Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Megatron-LM
Commits
69757f9a
Commit
69757f9a
authored
Sep 20, 2021
by
rprenger
Browse files
Adding the option for beginning of sentence token (and fixing hangs)
parent
b46482e8
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
24 additions
and
10 deletions
+24
-10
megatron/text_generation_server.py
megatron/text_generation_server.py
+17
-6
megatron/text_generation_utils.py
megatron/text_generation_utils.py
+7
-4
No files found.
megatron/text_generation_server.py
View file @
69757f9a
...
...
@@ -15,6 +15,7 @@
import
datetime
import
torch
import
json
import
threading
from
flask
import
Flask
,
request
,
jsonify
,
current_app
from
flask_restful
import
Resource
,
Api
from
megatron
import
get_args
...
...
@@ -22,11 +23,12 @@ from megatron import mpu
from
megatron.text_generation_utils
import
generate
GENERATE_NUM
=
0
sem
=
threading
.
Semaphore
()
class
MegatronGenerate
(
Resource
):
def
__init__
(
self
,
model
):
self
.
model
=
model
@
staticmethod
def
send_do_generate
():
choice
=
torch
.
cuda
.
LongTensor
([
GENERATE_NUM
])
...
...
@@ -37,6 +39,7 @@ class MegatronGenerate(Resource):
print
(
"request IP: "
+
str
(
request
.
remote_addr
))
print
(
json
.
dumps
(
request
.
get_json
()),
flush
=
True
)
print
(
"current time: "
,
datetime
.
datetime
.
now
())
sentences
=
request
.
get_json
()[
"sentences"
]
if
len
(
sentences
)
>
128
:
return
"Maximum number of sentences is 128"
,
400
...
...
@@ -54,9 +57,18 @@ class MegatronGenerate(Resource):
all_probs
=
request
.
get_json
()[
"all_probs"
]
if
not
isinstance
(
all_probs
,
bool
):
return
"all_probs must be a boolean value"
add_BOS
=
False
if
"add_BOS"
in
request
.
get_json
():
add_BOS
=
request
.
get_json
()[
"add_BOS"
]
if
not
isinstance
(
add_BOS
,
bool
):
return
"add_BOS must be a boolean value"
sem
.
acquire
()
# Need to get lock to keep multiple threads from hitting code
MegatronGenerate
.
send_do_generate
()
# Tell other ranks we're doing generate
resp_sentences
,
resp_sentences_seg
,
output_logits
,
full_logits
,
tokens
=
generate
(
self
.
model
,
sentences
,
tokens_to_generate
,
all_probs
)
resp_sentences
,
resp_sentences_seg
,
output_logits
,
full_logits
,
tokens
=
generate
(
self
.
model
,
sentences
,
tokens_to_generate
,
all_probs
,
add_BOS
)
sem
.
release
()
if
all_probs
:
return
jsonify
({
"sentences"
:
resp_sentences
,
"segments"
:
resp_sentences_seg
,
...
...
@@ -70,10 +82,9 @@ class MegatronGenerate(Resource):
class
MegatronServer
(
object
):
def
__init__
(
self
,
model
):
self
.
app
=
Flask
(
__name__
,
static_folder
=
'static'
,
static_url_path
=
''
)
self
.
app
.
config
[
'SEND_FILE_MAX_AGE_DEFAULT'
]
=
0
self
.
app
=
Flask
(
__name__
)
api
=
Api
(
self
.
app
)
api
.
add_resource
(
MegatronGenerate
,
'/generate'
,
resource_class_args
=
[
model
])
def
run
(
self
,
url
):
def
run
(
self
,
url
):
self
.
app
.
run
(
url
,
threaded
=
True
,
debug
=
False
)
megatron/text_generation_utils.py
View file @
69757f9a
...
...
@@ -95,10 +95,13 @@ def pad_batch(batch, pad_id, max_len):
context_lengths
.
append
(
context_length
)
return
batch
,
context_lengths
def
tokenize_batch
(
sentences
,
max_len
):
def
tokenize_batch
(
sentences
,
max_len
,
add_BOS
):
args
=
get_args
()
tokenizer
=
get_tokenizer
()
context_tokens
=
[
tokenizer
.
tokenize
(
s
)
for
s
in
sentences
]
if
add_BOS
:
context_tokens
=
[[
tokenizer
.
eod
]
+
tokenizer
.
tokenize
(
s
)
for
s
in
sentences
]
else
:
context_tokens
=
[
tokenizer
.
tokenize
(
s
)
for
s
in
sentences
]
context_tokens
,
context_lengths
=
pad_batch
(
context_tokens
,
tokenizer
.
eod
,
max_len
)
context_tokens_tensor
=
torch
.
cuda
.
LongTensor
(
context_tokens
)
...
...
@@ -174,10 +177,10 @@ def synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_
if
tokens
is
not
None
:
return
tokens
[:,
:
context_length
],
output_logits
,
full_logits
def
generate
(
model
,
sentences
=
None
,
tokens_to_generate
=
0
,
all_probs
=
False
):
def
generate
(
model
,
sentences
=
None
,
tokens_to_generate
=
0
,
all_probs
=
False
,
add_BOS
=
False
):
model
.
eval
()
if
torch
.
distributed
.
get_rank
()
==
0
:
context_tokens_tensor
,
context_length_tensor
=
tokenize_batch
(
sentences
,
tokens_to_generate
)
context_tokens_tensor
,
context_length_tensor
=
tokenize_batch
(
sentences
,
tokens_to_generate
,
add_BOS
)
send_generate_info
(
context_tokens_tensor
,
context_length_tensor
,
tokens_to_generate
,
all_probs
)
else
:
context_length_tensor
,
context_tokens_tensor
,
tokens_to_generate
,
all_probs
=
receive_generate_info
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment