text_generation_utils.py 13.1 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Utilities for generating text."""
17

18
import copy
Mohammad's avatar
Mohammad committed
19
20
21
22
import json
import os
import time

23
24
25
import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
26
27
28
from megatron import get_args
from megatron import get_tokenizer
from megatron import mpu
29
from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model
Jared Casper's avatar
Jared Casper committed
30
from megatron.p2p_communication import recv_forward, send_forward
31

32
33
34
35
36
# These are needed to unwrap the model, would be nice to put these in megatron.utils if possible?
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module

37
38
39
40
def get_batch(context_tokens):
    """Generate batch from context tokens."""
    args = get_args()
    tokenizer = get_tokenizer()
41

42
    # Move to GPU.
43
44
    tokens = context_tokens.contiguous().cuda()
    
45
46
    # Get the attention mask and postition ids.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
47
        tokens,
48
        tokenizer.eod,
49
        args.reset_position_ids,
50
        args.reset_attention_mask,
51
        args.eod_mask_loss)
52

53
54
    return tokens, attention_mask, position_ids

55

56
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
57
58
59
60
    """ This function has been mostly taken from huggingface conversational
     ai code at
         https://medium.com/huggingface/how-to-build-a-state-of-the-art-
              conversational-ai-with-transfer-learning-2d818ac26313 """
61
62

    if top_k > 0:
63
64
        # Remove all tokens with a probability less than the
        # last token of the top-k
65
66
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
67

68
    if top_p > 0.0:
69
70
71
72
73
        # Cconvert to 1D
        sorted_logits, sorted_indices = torch.sort(
            logits, descending=True, dim=-1)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1),
                                        dim=-1)
74
75
76

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
77
78
79
80
        # Shift the indices to the right to keep also the first token
        # above the threshold
        sorted_indices_to_remove[..., 1:] \
            = sorted_indices_to_remove[..., :-1].clone()
81
        sorted_indices_to_remove[..., 0] = 0
82
83
84
        for i in range(sorted_indices.size(0)):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
85

86
87
    return logits

Mohammad's avatar
Mohammad committed
88
def pad_batch(batch, pad_id, args):
89
90
91
92
    context_lengths = []
    for tokens in batch:
        context_length = len(tokens)
        if context_length < args.seq_length:
Neel Kant's avatar
Neel Kant committed
93
            tokens.extend([pad_id] * (args.seq_length - context_length))
94
95
96
        context_lengths.append(context_length)
    return batch, context_lengths

97
98
99
100
101
102
103
104
105
106
107
def tokenize_batch(sentences):
    args = get_args()
    tokenizer = get_tokenizer()
    context_tokens = [tokenizer.tokenize(s) for s in sentences]
    context_tokens, context_lengths = pad_batch(context_tokens,
                                                tokenizer.eod, args)
    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
    context_length_tensor = torch.cuda.LongTensor(context_lengths)
    return context_tokens_tensor, context_length_tensor 

def get_token_stream(model, context_tokens_tensor, context_length_tensor):
rprenger's avatar
rprenger committed
108
109
110
111
112
113
114
115
116
117
118
119
    context_length = context_length_tensor.min().item()
    tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)

    batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor,
                                                 context_length_tensor,
                                                 attention_mask, position_ids)
    for tokens, lengths in batch_token_iterator:
        context_length += 1
        if tokens is not None:
            yield tokens[:, :context_length], lengths
        else:
            yield None, None
120

Mohammad's avatar
Mohammad committed
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def send_generate_info(context_tokens_tensor, context_length_tensor, max_len):
    """
    Needs to be synced up with receive_generate_info
    """
    # Send the sizes of the tensors
    input_info = [context_tokens_tensor.size(0), context_tokens_tensor.size(1), max_len]
    input_info_tensor = torch.cuda.LongTensor(input_info)
    torch.distributed.broadcast(input_info_tensor, 0)

    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)

def receive_generate_info():
    """
    Needs to be synced up with send_generate_info
    """
    input_info_tensor = torch.empty(3, dtype=torch.int64, device=torch.device("cuda"))
    torch.distributed.broadcast(input_info_tensor, 0)
    batch_size = input_info_tensor[0].item()
    seq_len = input_info_tensor[1].item()
    max_len = input_info_tensor[2].item()
    
    context_length_tensor = torch.empty(batch_size, dtype=torch.int64, device=torch.device("cuda"))
    context_tokens_tensor = torch.empty(batch_size, seq_len, dtype=torch.int64, device=torch.device("cuda"))
    
    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)
    
    return context_length_tensor, context_tokens_tensor, max_len

def synced_generate(model, context_length_tensor, context_tokens_tensor, max_len):
    token_stream = get_token_stream(model, context_tokens_tensor, context_length_tensor)
    for i, decode_tokens in enumerate(token_stream):
        if i == max_len-1:
            break
        pass
    return decode_tokens

def generate(model, sentences=None, max_len=0):
    if torch.distributed.get_rank() == 0:
        context_tokens_tensor, context_length_tensor = tokenize_batch(sentences)
165
166
167
        c = context_length_tensor[0]
        b = context_tokens_tensor.size(0)
        start = time.time()
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        send_generate_info(context_tokens_tensor, context_length_tensor, max_len)
    else:
        context_length_tensor, context_tokens_tensor, max_len = receive_generate_info()
    
    decode_tokens = synced_generate(model, context_length_tensor, context_tokens_tensor, max_len)
    
    if torch.distributed.get_rank() == 0:
        args = get_args()
        tokenizer = get_tokenizer()
        decode_tokens, _ = decode_tokens
        resp_sentences = []
        for i in range(decode_tokens.size(0)):
            decode_token = decode_tokens[i,:].cpu().numpy().tolist()
            resp_sentences.append(tokenizer.detokenize(decode_token))
182
183
        end = time.time()
        print(str(b)+","+str(c)+","+str(decode_tokens.size(1))+","+str(end-start), flush=True)
184
185
186
        return resp_sentences

def switch(val1, val2, boolean):
187
    boolean = boolean.type_as(val1)
Mohammad's avatar
Mohammad committed
188
    return (1 - boolean) * val1 + boolean * val2
189

190

191
192
193
194
def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
                 layer_past=None, get_key_value=None,
                 forward_method_parallel_output=None):

Jared Casper's avatar
Jared Casper committed
195
196
    # Hidden size changes when not using recompute, need to tell p2p_communicate
    # functions the correct size
197
198
199
    args = get_args()
    orig_seq_length = args.seq_length
    args.seq_length = tokens.shape[1]
200
    args.micro_batch_size = tokens.shape[0]
201

Jared Casper's avatar
Jared Casper committed
202
    input_tensor = recv_forward()
203
204

    # Forward pass through the model.
205
206
207
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    unwrapped_model.set_input_tensor(input_tensor)
Jared Casper's avatar
Jared Casper committed
208
209
210
211
212
    output_tensor = model(tokens, position_ids, attention_mask,
                          tokentype_ids=tokentype_ids,
                          layer_past=layer_past,
                          get_key_value=get_key_value,
                          forward_method_parallel_output=forward_method_parallel_output)
213
214
215
216

    if get_key_value:
        output_tensor, layer_past = output_tensor

Jared Casper's avatar
Jared Casper committed
217
    send_forward(output_tensor)
218

219
    args.seq_length = orig_seq_length
220
221
222
223
224
    if get_key_value:
        return output_tensor, layer_past
    return output_tensor


225
226
227
228
229
def sample_sequence_batch(model, context_tokens, context_lengths,
                          attention_mask, position_ids,
                          maxlen=None, type_ids=None):
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
230

231
232
233
    model.eval()
    with torch.no_grad():
        context_length = context_lengths.min().item()
234

Mostofa Patwary's avatar
Mostofa Patwary committed
235
236
        # added eos_id to support the function generate_samples_eval that passes
        # eos_id as an argument and needs termination when that id id found.
237
238
239
240
        if hasattr(args, 'eos_id'):
            eos_id = args.eos_id
        else:
            eos_id = tokenizer.eod
241
242
243
244
245
246
247
248
249
250
251
252
253

        counter = 0
        org_context_length = context_length

        layer_past = None
        batch_size = context_tokens.size(0)
        is_done = torch.zeros([batch_size]).byte().cuda()
        tokens = context_tokens
        if maxlen is None:
            maxlen = args.seq_length - 1
            if maxlen > (org_context_length + args.out_seq_length):
                maxlen = org_context_length + args.out_seq_length

Neel Kant's avatar
Neel Kant committed
254
        lengths = torch.ones([batch_size]).long().cuda() * maxlen
Mohammad's avatar
Mohammad committed
255

256
        while context_length <= (maxlen):
257
258
259
260
261
262
            types2use = None
            if counter == 0:
                tokens2use = tokens[:, :context_length]
                positions2use = position_ids[:, :context_length]
                if type_ids is not None:
                    types2use = type_ids[:, :context_length]
263
            else:
264
265
266
267
268
269
                tokens2use = tokens[:, context_length - 1].view(
                    batch_size, -1)
                positions2use = position_ids[:, context_length - 1].view(
                    batch_size, -1)
                if type_ids is not None:
                    types2use = type_ids[:, context_length - 1].view(
270
                        batch_size, -1)
271
272
273
274
275
276
277
278
279
280
            output, layer_past = forward_step(model, tokens2use,
                                              positions2use,
                                              attention_mask,
                                              layer_past=layer_past,
                                              get_key_value=True,
                                              tokentype_ids=types2use,
                                              forward_method_parallel_output=False)
            if mpu.is_pipeline_last_stage():
                assert output is not None
                logits = output[:, -1].view(batch_size, -1).contiguous()
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

            if mpu.is_pipeline_last_stage():
                if args.greedy:
                    prev = torch.argmax(logits, dim=-1).view(-1)
                else:
                    logits = logits.float()
                    logits /= args.temperature
                    logits = top_k_logits(logits, top_k=args.top_k,
                                          top_p=args.top_p)
                    log_probs = F.softmax(logits, dim=-1)
                    prev = torch.multinomial(log_probs, num_samples=1).view(-1)

                started = context_lengths <= context_length

                new_tokens = switch(
                    tokens[:, context_length].view(-1), prev, started)
                tokens[:, context_length] = new_tokens
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
                torch.distributed.broadcast(new_tokens, src, group)

                done_token = (prev == eos_id).byte() & started.byte()
                just_finished = (done_token & ~is_done).bool()
                lengths[just_finished.view(-1)] = context_length
                is_done = is_done | done_token

                done = torch.all(is_done)
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
                yield tokens, lengths

313
            else:
314
315
316
317
318
319
320
321
322
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_last_rank()
                    group = mpu.get_embedding_group()
                    new_tokens = torch.empty_like(tokens[:, context_length])
                    torch.distributed.broadcast(new_tokens, src, group)
                    tokens[:, context_length] = new_tokens
                    yield tokens, None
                else:
                    yield None, None
323

324
325
326
327
                done = torch.cuda.ByteTensor([0])
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
328

329
330
            context_length += 1
            counter += 1
331
332
            if done:
                break