text_generation_utils.py 16.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Utilities for generating text."""
17

18
import copy
Mohammad's avatar
Mohammad committed
19
20
21
22
import json
import os
import time

23
24
25
import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
26
27
28
from megatron import get_args
from megatron import get_tokenizer
from megatron import mpu
29
from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model
Jared Casper's avatar
Jared Casper committed
30
from megatron.p2p_communication import recv_forward, send_forward
31

32
33
34
35
36
# These are needed to unwrap the model, would be nice to put these in megatron.utils if possible?
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module

37
38
39
40
def get_batch(context_tokens):
    """Generate batch from context tokens."""
    args = get_args()
    tokenizer = get_tokenizer()
41

42
    # Move to GPU.
43
44
    tokens = context_tokens.contiguous().cuda()
    
45
46
    # Get the attention mask and postition ids.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
47
        tokens,
48
        tokenizer.eod,
49
        args.reset_position_ids,
50
        args.reset_attention_mask,
51
        args.eod_mask_loss)
52

53
54
    return tokens, attention_mask, position_ids

55

56
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
57
58
59
60
    """ This function has been mostly taken from huggingface conversational
     ai code at
         https://medium.com/huggingface/how-to-build-a-state-of-the-art-
              conversational-ai-with-transfer-learning-2d818ac26313 """
61
62

    if top_k > 0:
63
64
        # Remove all tokens with a probability less than the
        # last token of the top-k
65
66
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
67

68
    if top_p > 0.0:
69
70
71
72
73
        # Cconvert to 1D
        sorted_logits, sorted_indices = torch.sort(
            logits, descending=True, dim=-1)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1),
                                        dim=-1)
74
75
76

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
77
78
79
80
        # Shift the indices to the right to keep also the first token
        # above the threshold
        sorted_indices_to_remove[..., 1:] \
            = sorted_indices_to_remove[..., :-1].clone()
81
        sorted_indices_to_remove[..., 0] = 0
82
83
84
        for i in range(sorted_indices.size(0)):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
85

86
87
    return logits

88
def pad_batch(batch, pad_id, max_len):
89
    context_lengths = []
90
    max_context_length = max([len(tokens) for tokens in batch])
91
92
    for tokens in batch:
        context_length = len(tokens)
93
94
        if context_length < max_context_length + max_len:
            tokens.extend([pad_id] * (max_context_length + max_len - context_length))
95
96
97
        context_lengths.append(context_length)
    return batch, context_lengths

98
def tokenize_batch(sentences, max_len, add_BOS):
99
100
    args = get_args()
    tokenizer = get_tokenizer()
101
102
103
104
    if add_BOS:
        context_tokens = [[tokenizer.eod] + tokenizer.tokenize(s) for s in sentences]
    else:
        context_tokens = [tokenizer.tokenize(s) for s in sentences]
105
    context_tokens, context_lengths = pad_batch(context_tokens,
106
                                                tokenizer.eod, max_len)
107
108
109
110
    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
    context_length_tensor = torch.cuda.LongTensor(context_lengths)
    return context_tokens_tensor, context_length_tensor 

111
def send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, temperature):
112
113
114
115
    """
    Needs to be synced up with receive_generate_info
    """
    # Send the sizes of the tensors
116
117
    input_info = [context_tokens_tensor.size(0), context_tokens_tensor.size(1), tokens_to_generate, all_probs, temperature]
    input_info_tensor = torch.cuda.FloatTensor(input_info)
118
119
120
121
122
123
124
125
126
127
    torch.distributed.broadcast(input_info_tensor, 0)

    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)

def receive_generate_info():
    """
    Needs to be synced up with send_generate_info
    """
128
    input_info_tensor = torch.empty(5, dtype=torch.float32, device=torch.cuda.current_device())
129
    torch.distributed.broadcast(input_info_tensor, 0)
130
131
132
133
134
    batch_size = int(input_info_tensor[0].item())
    seq_len = int(input_info_tensor[1].item())
    tokens_to_generate = int(input_info_tensor[2].item())
    all_probs = int(input_info_tensor[3].item())
    temperature = float(input_info_tensor[4].item())
135
    
rprenger's avatar
rprenger committed
136
137
    context_length_tensor = torch.empty(batch_size, dtype=torch.int64, device=torch.cuda.current_device())
    context_tokens_tensor = torch.empty(batch_size, seq_len, dtype=torch.int64, device=torch.cuda.current_device())
138
139
140
141
142
    
    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)
    
143
    return context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs, temperature
144

145
def synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, temperature):
146
147
148
149
150
    context_length = context_length_tensor.min().item()
    tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)
    batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor,
                                                 context_length_tensor,
                                                 attention_mask, position_ids,
151
                                                 tokens_to_generate,
152
153
                                                 all_probs,
                                                 temperature=temperature)
rprenger's avatar
rprenger committed
154
    for tokens, lengths, output_logits, full_logits in batch_token_iterator:
155
        context_length += 1
rprenger's avatar
rprenger committed
156
157
158
159
160
                
    if mpu.is_pipeline_last_stage():
        src = mpu.get_pipeline_model_parallel_last_rank()
        group = mpu.get_embedding_group()
        torch.distributed.broadcast(output_logits, src, group)
rprenger's avatar
rprenger committed
161
162
163
164
165
        if all_probs:
            src = mpu.get_pipeline_model_parallel_last_rank()
            group = mpu.get_embedding_group()
            torch.distributed.broadcast(full_logits, src, group)

rprenger's avatar
rprenger committed
166
167
168
169
170
171
    else:
        if mpu.is_pipeline_first_stage():
            src = mpu.get_pipeline_model_parallel_last_rank()
            group = mpu.get_embedding_group()
            output_logits = torch.empty(tokens.size(0), context_length-1, dtype=torch.float32, device=torch.device("cuda"))
            torch.distributed.broadcast(output_logits, src, group)
rprenger's avatar
rprenger committed
172
173
            
            if all_probs:
174
                args = get_args()
rprenger's avatar
rprenger committed
175
176
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
177
                full_logits = torch.empty(tokens.size(0), context_length, args.padded_vocab_size, dtype=torch.float32, device=torch.device("cuda"))
rprenger's avatar
rprenger committed
178
                torch.distributed.broadcast(full_logits, src, group)
179
    if tokens is not None:
rprenger's avatar
rprenger committed
180
        return tokens[:, :context_length], output_logits, full_logits 
181

rprenger's avatar
rprenger committed
182
def generate(model, sentences=None, tokens_to_generate=0, all_probs=False, temperature=1.0, add_BOS=False):
183
    model.eval()
184
    if torch.distributed.get_rank() == 0:
185
        context_tokens_tensor, context_length_tensor = tokenize_batch(sentences, tokens_to_generate, add_BOS)
186
        send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, temperature)
187
    else:
188
        context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs, temperature = receive_generate_info()
189
190

    output = synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, temperature)
rprenger's avatar
rprenger committed
191
    if output is not None:
rprenger's avatar
rprenger committed
192
        decode_tokens, output_logits, full_logits = output
193
        
194
195
196
        args = get_args()
        tokenizer = get_tokenizer()
        resp_sentences = []
rprenger's avatar
rprenger committed
197
        resp_sentences_seg = []
198
199
200
        
        decode_tokens = decode_tokens.cpu().numpy().tolist()
        for decode_token in decode_tokens:
201
            resp_sentences.append(tokenizer.detokenize(decode_token))
rprenger's avatar
rprenger committed
202
203
204
205
206
207
208
209
            words = []
            for token in decode_token:
                word = tokenizer.tokenizer.decoder[token]
                word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode('utf-8', errors='replace')
                words.append(word)
            resp_sentences_seg.append(words)

        output_logits = output_logits.cpu().numpy().tolist()
rprenger's avatar
rprenger committed
210
211
        if all_probs:
            full_logits = full_logits.cpu().numpy().tolist()
212
       
213
        return resp_sentences, resp_sentences_seg, output_logits, full_logits, decode_tokens 
214

215
216
217
218
219
def generate_samples_eval(model, context, max_gen_length, eos_token_id):
    """
    This function is here to provide an a matching API for a legacy task
    This implementation hasn't been tested yet to make sure it matches
    """
220
    #assert False, "Implementation untested"
221
222
223
224
    args = get_args()
    args.eos_id = eos_token_id
    raw_text_len = len(context)
    resp_sentences = generate(model, [context], max_gen_length)
225
226
    if resp_sentences:
        return resp_sentences[0][raw_text_len:]
227
228

def switch(val1, val2, boolean):
229
    boolean = boolean.type_as(val1)
Mohammad's avatar
Mohammad committed
230
    return (1 - boolean) * val1 + boolean * val2
231

232

233
def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
234
235
                 set_inference_key_value_memory=False,
                 inference_max_sequence_len=None):
236

Jared Casper's avatar
Jared Casper committed
237
238
    # Hidden size changes when not using recompute, need to tell p2p_communicate
    # functions the correct size
239
240
241
    args = get_args()
    orig_seq_length = args.seq_length
    args.seq_length = tokens.shape[1]
242
    args.micro_batch_size = tokens.shape[0]
243

Jared Casper's avatar
Jared Casper committed
244
    input_tensor = recv_forward()
245
246

    # Forward pass through the model.
247
248
249
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    unwrapped_model.set_input_tensor(input_tensor)
250
251
252
253
254
    output_tensor = model(
        tokens, position_ids, attention_mask,
        tokentype_ids=tokentype_ids,
        set_inference_key_value_memory=set_inference_key_value_memory,
        inference_max_sequence_len=inference_max_sequence_len)
255

Jared Casper's avatar
Jared Casper committed
256
    send_forward(output_tensor)
257

258
    args.seq_length = orig_seq_length
259

260
261
262
    return output_tensor


263
264
def sample_sequence_batch(model, context_tokens, context_lengths,
                          attention_mask, position_ids,
265
                          tokens_to_generate, all_probs=False, type_ids=None, temperature=None):
266
267
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
268

269
270
271
    model.eval()
    with torch.no_grad():
        context_length = context_lengths.min().item()
272

Mostofa Patwary's avatar
Mostofa Patwary committed
273
274
        # added eos_id to support the function generate_samples_eval that passes
        # eos_id as an argument and needs termination when that id id found.
275
276
277
278
        if hasattr(args, 'eos_id'):
            eos_id = args.eos_id
        else:
            eos_id = tokenizer.eod
279
280
281
282
283
284

        counter = 0

        batch_size = context_tokens.size(0)
        is_done = torch.zeros([batch_size]).byte().cuda()
        tokens = context_tokens
rprenger's avatar
rprenger committed
285
        output_logits = None
286
       
287
288
        # Generate enough tokens for the longest sequence
        maxlen = tokens_to_generate + context_lengths.max().item() 
289
290
291
       
        if maxlen > args.seq_length:
            maxlen = args.seq_length
292
        
Neel Kant's avatar
Neel Kant committed
293
        lengths = torch.ones([batch_size]).long().cuda() * maxlen
Mohammad's avatar
Mohammad committed
294

295
        while context_length < maxlen:
296
297
            types2use = None
            if counter == 0:
298
299
                # Allocate memory for the entire context.
                set_inference_key_value_memory = True
300
301
302
303
                tokens2use = tokens[:, :context_length]
                positions2use = position_ids[:, :context_length]
                if type_ids is not None:
                    types2use = type_ids[:, :context_length]
304
            else:
305
306
                # Set this to false so the memory is not reallocated.
                set_inference_key_value_memory = False
307
308
309
310
311
312
                tokens2use = tokens[:, context_length - 1].view(
                    batch_size, -1)
                positions2use = position_ids[:, context_length - 1].view(
                    batch_size, -1)
                if type_ids is not None:
                    types2use = type_ids[:, context_length - 1].view(
313
                        batch_size, -1)
314
315
316
317
318
319
320
321
322
            
            output = forward_step(
                model, tokens2use,
                positions2use,
                attention_mask,
                set_inference_key_value_memory=set_inference_key_value_memory,
                inference_max_sequence_len=maxlen,
                tokentype_ids=types2use)

323
324
            if mpu.is_pipeline_last_stage():
                assert output is not None
325
                output = output.float()
326
                logits = output[:, -1].view(batch_size, -1).contiguous()
327
328
329
330
331

                if args.greedy:
                    prev = torch.argmax(logits, dim=-1).view(-1)
                else:
                    logits = logits.float()
332
                    logits /= temperature
333
334
335
336
337
338
                    logits = top_k_logits(logits, top_k=args.top_k,
                                          top_p=args.top_p)
                    log_probs = F.softmax(logits, dim=-1)
                    prev = torch.multinomial(log_probs, num_samples=1).view(-1)
                started = context_lengths <= context_length

339
340
341
342
                # Clamp the out of vocabulary tokens.
                tokenizer = get_tokenizer()
                prev = torch.clamp(prev, max=tokenizer.vocab_size - 1)

343
344
345
                new_tokens = switch(
                    tokens[:, context_length].view(-1), prev, started)
                tokens[:, context_length] = new_tokens
rprenger's avatar
rprenger committed
346
347
348
                
                if output_logits is None:
                    output_context = F.log_softmax(output[:, :context_length, :], 2)
349
                    indices = torch.unsqueeze(tokens[:, 1:context_length+1],2)
rprenger's avatar
rprenger committed
350
                    output_logits = torch.gather(output_context, 2, indices).squeeze(2)
rprenger's avatar
rprenger committed
351
352
                    if all_probs:
                        full_logits = output_context
rprenger's avatar
rprenger committed
353
                else:
rprenger's avatar
rprenger committed
354
                    output_context = F.log_softmax(output, 2)
rprenger's avatar
rprenger committed
355
                    indices = torch.unsqueeze(new_tokens,1).unsqueeze(2)
rprenger's avatar
rprenger committed
356
                    new_output_logits = torch.gather(output_context, 2, indices).squeeze(2)
rprenger's avatar
rprenger committed
357
358
359
                    
                    # TODO(rprenger) we're copying output_logits every time.  Should pre-allocate
                    output_logits = torch.cat([output_logits, new_output_logits],1)
rprenger's avatar
rprenger committed
360
361
                    if all_probs:
                        full_logits = torch.cat([full_logits, output_context], 1)
rprenger's avatar
rprenger committed
362
                
363
364
365
366
367
368
369
370
371
372
373
374
375
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
                torch.distributed.broadcast(new_tokens, src, group)

                done_token = (prev == eos_id).byte() & started.byte()
                just_finished = (done_token & ~is_done).bool()
                lengths[just_finished.view(-1)] = context_length
                is_done = is_done | done_token

                done = torch.all(is_done)
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
rprenger's avatar
rprenger committed
376
377
378
379
                if all_probs:
                    yield tokens, lengths, output_logits, full_logits
                else:
                    yield tokens, lengths, output_logits, None
380

381
            else:
382
383
384
385
386
387
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_last_rank()
                    group = mpu.get_embedding_group()
                    new_tokens = torch.empty_like(tokens[:, context_length])
                    torch.distributed.broadcast(new_tokens, src, group)
                    tokens[:, context_length] = new_tokens
rprenger's avatar
rprenger committed
388
                    yield tokens, None, None, None
389
                else:
rprenger's avatar
rprenger committed
390
                    yield None, None, None, None
391

392
393
394
395
                done = torch.cuda.ByteTensor([0])
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
396

397
398
            context_length += 1
            counter += 1
399
400
            if done:
                break