text_generation_utils.py 16.6 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Utilities for generating text."""
17

18
import copy
Mohammad's avatar
Mohammad committed
19
20
21
22
import json
import os
import time

23
24
25
import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
26
27
28
from megatron import get_args
from megatron import get_tokenizer
from megatron import mpu
29
from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model
Jared Casper's avatar
Jared Casper committed
30
from megatron.p2p_communication import recv_forward, send_forward
31

32
33
34
35
36
# These are needed to unwrap the model, would be nice to put these in megatron.utils if possible?
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module

37
38
39
40
def get_batch(context_tokens):
    """Generate batch from context tokens."""
    args = get_args()
    tokenizer = get_tokenizer()
41

42
    # Move to GPU.
43
44
    tokens = context_tokens.contiguous().cuda()
    
45
46
    # Get the attention mask and postition ids.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
47
        tokens,
48
        tokenizer.eod,
49
        args.reset_position_ids,
50
        args.reset_attention_mask,
51
        args.eod_mask_loss)
52

53
54
    return tokens, attention_mask, position_ids

55

56
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
57
58
59
60
    """ This function has been mostly taken from huggingface conversational
     ai code at
         https://medium.com/huggingface/how-to-build-a-state-of-the-art-
              conversational-ai-with-transfer-learning-2d818ac26313 """
61
62

    if top_k > 0:
63
64
        # Remove all tokens with a probability less than the
        # last token of the top-k
65
66
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
67

68
    if top_p > 0.0:
69
70
71
72
73
        # Cconvert to 1D
        sorted_logits, sorted_indices = torch.sort(
            logits, descending=True, dim=-1)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1),
                                        dim=-1)
74
75
76

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
77
78
79
80
        # Shift the indices to the right to keep also the first token
        # above the threshold
        sorted_indices_to_remove[..., 1:] \
            = sorted_indices_to_remove[..., :-1].clone()
81
        sorted_indices_to_remove[..., 0] = 0
82
83
84
        for i in range(sorted_indices.size(0)):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
85

86
87
    return logits

88
def pad_batch(batch, pad_id, max_len):
89
    context_lengths = []
90
    max_context_length = max([len(tokens) for tokens in batch])
91
92
    for tokens in batch:
        context_length = len(tokens)
93
94
        if context_length < max_context_length + max_len:
            tokens.extend([pad_id] * (max_context_length + max_len - context_length))
95
96
97
        context_lengths.append(context_length)
    return batch, context_lengths

98
def tokenize_batch(sentences, max_len, add_BOS):
99
100
    args = get_args()
    tokenizer = get_tokenizer()
101
102
103
104
    if add_BOS:
        context_tokens = [[tokenizer.eod] + tokenizer.tokenize(s) for s in sentences]
    else:
        context_tokens = [tokenizer.tokenize(s) for s in sentences]
105
    context_tokens, context_lengths = pad_batch(context_tokens,
106
                                                tokenizer.eod, max_len)
107
108
109
110
    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
    context_length_tensor = torch.cuda.LongTensor(context_lengths)
    return context_tokens_tensor, context_length_tensor 

111
def send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs):
112
113
114
115
    """
    Needs to be synced up with receive_generate_info
    """
    # Send the sizes of the tensors
116
    input_info = [context_tokens_tensor.size(0), context_tokens_tensor.size(1), tokens_to_generate, all_probs]
117
118
119
120
121
122
123
124
125
126
127
    input_info_tensor = torch.cuda.LongTensor(input_info)
    torch.distributed.broadcast(input_info_tensor, 0)

    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)

def receive_generate_info():
    """
    Needs to be synced up with send_generate_info
    """
rprenger's avatar
rprenger committed
128
    input_info_tensor = torch.empty(4, dtype=torch.int64, device=torch.cuda.current_device())
129
130
131
    torch.distributed.broadcast(input_info_tensor, 0)
    batch_size = input_info_tensor[0].item()
    seq_len = input_info_tensor[1].item()
132
    tokens_to_generate = input_info_tensor[2].item()
rprenger's avatar
rprenger committed
133
    all_probs = input_info_tensor[3].item()
134
    
rprenger's avatar
rprenger committed
135
136
    context_length_tensor = torch.empty(batch_size, dtype=torch.int64, device=torch.cuda.current_device())
    context_tokens_tensor = torch.empty(batch_size, seq_len, dtype=torch.int64, device=torch.cuda.current_device())
137
138
139
140
141
    
    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)
    
142
    return context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs
143

144
def synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs):
145
146
147
148
149
    context_length = context_length_tensor.min().item()
    tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)
    batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor,
                                                 context_length_tensor,
                                                 attention_mask, position_ids,
150
                                                 tokens_to_generate,
rprenger's avatar
rprenger committed
151
152
                                                 all_probs)
    for tokens, lengths, output_logits, full_logits in batch_token_iterator:
153
        context_length += 1
rprenger's avatar
rprenger committed
154
155
156
157
158
                
    if mpu.is_pipeline_last_stage():
        src = mpu.get_pipeline_model_parallel_last_rank()
        group = mpu.get_embedding_group()
        torch.distributed.broadcast(output_logits, src, group)
rprenger's avatar
rprenger committed
159
160
161
162
163
        if all_probs:
            src = mpu.get_pipeline_model_parallel_last_rank()
            group = mpu.get_embedding_group()
            torch.distributed.broadcast(full_logits, src, group)

rprenger's avatar
rprenger committed
164
165
166
167
168
169
    else:
        if mpu.is_pipeline_first_stage():
            src = mpu.get_pipeline_model_parallel_last_rank()
            group = mpu.get_embedding_group()
            output_logits = torch.empty(tokens.size(0), context_length-1, dtype=torch.float32, device=torch.device("cuda"))
            torch.distributed.broadcast(output_logits, src, group)
rprenger's avatar
rprenger committed
170
171
            
            if all_probs:
172
                args = get_args()
rprenger's avatar
rprenger committed
173
174
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
175
                full_logits = torch.empty(tokens.size(0), context_length, args.padded_vocab_size, dtype=torch.float32, device=torch.device("cuda"))
rprenger's avatar
rprenger committed
176
                torch.distributed.broadcast(full_logits, src, group)
177
    if tokens is not None:
rprenger's avatar
rprenger committed
178
        return tokens[:, :context_length], output_logits, full_logits 
179

180
def generate(model, sentences=None, tokens_to_generate=0, all_probs=False, add_BOS=False):
181
    model.eval()
182
    if torch.distributed.get_rank() == 0:
183
        context_tokens_tensor, context_length_tensor = tokenize_batch(sentences, tokens_to_generate, add_BOS)
184
        send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs)
185
    else:
186
        context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs = receive_generate_info()
187
    
188
    output = synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs)
rprenger's avatar
rprenger committed
189
    
rprenger's avatar
rprenger committed
190
    if output is not None:
rprenger's avatar
rprenger committed
191
        decode_tokens, output_logits, full_logits = output
192
        
193
194
195
        args = get_args()
        tokenizer = get_tokenizer()
        resp_sentences = []
rprenger's avatar
rprenger committed
196
        resp_sentences_seg = []
197
198
199
        
        decode_tokens = decode_tokens.cpu().numpy().tolist()
        for decode_token in decode_tokens:
200
            resp_sentences.append(tokenizer.detokenize(decode_token))
rprenger's avatar
rprenger committed
201
202
203
204
205
206
207
208
            words = []
            for token in decode_token:
                word = tokenizer.tokenizer.decoder[token]
                word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode('utf-8', errors='replace')
                words.append(word)
            resp_sentences_seg.append(words)

        output_logits = output_logits.cpu().numpy().tolist()
rprenger's avatar
rprenger committed
209
210
        if all_probs:
            full_logits = full_logits.cpu().numpy().tolist()
211
       
212
        return resp_sentences, resp_sentences_seg, output_logits, full_logits, decode_tokens 
213

214
215
216
217
218
def generate_samples_eval(model, context, max_gen_length, eos_token_id):
    """
    This function is here to provide an a matching API for a legacy task
    This implementation hasn't been tested yet to make sure it matches
    """
219
    #assert False, "Implementation untested"
220
221
222
223
    args = get_args()
    args.eos_id = eos_token_id
    raw_text_len = len(context)
    resp_sentences = generate(model, [context], max_gen_length)
224
225
    if resp_sentences:
        return resp_sentences[0][raw_text_len:]
226
227

def switch(val1, val2, boolean):
228
    boolean = boolean.type_as(val1)
Mohammad's avatar
Mohammad committed
229
    return (1 - boolean) * val1 + boolean * val2
230

231

232
233
234
235
def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
                 layer_past=None, get_key_value=None,
                 forward_method_parallel_output=None):

Jared Casper's avatar
Jared Casper committed
236
237
    # Hidden size changes when not using recompute, need to tell p2p_communicate
    # functions the correct size
238
239
240
    args = get_args()
    orig_seq_length = args.seq_length
    args.seq_length = tokens.shape[1]
241
    args.micro_batch_size = tokens.shape[0]
242

Jared Casper's avatar
Jared Casper committed
243
    input_tensor = recv_forward()
244
245

    # Forward pass through the model.
246
247
248
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    unwrapped_model.set_input_tensor(input_tensor)
Jared Casper's avatar
Jared Casper committed
249
250
251
252
253
    output_tensor = model(tokens, position_ids, attention_mask,
                          tokentype_ids=tokentype_ids,
                          layer_past=layer_past,
                          get_key_value=get_key_value,
                          forward_method_parallel_output=forward_method_parallel_output)
254
255
256
257

    if get_key_value:
        output_tensor, layer_past = output_tensor

Jared Casper's avatar
Jared Casper committed
258
    send_forward(output_tensor)
259

260
    args.seq_length = orig_seq_length
261
262
263
264
265
    if get_key_value:
        return output_tensor, layer_past
    return output_tensor


266
267
def sample_sequence_batch(model, context_tokens, context_lengths,
                          attention_mask, position_ids,
268
                          tokens_to_generate, all_probs=False, type_ids=None):
269
270
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
271

272
273
274
    model.eval()
    with torch.no_grad():
        context_length = context_lengths.min().item()
275

Mostofa Patwary's avatar
Mostofa Patwary committed
276
277
        # added eos_id to support the function generate_samples_eval that passes
        # eos_id as an argument and needs termination when that id id found.
278
279
280
281
        if hasattr(args, 'eos_id'):
            eos_id = args.eos_id
        else:
            eos_id = tokenizer.eod
282
283
284
285
286
287
288

        counter = 0

        layer_past = None
        batch_size = context_tokens.size(0)
        is_done = torch.zeros([batch_size]).byte().cuda()
        tokens = context_tokens
rprenger's avatar
rprenger committed
289
        output_logits = None
290
       
291
292
        # Generate enough tokens for the longest sequence
        maxlen = tokens_to_generate + context_lengths.max().item() 
293
294
295
       
        if maxlen > args.seq_length:
            maxlen = args.seq_length
296
        
Neel Kant's avatar
Neel Kant committed
297
        lengths = torch.ones([batch_size]).long().cuda() * maxlen
Mohammad's avatar
Mohammad committed
298

299
        while context_length < maxlen:
300
301
302
303
304
305
            types2use = None
            if counter == 0:
                tokens2use = tokens[:, :context_length]
                positions2use = position_ids[:, :context_length]
                if type_ids is not None:
                    types2use = type_ids[:, :context_length]
306
            else:
307
308
309
310
311
312
                tokens2use = tokens[:, context_length - 1].view(
                    batch_size, -1)
                positions2use = position_ids[:, context_length - 1].view(
                    batch_size, -1)
                if type_ids is not None:
                    types2use = type_ids[:, context_length - 1].view(
313
                        batch_size, -1)
314
315
316
317
318
319
320
321
322
323
            output, layer_past = forward_step(model, tokens2use,
                                              positions2use,
                                              attention_mask,
                                              layer_past=layer_past,
                                              get_key_value=True,
                                              tokentype_ids=types2use,
                                              forward_method_parallel_output=False)
            if mpu.is_pipeline_last_stage():
                assert output is not None
                logits = output[:, -1].view(batch_size, -1).contiguous()
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

            if mpu.is_pipeline_last_stage():
                if args.greedy:
                    prev = torch.argmax(logits, dim=-1).view(-1)
                else:
                    logits = logits.float()
                    logits /= args.temperature
                    logits = top_k_logits(logits, top_k=args.top_k,
                                          top_p=args.top_p)
                    log_probs = F.softmax(logits, dim=-1)
                    prev = torch.multinomial(log_probs, num_samples=1).view(-1)
                started = context_lengths <= context_length

                new_tokens = switch(
                    tokens[:, context_length].view(-1), prev, started)
                tokens[:, context_length] = new_tokens
rprenger's avatar
rprenger committed
340
341
342
                
                if output_logits is None:
                    output_context = F.log_softmax(output[:, :context_length, :], 2)
343
                    indices = torch.unsqueeze(tokens[:, 1:context_length+1],2)
rprenger's avatar
rprenger committed
344
                    output_logits = torch.gather(output_context, 2, indices).squeeze(2)
rprenger's avatar
rprenger committed
345
346
                    if all_probs:
                        full_logits = output_context
rprenger's avatar
rprenger committed
347
                else:
rprenger's avatar
rprenger committed
348
                    output_context = F.log_softmax(output, 2)
rprenger's avatar
rprenger committed
349
                    indices = torch.unsqueeze(new_tokens,1).unsqueeze(2)
rprenger's avatar
rprenger committed
350
                    new_output_logits = torch.gather(output_context, 2, indices).squeeze(2)
rprenger's avatar
rprenger committed
351
352
353
                    
                    # TODO(rprenger) we're copying output_logits every time.  Should pre-allocate
                    output_logits = torch.cat([output_logits, new_output_logits],1)
rprenger's avatar
rprenger committed
354
355
                    if all_probs:
                        full_logits = torch.cat([full_logits, output_context], 1)
rprenger's avatar
rprenger committed
356
                
357
358
359
360
361
362
363
364
365
366
367
368
369
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
                torch.distributed.broadcast(new_tokens, src, group)

                done_token = (prev == eos_id).byte() & started.byte()
                just_finished = (done_token & ~is_done).bool()
                lengths[just_finished.view(-1)] = context_length
                is_done = is_done | done_token

                done = torch.all(is_done)
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
rprenger's avatar
rprenger committed
370
371
372
373
                if all_probs:
                    yield tokens, lengths, output_logits, full_logits
                else:
                    yield tokens, lengths, output_logits, None
374

375
            else:
376
377
378
379
380
381
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_last_rank()
                    group = mpu.get_embedding_group()
                    new_tokens = torch.empty_like(tokens[:, context_length])
                    torch.distributed.broadcast(new_tokens, src, group)
                    tokens[:, context_length] = new_tokens
rprenger's avatar
rprenger committed
382
                    yield tokens, None, None, None
383
                else:
rprenger's avatar
rprenger committed
384
                    yield None, None, None, None
385

386
387
388
389
                done = torch.cuda.ByteTensor([0])
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
390

391
392
            context_length += 1
            counter += 1
393
394
            if done:
                break