text_generation_utils.py 16.4 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Utilities for generating text."""
17

18
import copy
Mohammad's avatar
Mohammad committed
19
20
21
22
import json
import os
import time

23
24
25
import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
26
27
28
from megatron import get_args
from megatron import get_tokenizer
from megatron import mpu
29
from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model
Jared Casper's avatar
Jared Casper committed
30
from megatron.p2p_communication import recv_forward, send_forward
31

32
33
34
35
36
# These are needed to unwrap the model, would be nice to put these in megatron.utils if possible?
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module

37
38
39
40
def get_batch(context_tokens):
    """Generate batch from context tokens."""
    args = get_args()
    tokenizer = get_tokenizer()
41

42
    # Move to GPU.
43
44
    tokens = context_tokens.contiguous().cuda()
    
45
46
    # Get the attention mask and postition ids.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
47
        tokens,
48
        tokenizer.eod,
49
        args.reset_position_ids,
50
        args.reset_attention_mask,
51
        args.eod_mask_loss)
52

53
54
    return tokens, attention_mask, position_ids

55

56
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
57
58
59
60
    """ This function has been mostly taken from huggingface conversational
     ai code at
         https://medium.com/huggingface/how-to-build-a-state-of-the-art-
              conversational-ai-with-transfer-learning-2d818ac26313 """
61
62

    if top_k > 0:
63
64
        # Remove all tokens with a probability less than the
        # last token of the top-k
65
66
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
67

68
    if top_p > 0.0:
69
70
71
72
73
        # Cconvert to 1D
        sorted_logits, sorted_indices = torch.sort(
            logits, descending=True, dim=-1)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1),
                                        dim=-1)
74
75
76

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
77
78
79
80
        # Shift the indices to the right to keep also the first token
        # above the threshold
        sorted_indices_to_remove[..., 1:] \
            = sorted_indices_to_remove[..., :-1].clone()
81
        sorted_indices_to_remove[..., 0] = 0
82
83
84
        for i in range(sorted_indices.size(0)):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
85

86
87
    return logits

88
def pad_batch(batch, pad_id, max_len):
89
    context_lengths = []
90
    max_context_length = max([len(tokens) for tokens in batch])
91
92
    for tokens in batch:
        context_length = len(tokens)
93
94
        if context_length < max_context_length + max_len:
            tokens.extend([pad_id] * (max_context_length + max_len - context_length))
95
96
97
        context_lengths.append(context_length)
    return batch, context_lengths

98
def tokenize_batch(sentences, max_len):
99
100
101
102
    args = get_args()
    tokenizer = get_tokenizer()
    context_tokens = [tokenizer.tokenize(s) for s in sentences]
    context_tokens, context_lengths = pad_batch(context_tokens,
103
                                                tokenizer.eod, max_len)
104
105
106
107
    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
    context_length_tensor = torch.cuda.LongTensor(context_lengths)
    return context_tokens_tensor, context_length_tensor 

108
def send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs):
109
110
111
112
    """
    Needs to be synced up with receive_generate_info
    """
    # Send the sizes of the tensors
113
    input_info = [context_tokens_tensor.size(0), context_tokens_tensor.size(1), tokens_to_generate, all_probs]
114
115
116
117
118
119
120
121
122
123
124
    input_info_tensor = torch.cuda.LongTensor(input_info)
    torch.distributed.broadcast(input_info_tensor, 0)

    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)

def receive_generate_info():
    """
    Needs to be synced up with send_generate_info
    """
rprenger's avatar
rprenger committed
125
    input_info_tensor = torch.empty(4, dtype=torch.int64, device=torch.cuda.current_device())
126
127
128
    torch.distributed.broadcast(input_info_tensor, 0)
    batch_size = input_info_tensor[0].item()
    seq_len = input_info_tensor[1].item()
129
    tokens_to_generate = input_info_tensor[2].item()
rprenger's avatar
rprenger committed
130
    all_probs = input_info_tensor[3].item()
131
    
rprenger's avatar
rprenger committed
132
133
    context_length_tensor = torch.empty(batch_size, dtype=torch.int64, device=torch.cuda.current_device())
    context_tokens_tensor = torch.empty(batch_size, seq_len, dtype=torch.int64, device=torch.cuda.current_device())
134
135
136
137
138
    
    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)
    
139
    return context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs
140

141
def synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs):
142
143
144
145
146
    context_length = context_length_tensor.min().item()
    tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)
    batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor,
                                                 context_length_tensor,
                                                 attention_mask, position_ids,
147
                                                 tokens_to_generate,
rprenger's avatar
rprenger committed
148
149
                                                 all_probs)
    for tokens, lengths, output_logits, full_logits in batch_token_iterator:
150
        context_length += 1
rprenger's avatar
rprenger committed
151
152
153
154
155
                
    if mpu.is_pipeline_last_stage():
        src = mpu.get_pipeline_model_parallel_last_rank()
        group = mpu.get_embedding_group()
        torch.distributed.broadcast(output_logits, src, group)
rprenger's avatar
rprenger committed
156
157
158
159
160
        if all_probs:
            src = mpu.get_pipeline_model_parallel_last_rank()
            group = mpu.get_embedding_group()
            torch.distributed.broadcast(full_logits, src, group)

rprenger's avatar
rprenger committed
161
162
163
164
165
166
    else:
        if mpu.is_pipeline_first_stage():
            src = mpu.get_pipeline_model_parallel_last_rank()
            group = mpu.get_embedding_group()
            output_logits = torch.empty(tokens.size(0), context_length-1, dtype=torch.float32, device=torch.device("cuda"))
            torch.distributed.broadcast(output_logits, src, group)
rprenger's avatar
rprenger committed
167
168
            
            if all_probs:
169
                args = get_args()
rprenger's avatar
rprenger committed
170
171
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
172
                full_logits = torch.empty(tokens.size(0), context_length, args.padded_vocab_size, dtype=torch.float32, device=torch.device("cuda"))
rprenger's avatar
rprenger committed
173
                torch.distributed.broadcast(full_logits, src, group)
174
    if tokens is not None:
rprenger's avatar
rprenger committed
175
        return tokens[:, :context_length], output_logits, full_logits 
176

177
def generate(model, sentences=None, tokens_to_generate=0, all_probs=False):
178
    model.eval()
179
    if torch.distributed.get_rank() == 0:
rprenger's avatar
rprenger committed
180
        context_tokens_tensor, context_length_tensor = tokenize_batch(sentences, tokens_to_generate)
181
        send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs)
182
    else:
183
        context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs = receive_generate_info()
184
    
185
    output = synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs)
rprenger's avatar
rprenger committed
186
    
rprenger's avatar
rprenger committed
187
    if output is not None:
rprenger's avatar
rprenger committed
188
        decode_tokens, output_logits, full_logits = output
189
        
190
191
192
        args = get_args()
        tokenizer = get_tokenizer()
        resp_sentences = []
rprenger's avatar
rprenger committed
193
        resp_sentences_seg = []
194
195
196
        
        decode_tokens = decode_tokens.cpu().numpy().tolist()
        for decode_token in decode_tokens:
197
            resp_sentences.append(tokenizer.detokenize(decode_token))
rprenger's avatar
rprenger committed
198
199
200
201
202
203
204
205
            words = []
            for token in decode_token:
                word = tokenizer.tokenizer.decoder[token]
                word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode('utf-8', errors='replace')
                words.append(word)
            resp_sentences_seg.append(words)

        output_logits = output_logits.cpu().numpy().tolist()
rprenger's avatar
rprenger committed
206
207
        if all_probs:
            full_logits = full_logits.cpu().numpy().tolist()
208
       
209
        return resp_sentences, resp_sentences_seg, output_logits, full_logits, decode_tokens 
210

211
212
213
214
215
def generate_samples_eval(model, context, max_gen_length, eos_token_id):
    """
    This function is here to provide an a matching API for a legacy task
    This implementation hasn't been tested yet to make sure it matches
    """
216
    #assert False, "Implementation untested"
217
218
219
220
    args = get_args()
    args.eos_id = eos_token_id
    raw_text_len = len(context)
    resp_sentences = generate(model, [context], max_gen_length)
221
222
    if resp_sentences:
        return resp_sentences[0][raw_text_len:]
223
224

def switch(val1, val2, boolean):
225
    boolean = boolean.type_as(val1)
Mohammad's avatar
Mohammad committed
226
    return (1 - boolean) * val1 + boolean * val2
227

228

229
230
231
232
def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
                 layer_past=None, get_key_value=None,
                 forward_method_parallel_output=None):

Jared Casper's avatar
Jared Casper committed
233
234
    # Hidden size changes when not using recompute, need to tell p2p_communicate
    # functions the correct size
235
236
237
    args = get_args()
    orig_seq_length = args.seq_length
    args.seq_length = tokens.shape[1]
238
    args.micro_batch_size = tokens.shape[0]
239

Jared Casper's avatar
Jared Casper committed
240
    input_tensor = recv_forward()
241
242

    # Forward pass through the model.
243
244
245
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    unwrapped_model.set_input_tensor(input_tensor)
Jared Casper's avatar
Jared Casper committed
246
247
248
249
250
    output_tensor = model(tokens, position_ids, attention_mask,
                          tokentype_ids=tokentype_ids,
                          layer_past=layer_past,
                          get_key_value=get_key_value,
                          forward_method_parallel_output=forward_method_parallel_output)
251
252
253
254

    if get_key_value:
        output_tensor, layer_past = output_tensor

Jared Casper's avatar
Jared Casper committed
255
    send_forward(output_tensor)
256

257
    args.seq_length = orig_seq_length
258
259
260
261
262
    if get_key_value:
        return output_tensor, layer_past
    return output_tensor


263
264
def sample_sequence_batch(model, context_tokens, context_lengths,
                          attention_mask, position_ids,
265
                          tokens_to_generate, all_probs=False, type_ids=None):
266
267
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
268

269
270
271
    model.eval()
    with torch.no_grad():
        context_length = context_lengths.min().item()
272

Mostofa Patwary's avatar
Mostofa Patwary committed
273
274
        # added eos_id to support the function generate_samples_eval that passes
        # eos_id as an argument and needs termination when that id id found.
275
276
277
278
        if hasattr(args, 'eos_id'):
            eos_id = args.eos_id
        else:
            eos_id = tokenizer.eod
279
280
281
282
283
284
285

        counter = 0

        layer_past = None
        batch_size = context_tokens.size(0)
        is_done = torch.zeros([batch_size]).byte().cuda()
        tokens = context_tokens
rprenger's avatar
rprenger committed
286
        output_logits = None
287
       
288
289
        # Generate enough tokens for the longest sequence
        maxlen = tokens_to_generate + context_lengths.max().item() 
290
291
292
       
        if maxlen > args.seq_length:
            maxlen = args.seq_length
293
        
Neel Kant's avatar
Neel Kant committed
294
        lengths = torch.ones([batch_size]).long().cuda() * maxlen
Mohammad's avatar
Mohammad committed
295

296
        while context_length < maxlen:
297
298
299
300
301
302
            types2use = None
            if counter == 0:
                tokens2use = tokens[:, :context_length]
                positions2use = position_ids[:, :context_length]
                if type_ids is not None:
                    types2use = type_ids[:, :context_length]
303
            else:
304
305
306
307
308
309
                tokens2use = tokens[:, context_length - 1].view(
                    batch_size, -1)
                positions2use = position_ids[:, context_length - 1].view(
                    batch_size, -1)
                if type_ids is not None:
                    types2use = type_ids[:, context_length - 1].view(
310
                        batch_size, -1)
311
312
313
314
315
316
317
318
319
320
            output, layer_past = forward_step(model, tokens2use,
                                              positions2use,
                                              attention_mask,
                                              layer_past=layer_past,
                                              get_key_value=True,
                                              tokentype_ids=types2use,
                                              forward_method_parallel_output=False)
            if mpu.is_pipeline_last_stage():
                assert output is not None
                logits = output[:, -1].view(batch_size, -1).contiguous()
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

            if mpu.is_pipeline_last_stage():
                if args.greedy:
                    prev = torch.argmax(logits, dim=-1).view(-1)
                else:
                    logits = logits.float()
                    logits /= args.temperature
                    logits = top_k_logits(logits, top_k=args.top_k,
                                          top_p=args.top_p)
                    log_probs = F.softmax(logits, dim=-1)
                    prev = torch.multinomial(log_probs, num_samples=1).view(-1)
                started = context_lengths <= context_length

                new_tokens = switch(
                    tokens[:, context_length].view(-1), prev, started)
                tokens[:, context_length] = new_tokens
rprenger's avatar
rprenger committed
337
338
339
                
                if output_logits is None:
                    output_context = F.log_softmax(output[:, :context_length, :], 2)
340
                    indices = torch.unsqueeze(tokens[:, 1:context_length+1],2)
rprenger's avatar
rprenger committed
341
                    output_logits = torch.gather(output_context, 2, indices).squeeze(2)
rprenger's avatar
rprenger committed
342
343
                    if all_probs:
                        full_logits = output_context
rprenger's avatar
rprenger committed
344
                else:
rprenger's avatar
rprenger committed
345
                    output_context = F.log_softmax(output, 2)
rprenger's avatar
rprenger committed
346
                    indices = torch.unsqueeze(new_tokens,1).unsqueeze(2)
rprenger's avatar
rprenger committed
347
                    new_output_logits = torch.gather(output_context, 2, indices).squeeze(2)
rprenger's avatar
rprenger committed
348
349
350
                    
                    # TODO(rprenger) we're copying output_logits every time.  Should pre-allocate
                    output_logits = torch.cat([output_logits, new_output_logits],1)
rprenger's avatar
rprenger committed
351
352
                    if all_probs:
                        full_logits = torch.cat([full_logits, output_context], 1)
rprenger's avatar
rprenger committed
353
                
354
355
356
357
358
359
360
361
362
363
364
365
366
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
                torch.distributed.broadcast(new_tokens, src, group)

                done_token = (prev == eos_id).byte() & started.byte()
                just_finished = (done_token & ~is_done).bool()
                lengths[just_finished.view(-1)] = context_length
                is_done = is_done | done_token

                done = torch.all(is_done)
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
rprenger's avatar
rprenger committed
367
368
369
370
                if all_probs:
                    yield tokens, lengths, output_logits, full_logits
                else:
                    yield tokens, lengths, output_logits, None
371

372
            else:
373
374
375
376
377
378
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_last_rank()
                    group = mpu.get_embedding_group()
                    new_tokens = torch.empty_like(tokens[:, context_length])
                    torch.distributed.broadcast(new_tokens, src, group)
                    tokens[:, context_length] = new_tokens
rprenger's avatar
rprenger committed
379
                    yield tokens, None, None, None
380
                else:
rprenger's avatar
rprenger committed
381
                    yield None, None, None, None
382

383
384
385
386
                done = torch.cuda.ByteTensor([0])
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
387

388
389
            context_length += 1
            counter += 1
390
391
            if done:
                break