Commit f7fe3865 authored by rprenger's avatar rprenger
Browse files

Clean up removing a lot of code. Works with curl people might still want a webpage or CLI

parent a9a3ef50
......@@ -19,22 +19,10 @@ from flask_restful import Resource, Api
from megatron import get_args
from megatron import get_tokenizer
from megatron import mpu
from megatron.text_generation_utils import pad_batch
from megatron.text_generation_utils import get_token_stream2
from megatron.text_generation_utils import tokenize_batch, get_token_stream
GENERATE_NUM = 0
def tokenize_batch(sentences):
args = get_args()
tokenizer = get_tokenizer()
context_tokens = [tokenizer.tokenize(s) for s in sentences]
context_tokens, context_lengths = pad_batch(context_tokens,
tokenizer.eod, args)
context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
context_length_tensor = torch.cuda.LongTensor(context_lengths)
return context_tokens_tensor, context_length_tensor
class MegatronGenerate(Resource):
def __init__(self, model):
self.model = model
......@@ -82,7 +70,7 @@ class MegatronGenerate(Resource):
@staticmethod
def do_generate(model, context_length_tensor, context_tokens_tensor, max_len):
token_stream = get_token_stream2(model, context_tokens_tensor, context_length_tensor)
token_stream = get_token_stream(model, context_tokens_tensor, context_length_tensor)
for i, decode_tokens in enumerate(token_stream):
if i == max_len-1:
break
......
......@@ -85,301 +85,7 @@ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
return logits
def generate_samples_input_from_file(model):
args = get_args()
tokenizer = get_tokenizer()
# Read the sample file and open the output file.
assert args.sample_input_file is not None, \
'sample input file is not provided.'
if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0:
fname = open(args.sample_input_file, "r")
all_raw_text = fname.readlines()
input_count = len(all_raw_text)
input_pos = 0
if args.sample_output_file is None:
sample_output_file = args.sample_input_file + ".out"
print('`sample-output-file` not specified, setting '
'it to {}'.format(sample_output_file))
else:
sample_output_file = args.sample_output_file
fname_out = open(sample_output_file, "w+")
context_count = 0
model.eval()
with torch.no_grad():
while True:
terminate_runs = 0
raw_text_len = 0
if mpu.is_pipeline_first_stage() \
and mpu.get_tensor_model_parallel_rank() == 0:
raw_text = all_raw_text[input_pos]
input_pos += 1
if input_pos == input_count:
raw_text = "stop"
raw_text_len = len(raw_text)
if "stop" in raw_text:
terminate_runs = 1
else:
context_tokens = tokenizer.tokenize(raw_text)
context_length = len(context_tokens)
if context_length >= (args.seq_length // 2):
print("\nContext length", context_length,
"\nPlease give smaller context (half of the "
"sequence length)!", flush=True)
continue
else:
context_tokens = tokenizer.tokenize("EMPTY TEXT")
context_length = 0
input_info = [terminate_runs, raw_text_len, context_length]
input_info_tensor = torch.cuda.LongTensor(input_info)
torch.distributed.all_reduce(input_info_tensor,
group=mpu.get_model_parallel_group())
terminate_runs = input_info_tensor[0].item()
raw_text_len = input_info_tensor[1].item()
context_length = input_info_tensor[2].item()
if terminate_runs == 1:
return
# For pipeline parallel we send context tokens to other stages
# so they get the lengths correct
if mpu.get_tensor_model_parallel_rank() == 0 \
and args.pipeline_model_parallel_size > 1:
if mpu.is_pipeline_first_stage():
src = mpu.get_pipeline_model_parallel_first_rank()
group = mpu.get_pipeline_model_parallel_group()
context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
torch.distributed.broadcast(context_tokens_tensor, src, group)
else:
src = mpu.get_pipeline_model_parallel_first_rank()
group = mpu.get_pipeline_model_parallel_group()
context_tokens_tensor = torch.empty(context_length,
dtype=torch.int64,
device=torch.device("cuda"))
torch.distributed.broadcast(context_tokens_tensor, src, group)
context_tokens = context_tokens_tensor.cpu().numpy().tolist()
token_stream = get_token_stream(model, [context_tokens])
for _, decode_tokens in enumerate(token_stream):
pass
if mpu.get_tensor_model_parallel_rank() == 0:
if mpu.is_pipeline_first_stage():
os.system('clear')
print("\nContext:", raw_text, flush=True)
fname_out.write("\nContext:")
fname_out.write(raw_text)
decode_tokens, _ = decode_tokens
decode_tokens = decode_tokens[0].cpu().numpy().tolist()
trim_decode_tokens = tokenizer.detokenize(
decode_tokens)[raw_text_len:]
print("\nMegatron-LM:", trim_decode_tokens, flush=True)
fname_out.write("\n\nMegatron-LM:")
fname_out.write(trim_decode_tokens)
fname_out.write("\n")
raw_text = None
context_count += 1
# We added this function to support the tasks evaluation such as squad
# and drop in the https://github.com/EleutherAI/lm-evaluation-harness
# codebase. The lm-evaluation-harness code can now call this function
# similar to their current generate function call used for gpt style models.
def generate_samples_eval(model, context, max_gen_length, eos_token_id):
# Generate samples for lm evaluation
# NEED TO THINK ABOUT eos token
args = get_args()
tokenizer = get_tokenizer()
raw_text_len = len(context)
model.eval()
context_tokens = tokenizer.tokenize(context)
args.out_seq_length = max_gen_length + len(context_tokens)
args.eos_id = eos_token_id
with torch.no_grad():
token_stream = get_token_stream(model, [context_tokens])
for counter, decode_tokens in enumerate(token_stream):
if counter == args.out_seq_length:
break
decode_tokens, _ = decode_tokens
decode_tokens = decode_tokens[0].cpu().numpy().tolist()
trim_decode_tokens = tokenizer.detokenize(
decode_tokens)[raw_text_len:]
return trim_decode_tokens
def generate_samples_interactive(model, print_frequency=24):
args = get_args()
tokenizer = get_tokenizer()
context_count = 0
model.eval()
with torch.no_grad():
while True:
terminate_runs = 0
raw_text_len = 0
if mpu.is_pipeline_first_stage() \
and mpu.get_tensor_model_parallel_rank() == 0:
os.system('clear')
raw_text = input("\nContext prompt (stop to exit) >>> ")
while not raw_text:
print('Prompt should not be empty!')
raw_text = input("\nContext prompt (stop to exit) >>> ")
raw_text_len = len(raw_text)
if "stop" in raw_text:
terminate_runs = 1
else:
context_tokens = tokenizer.tokenize(raw_text)
context_length = len(context_tokens)
if context_length >= (args.seq_length // 2):
print("\nContext length", context_length,
"\nPlease give smaller context (half of the "
"sequence length)!", flush=True)
continue
else:
context_tokens = tokenizer.tokenize("EMPTY TEXT")
context_length = 0
input_info = [terminate_runs, raw_text_len, context_length]
input_info_tensor = torch.cuda.LongTensor(input_info)
torch.distributed.all_reduce(input_info_tensor,
group=mpu.get_model_parallel_group())
terminate_runs = input_info_tensor[0].item()
raw_text_len = input_info_tensor[1].item()
context_length = input_info_tensor[2].item()
if terminate_runs == 1:
return
# For pipeline parallel we send context tokens to other stages
# so they get the lengths correct
if mpu.get_tensor_model_parallel_rank() == 0 \
and args.pipeline_model_parallel_size > 1:
if mpu.is_pipeline_first_stage():
src = mpu.get_pipeline_model_parallel_first_rank()
group = mpu.get_pipeline_model_parallel_group()
context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
torch.distributed.broadcast(context_tokens_tensor, src, group)
else:
src = mpu.get_pipeline_model_parallel_first_rank()
group = mpu.get_pipeline_model_parallel_group()
context_tokens_tensor = torch.empty(context_length,
dtype=torch.int64,
device=torch.device("cuda"))
torch.distributed.broadcast(context_tokens_tensor, src, group)
context_tokens = context_tokens_tensor.cpu().numpy().tolist()
token_stream = get_token_stream(model, [context_tokens])
for counter, decode_tokens in enumerate(token_stream):
if counter % print_frequency != 0 \
or mpu.get_tensor_model_parallel_rank() != 0 \
or not mpu.is_pipeline_first_stage():
continue
os.system('clear')
print("\nContext:", raw_text, flush=True)
decode_tokens, _ = decode_tokens
decode_tokens = decode_tokens[0].cpu().numpy().tolist()
trim_decode_tokens = tokenizer.detokenize(
decode_tokens)[raw_text_len:]
print("\nMegatron-LM:", trim_decode_tokens, flush=True)
if mpu.is_pipeline_first_stage() \
and mpu.get_tensor_model_parallel_rank() == 0:
os.system('clear')
print("\nContext:", raw_text, flush=True)
if not isinstance(decode_tokens, list):
decode_tokens, _ = decode_tokens
decode_tokens = decode_tokens[0].cpu().numpy().tolist()
trim_decode_tokens = tokenizer.detokenize(
decode_tokens)[raw_text_len:]
print("\nMegatron-LM:", trim_decode_tokens, flush=True)
input("\nPress Enter to continue >>>")
raw_text = None
context_count += 1
def generate_samples_unconditional(model):
args = get_args()
tokenizer = get_tokenizer()
num_samples = args.num_samples
context_tokens = [[tokenizer.eod]
for _ in range(args.micro_batch_size)]
ctr = 0
while True:
start_time = time.time()
for token_stream in get_token_stream(model,
copy.deepcopy(context_tokens)):
pass
if mpu.is_pipeline_last_stage() and \
mpu.get_tensor_model_parallel_rank() == 0:
if ctr % args.log_interval == 0:
print('Avg s/batch:',
(time.time() - start_time) / min(args.log_interval, ctr + 1))
start_time = time.time()
length = len(token_stream)
token_batch = token_stream[0].cpu().numpy().tolist()
length_batch = token_stream[1].cpu().numpy().tolist()
assert len(length_batch) == args.micro_batch_size
for tokens, length in zip(token_batch, length_batch):
tokens = tokens[1:length - 1]
text = tokenizer.detokenize(tokens)
is_finished = length < args.seq_length - 1
datum = {'text': text, 'length': length - 1, 'finished': is_finished}
yield datum
ctr += 1
if ctr >= num_samples:
break
else:
for _ in range(args.micro_batch_size):
yield None
ctr += 1
if ctr >= num_samples:
break
if ctr >= num_samples:
break
def generate_and_write_samples_unconditional(model):
args = get_args()
assert args.genfile is not None
with open(args.genfile, 'w') as f:
for datum in generate_samples_unconditional(model):
if mpu.is_pipeline_last_stage() and \
mpu.get_tensor_model_parallel_rank() == 0:
f.write(json.dumps(datum) + '\n')
def pad_batch(batch, pad_id, args):
context_lengths = []
for tokens in batch:
context_length = len(tokens)
......@@ -388,7 +94,17 @@ def pad_batch(batch, pad_id, args):
context_lengths.append(context_length)
return batch, context_lengths
def get_token_stream2(model, context_tokens_tensor, context_length_tensor):
def tokenize_batch(sentences):
args = get_args()
tokenizer = get_tokenizer()
context_tokens = [tokenizer.tokenize(s) for s in sentences]
context_tokens, context_lengths = pad_batch(context_tokens,
tokenizer.eod, args)
context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
context_length_tensor = torch.cuda.LongTensor(context_lengths)
return context_tokens_tensor, context_length_tensor
def get_token_stream(model, context_tokens_tensor, context_length_tensor):
context_length = context_length_tensor.min().item()
tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)
......@@ -402,27 +118,6 @@ def get_token_stream2(model, context_tokens_tensor, context_length_tensor):
else:
yield None, None
def get_token_stream(model, context_tokens):
args = get_args()
tokenizer = get_tokenizer()
context_tokens, context_lengths = pad_batch(context_tokens,
tokenizer.eod, args)
context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
context_length_tensor = torch.cuda.LongTensor(context_lengths)
torch.distributed.broadcast(context_length_tensor,
mpu.get_tensor_model_parallel_src_rank(),
group=mpu.get_tensor_model_parallel_group())
torch.distributed.broadcast(context_tokens_tensor,
mpu.get_tensor_model_parallel_src_rank(),
group=mpu.get_tensor_model_parallel_group())
return get_token_stream2(model, context_tokens_tensor, context_length_tensor)
def switch(val1, val2, boolean):
boolean = boolean.type_as(val1)
......
......@@ -25,8 +25,5 @@ python -m torch.distributed.launch $DISTRIBUTED_ARGS tools/run_api_server.py \
--temperature 1.0 \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--genfile unconditional_samples.json \
--num-samples 1 \
--top_p 0.9 \
--seed 42 \
--recompute
--seed 42
......@@ -27,16 +27,13 @@ from megatron.checkpointing import load_checkpoint
from megatron.initialize import initialize_megatron
from megatron.model import GPTModel
from megatron.training import get_model
from megatron.text_generation_utils import generate_samples_interactive
from megatron.api_server import MegatronServer
from megatron.api_server import MegatronGenerate
from megatron.api_server import MegatronServer, MegatronGenerate
import torch
def do_generate(model):
context_length_tensor, context_tokens_tensor, max_len = MegatronGenerate.receive_generate_info()
MegatronGenerate.do_generate(model, context_length_tensor, context_tokens_tensor, max_len)
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
......@@ -46,7 +43,6 @@ def model_provider(pre_process=True, post_process=True):
return model
def add_text_generate_args(parser):
"""Text generation arguments."""
group = parser.add_argument_group(title='text generation')
group.add_argument("--temperature", type=float, default=1.0,
......@@ -59,16 +55,6 @@ def add_text_generate_args(parser):
help='Top k sampling.')
group.add_argument("--out-seq-length", type=int, default=1024,
help='Size of the output generated text.')
group.add_argument("--sample-input-file", type=str, default=None,
help='Get input from file instead of interactive mode, '
'each line is an input.')
group.add_argument("--sample-output-file", type=str, default=None,
help='Output file got from --sample-input-file')
group.add_argument("--num-samples", type=int, default=0,
help='Number of samples to generate unconditionally, '
'defaults to 0 and interactive conditional sampling')
group.add_argument("--genfile", type=str,
help='Output file when generating unconditionally')
group.add_argument("--recompute", action='store_true',
help='During generation recompute all attention '
'instead of using previously computed keys/values.')
......@@ -103,6 +89,5 @@ if __name__ == "__main__":
torch.distributed.broadcast(choice,
mpu.get_tensor_model_parallel_src_rank(),
group=mpu.get_tensor_model_parallel_group())
print("got: "+str(choice[0].item()))
if choice[0].item() == 0:
do_generate(model)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment