957
958
959

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
960
                               iteration, verbose=False):
961
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
962
963
964
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
965
966
967
968
969
970
971
972
973
974
975
976
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
977
978
979
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
980
981


982
983
984
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
985
    args = get_args()
986

987
988
989
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
990
991
992

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
993
994
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
995
        args.consumed_train_samples = args.iteration * args.global_batch_size
996
    if args.iteration > 0 and args.consumed_valid_samples == 0:
997
998
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
999
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
1000
            args.eval_iters * args.global_batch_size
1001

1002
    # Data loader only on rank 0 of each model parallel group.
1003
    if mpu.get_tensor_model_parallel_rank() == 0:
1004
1005

        # Number of train/valid/test samples.
1006
1007
1008
1009
1010
1011
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
1012
        test_iters = args.eval_iters
1013
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
1014
1015
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
1026
1027
1028
1029
1030
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
1044
1045
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
1046
1047
1048
1049
1050
1051
1052
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
1053
1054
1055
    else:
        train_data_iterator = None

1056
1057
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
1058
    else:
1059
        valid_data_iterator = None
1060

1061
1062
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
1063
1064
1065
    else:
        test_data_iterator = None

1066
    return train_data_iterator, valid_data_iterator, test_data_iterator