Commit fffa0497 authored by Mohammad's avatar Mohammad
Browse files

sample generation runs

parent 752eeae3
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sample Generate GPT2"""
from megatron import get_args
from megatron import get_tokenizer
from megatron import print_rank_0
from megatron.checkpointing import load_checkpoint
from megatron.initialize import initialize_megatron
from megatron.model import GPT2Model
from megatron.training import get_model
from megatron.text_generation_utils import generate_and_write_samples_unconditional
from megatron.text_generation_utils import generate_samples_input_from_file
from megatron.text_generation_utils import generate_samples_interactive
def model_provider():
"""Build the model."""
print_rank_0('building GPT2 model ...')
model = GPT2Model(num_tokentypes=0, parallel_output=False)
return model
def add_text_generate_args(parser):
"""Text generation arguments."""
group = parser.add_argument_group(title='text generation')
group.add_argument("--temperature", type=float, default=1.0,
help='Sampling temperature.')
group.add_argument("--greedy", action='store_true', default=False,
help='Use greedy sampling.')
group.add_argument("--top_p", type=float, default=0.0,
help='Top p sampling.')
group.add_argument("--top_k", type=int, default=0,
help='Top k sampling.')
group.add_argument("--out-seq-length", type=int, default=1024,
help='Size of the output generated text.')
group.add_argument("--sample-input-file", type=str, default=None,
help='Get input from file instead of interactive mode, '
'each line is an input.')
group.add_argument("--sample-output-file", type=str, default=None,
help='Output file got from --sample-input-file')
group.add_argument("--num-samples", type=int, default=0,
help='Number of samples to generate unconditionally, '
'defaults to 0 and interactive conditional sampling')
group.add_argument("--genfile", type=str,
help='Output file when generating unconditionally')
group.add_argument("--recompute", action='store_true',
help='During generation recompute all attention '
'instead of using previously computed keys/values.')
return parser
def main():
"""Main program."""
initialize_megatron(extra_args_provider=add_text_generate_args,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})
# Set up model and load checkpoint.
model = get_model(model_provider)
args = get_args()
if args.load is not None:
_ = load_checkpoint(model, None, None)
# Generate samples.
if args.num_samples == 0:
args.batch_size = 1
if args.sample_input_file != "":
generate_samples_input_from_file(model)
else:
generate_samples_interactive(model)
else:
generate_and_write_samples_unconditional(model)
if __name__ == "__main__":
main()
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""Sample Generate GPT2""" """Utilities for generating text."""
import copy import copy
import json import json
...@@ -26,23 +26,9 @@ import torch.nn.functional as F ...@@ -26,23 +26,9 @@ import torch.nn.functional as F
from megatron import get_args from megatron import get_args
from megatron import get_tokenizer from megatron import get_tokenizer
from megatron import mpu from megatron import mpu
from megatron import print_rank_0
from megatron.checkpointing import load_checkpoint
from megatron.initialize import initialize_megatron
from megatron.model import GPT2Model
from megatron.training import get_model
from megatron.utils import get_ltor_masks_and_position_ids from megatron.utils import get_ltor_masks_and_position_ids
def model_provider():
"""Build the model."""
print_rank_0('building GPT2 model ...')
model = GPT2Model(num_tokentypes=0, parallel_output=False)
return model
def get_batch(context_tokens): def get_batch(context_tokens):
"""Generate batch from context tokens.""" """Generate batch from context tokens."""
args = get_args() args = get_args()
...@@ -280,7 +266,7 @@ def generate_samples_unconditional(model): ...@@ -280,7 +266,7 @@ def generate_samples_unconditional(model):
break break
def write_and_generate_samples_unconditional(model): def generate_and_write_samples_unconditional(model):
args = get_args() args = get_args()
assert args.genfile is not None assert args.genfile is not None
...@@ -423,61 +409,3 @@ def sample_sequence_batch(model, context_tokens, context_lengths, ...@@ -423,61 +409,3 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
yield tokens, lengths yield tokens, lengths
if done: if done:
break break
def add_text_generate_args(parser):
"""Text generation arguments."""
group = parser.add_argument_group(title='text generation')
group.add_argument("--temperature", type=float, default=1.0,
help='Sampling temperature.')
group.add_argument("--greedy", action='store_true', default=False,
help='Use greedy sampling.')
group.add_argument("--top_p", type=float, default=0.0,
help='Top p sampling.')
group.add_argument("--top_k", type=int, default=0,
help='Top k sampling.')
group.add_argument("--out-seq-length", type=int, default=1024,
help='Size of the output generated text.')
group.add_argument("--sample-input-file", type=str, default=None,
help='Get input from file instead of interactive mode, '
'each line is an input.')
group.add_argument("--sample-output-file", type=str, default=None,
help='Output file got from --sample-input-file')
group.add_argument("--num-samples", type=int, default=0,
help='Number of samples to generate unconditionally, '
'defaults to 0 and interactive conditional sampling')
group.add_argument("--genfile", type=str,
help='Output file when generating unconditionally')
group.add_argument("--recompute", action='store_true',
help='During generation recompute all attention '
'instead of using previously computed keys/values.')
return parser
def main():
"""Main program."""
initialize_megatron(extra_args_provider=add_text_generate_args,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})
# Set up model and load checkpoint.
model = get_model(model_provider)
args = get_args()
if args.load is not None:
_ = load_checkpoint(model, None, None)
# Generate samples.
if args.num_samples == 0:
args.batch_size = 1
if args.sample_input_file != "":
generate_samples_input_from_file(model)
else:
generate_samples_interactive(model)
else:
write_and_generate_samples_unconditional(model)
if __name__ == "__main__":
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment