Commit ddd36145 authored by rprenger's avatar rprenger
Browse files

Got the probs piped

parent 41df5ff7
......@@ -47,8 +47,20 @@ class MegatronGenerate(Resource):
if max_len < 1:
return "max_len must be an integer greater than 0"
all_probs = False
if "all_probs" in request.get_json():
all_probs = request.get_json()["all_probs"]
if not isinstance(all_probs, bool):
return "all_probs must be a boolean value"
MegatronGenerate.send_do_generate() # Tell other ranks we're doing generate
resp_sentences, resp_sentences_seg, output_logits = generate(self.model, sentences, max_len)
resp_sentences, resp_sentences_seg, output_logits, full_logits = generate(self.model, sentences, max_len, all_probs)
if all_probs:
return jsonify({"sentences": resp_sentences,
"segments": resp_sentences_seg,
"logits": output_logits,
"all_logits": full_logits})
return jsonify({"sentences": resp_sentences,
"segments": resp_sentences_seg,
"logits": output_logits})
......
......@@ -104,12 +104,12 @@ def tokenize_batch(sentences):
context_length_tensor = torch.cuda.LongTensor(context_lengths)
return context_tokens_tensor, context_length_tensor
def send_generate_info(context_tokens_tensor, context_length_tensor, max_len):
def send_generate_info(context_tokens_tensor, context_length_tensor, max_len, all_probs):
"""
Needs to be synced up with receive_generate_info
"""
# Send the sizes of the tensors
input_info = [context_tokens_tensor.size(0), context_tokens_tensor.size(1), max_len]
input_info = [context_tokens_tensor.size(0), context_tokens_tensor.size(1), max_len, all_probs]
input_info_tensor = torch.cuda.LongTensor(input_info)
torch.distributed.broadcast(input_info_tensor, 0)
......@@ -126,6 +126,7 @@ def receive_generate_info():
batch_size = input_info_tensor[0].item()
seq_len = input_info_tensor[1].item()
max_len = input_info_tensor[2].item()
all_probs = input_info_tensor[3].item()
context_length_tensor = torch.empty(batch_size, dtype=torch.int64, device=torch.device("cuda"))
context_tokens_tensor = torch.empty(batch_size, seq_len, dtype=torch.int64, device=torch.device("cuda"))
......@@ -134,46 +135,58 @@ def receive_generate_info():
torch.distributed.broadcast(context_length_tensor, 0)
torch.distributed.broadcast(context_tokens_tensor, 0)
return context_length_tensor, context_tokens_tensor, max_len
return context_length_tensor, context_tokens_tensor, max_len, all_probs
def synced_generate(model, context_tokens_tensor, context_length_tensor, max_len):
def synced_generate(model, context_tokens_tensor, context_length_tensor, max_len, all_probs):
context_length = context_length_tensor.min().item()
tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)
batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor,
context_length_tensor,
attention_mask, position_ids,
max_len)
for tokens, lengths, output_logits in batch_token_iterator:
max_len,
all_probs)
for tokens, lengths, output_logits, full_logits in batch_token_iterator:
context_length += 1
if mpu.is_pipeline_last_stage():
src = mpu.get_pipeline_model_parallel_last_rank()
group = mpu.get_embedding_group()
torch.distributed.broadcast(output_logits, src, group)
if all_probs:
src = mpu.get_pipeline_model_parallel_last_rank()
group = mpu.get_embedding_group()
torch.distributed.broadcast(full_logits, src, group)
else:
if mpu.is_pipeline_first_stage():
src = mpu.get_pipeline_model_parallel_last_rank()
group = mpu.get_embedding_group()
output_logits = torch.empty(tokens.size(0), context_length-1, dtype=torch.float32, device=torch.device("cuda"))
torch.distributed.broadcast(output_logits, src, group)
if all_probs:
src = mpu.get_pipeline_model_parallel_last_rank()
group = mpu.get_embedding_group()
full_logits = torch.empty(tokens.size(0), context_length, args.padded_vocab_size(), dtype=torch.float32, device=torch.device("cuda"))
torch.distributed.broadcast(full_logits, src, group)
if tokens is not None:
return tokens[:, :context_length], output_logits
return tokens[:, :context_length], output_logits, full_logits
def generate(model, sentences=None, max_len=0):
def generate(model, sentences=None, max_len=0, all_probs=False):
if torch.distributed.get_rank() == 0:
context_tokens_tensor, context_length_tensor = tokenize_batch(sentences)
c = context_length_tensor[0]
b = context_tokens_tensor.size(0)
start = time.time()
send_generate_info(context_tokens_tensor, context_length_tensor, max_len)
send_generate_info(context_tokens_tensor, context_length_tensor, max_len, all_probs)
else:
context_length_tensor, context_tokens_tensor, max_len = receive_generate_info()
context_length_tensor, context_tokens_tensor, max_len, all_probs = receive_generate_info()
output = synced_generate(model, context_tokens_tensor, context_length_tensor, max_len)
output = synced_generate(model, context_tokens_tensor, context_length_tensor, max_len, all_probs)
if output is not None:
decode_tokens, output_logits = output
decode_tokens, output_logits, full_logits = output
if torch.distributed.get_rank() == 0:
args = get_args()
......@@ -191,9 +204,12 @@ def generate(model, sentences=None, max_len=0):
resp_sentences_seg.append(words)
output_logits = output_logits.cpu().numpy().tolist()
if all_probs:
full_logits = full_logits.cpu().numpy().tolist()
end = time.time()
print(str(b)+","+str(c)+","+str(decode_tokens.size(1))+","+str(end-start), flush=True)
return resp_sentences, resp_sentences_seg, output_logits
return resp_sentences, resp_sentences_seg, output_logits, full_logits
def switch(val1, val2, boolean):
boolean = boolean.type_as(val1)
......@@ -236,7 +252,7 @@ def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
def sample_sequence_batch(model, context_tokens, context_lengths,
attention_mask, position_ids,
maxlen=None, type_ids=None):
maxlen=None, all_probs=False, type_ids=None):
args = get_args()
tokenizer = get_tokenizer()
......@@ -318,12 +334,17 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
output_context = F.log_softmax(output[:, :context_length, :], 2)
indices = torch.unsqueeze(tokens[:, 1:context_length+1],2)
output_logits = torch.gather(output_context, 2, indices).squeeze(2)
if all_probs:
full_logits = output_context
else:
output_context = F.log_softmax(output, 2)
indices = torch.unsqueeze(new_tokens,1).unsqueeze(2)
new_output_logits = torch.gather(F.log_softmax(output,2), 2, indices).squeeze(2)
new_output_logits = torch.gather(output_context, 2, indices).squeeze(2)
# TODO(rprenger) we're copying output_logits every time. Should pre-allocate
output_logits = torch.cat([output_logits, new_output_logits],1)
if all_probs:
full_logits = torch.cat([full_logits, output_context], 1)
#output_logits = torch.cat([output_logits, output[:,context_length,new_tokens]], 1)
src = mpu.get_pipeline_model_parallel_last_rank()
......@@ -339,7 +360,10 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
src = mpu.get_pipeline_model_parallel_last_rank()
group = mpu.get_pipeline_model_parallel_group()
torch.distributed.broadcast(done, src, group)
yield tokens, lengths, output_logits
if all_probs:
yield tokens, lengths, output_logits, full_logits
else:
yield tokens, lengths, output_logits, None
else:
if mpu.is_pipeline_first_stage():
......@@ -348,9 +372,9 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
new_tokens = torch.empty_like(tokens[:, context_length])
torch.distributed.broadcast(new_tokens, src, group)
tokens[:, context_length] = new_tokens
yield tokens, None, None
yield tokens, None, None, None
else:
yield None, None, None
yield None, None, None, None
done = torch.cuda.ByteTensor([0])
src = mpu.get_pipeline_model_parallel_last_rank()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment