fused_csc_sampling_graph.cc 82.7 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file fused_csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
#include <graphbolt/cuda_sampling_ops.h>
8
#include <graphbolt/fused_csc_sampling_graph.h>
9
#include <graphbolt/serialize.h>
10
11
#include <torch/torch.h>

12
13
#include <algorithm>
#include <array>
14
15
#include <cmath>
#include <limits>
16
#include <numeric>
17
#include <tuple>
18
#include <type_traits>
19
#include <vector>
20

21
#include "./expand_indptr.h"
22
#include "./macro.h"
23
#include "./random.h"
24
#include "./shared_memory_helper.h"
25
#include "./utils.h"
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
namespace {
torch::optional<torch::Dict<std::string, torch::Tensor>> TensorizeDict(
    const torch::optional<torch::Dict<std::string, int64_t>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, torch::Tensor> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), torch::tensor(pair.value(), torch::kInt64));
  }
  return result;
}

torch::optional<torch::Dict<std::string, int64_t>> DetensorizeDict(
    const torch::optional<torch::Dict<std::string, torch::Tensor>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, int64_t> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), pair.value().item<int64_t>());
  }
  return result;
}
}  // namespace

53
54
55
namespace graphbolt {
namespace sampling {

56
57
static const int kPickleVersion = 6199;

58
FusedCSCSamplingGraph::FusedCSCSamplingGraph(
59
    const torch::Tensor& indptr, const torch::Tensor& indices,
60
    const torch::optional<torch::Tensor>& node_type_offset,
61
    const torch::optional<torch::Tensor>& type_per_edge,
62
63
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
64
    const torch::optional<NodeAttrMap>& node_attributes,
65
    const torch::optional<EdgeAttrMap>& edge_attributes)
66
    : indptr_(indptr),
67
      indices_(indices),
68
      node_type_offset_(node_type_offset),
69
      type_per_edge_(type_per_edge),
70
71
      node_type_to_id_(node_type_to_id),
      edge_type_to_id_(edge_type_to_id),
72
      node_attributes_(node_attributes),
73
      edge_attributes_(edge_attributes) {
74
75
76
77
78
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

79
c10::intrusive_ptr<FusedCSCSamplingGraph> FusedCSCSamplingGraph::Create(
80
    const torch::Tensor& indptr, const torch::Tensor& indices,
81
    const torch::optional<torch::Tensor>& node_type_offset,
82
    const torch::optional<torch::Tensor>& type_per_edge,
83
84
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
85
    const torch::optional<NodeAttrMap>& node_attributes,
86
    const torch::optional<EdgeAttrMap>& edge_attributes) {
87
88
89
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
90
91
92
93
    TORCH_CHECK(node_type_to_id.has_value());
    TORCH_CHECK(
        offset.size(0) ==
        static_cast<int64_t>(node_type_to_id.value().size() + 1));
94
95
96
97
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
98
    TORCH_CHECK(edge_type_to_id.has_value());
99
  }
100
101
  if (node_attributes.has_value()) {
    for (const auto& pair : node_attributes.value()) {
102
103
104
105
106
107
      TORCH_CHECK(
          pair.value().size(0) == indptr.size(0) - 1,
          "Expected node_attribute.size(0) and num_nodes to be equal, "
          "but node_attribute.size(0) was ",
          pair.value().size(0), ", and num_nodes was ", indptr.size(0) - 1,
          ".");
108
109
    }
  }
110
111
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
112
113
114
115
116
      TORCH_CHECK(
          pair.value().size(0) == indices.size(0),
          "Expected edge_attribute.size(0) and num_edges to be equal, "
          "but edge_attribute.size(0) was ",
          pair.value().size(0), ", and num_edges was ", indices.size(0), ".");
117
118
    }
  }
119
  return c10::make_intrusive<FusedCSCSamplingGraph>(
120
      indptr, indices, node_type_offset, type_per_edge, node_type_to_id,
121
      edge_type_to_id, node_attributes, edge_attributes);
122
123
}

124
void FusedCSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
125
  const int64_t magic_num =
126
      read_from_archive<int64_t>(archive, "FusedCSCSamplingGraph/magic_num");
127
128
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
129
130
      "Magic numbers mismatch when loading FusedCSCSamplingGraph.");
  indptr_ =
131
132
133
134
135
136
137
      read_from_archive<torch::Tensor>(archive, "FusedCSCSamplingGraph/indptr");
  indices_ = read_from_archive<torch::Tensor>(
      archive, "FusedCSCSamplingGraph/indices");
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_offset")) {
    node_type_offset_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/node_type_offset");
138
  }
139
140
141
142
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_type_per_edge")) {
    type_per_edge_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/type_per_edge");
143
  }
144

145
146
147
148
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_to_id")) {
    node_type_to_id_ = read_from_archive<NodeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/node_type_to_id");
149
150
  }

151
152
153
154
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_type_to_id")) {
    edge_type_to_id_ = read_from_archive<EdgeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/edge_type_to_id");
155
156
  }

157
158
159
160
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_attributes")) {
    node_attributes_ = read_from_archive<NodeAttrMap>(
        archive, "FusedCSCSamplingGraph/node_attributes");
161
  }
162
163
164
165
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_attributes")) {
    edge_attributes_ = read_from_archive<EdgeAttrMap>(
        archive, "FusedCSCSamplingGraph/edge_attributes");
166
  }
167
168
}

169
170
171
172
173
174
void FusedCSCSamplingGraph::Save(
    torch::serialize::OutputArchive& archive) const {
  archive.write(
      "FusedCSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
  archive.write("FusedCSCSamplingGraph/indptr", indptr_);
  archive.write("FusedCSCSamplingGraph/indices", indices_);
175
  archive.write(
176
177
      "FusedCSCSamplingGraph/has_node_type_offset",
      node_type_offset_.has_value());
178
179
  if (node_type_offset_) {
    archive.write(
180
        "FusedCSCSamplingGraph/node_type_offset", node_type_offset_.value());
181
182
  }
  archive.write(
183
      "FusedCSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
184
  if (type_per_edge_) {
185
186
    archive.write(
        "FusedCSCSamplingGraph/type_per_edge", type_per_edge_.value());
187
  }
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  archive.write(
      "FusedCSCSamplingGraph/has_node_type_to_id",
      node_type_to_id_.has_value());
  if (node_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/node_type_to_id", node_type_to_id_.value());
  }
  archive.write(
      "FusedCSCSamplingGraph/has_edge_type_to_id",
      edge_type_to_id_.has_value());
  if (edge_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/edge_type_to_id", edge_type_to_id_.value());
  }
202
203
204
205
206
207
208
  archive.write(
      "FusedCSCSamplingGraph/has_node_attributes",
      node_attributes_.has_value());
  if (node_attributes_) {
    archive.write(
        "FusedCSCSamplingGraph/node_attributes", node_attributes_.value());
  }
209
  archive.write(
210
211
      "FusedCSCSamplingGraph/has_edge_attributes",
      edge_attributes_.has_value());
212
  if (edge_attributes_) {
213
214
    archive.write(
        "FusedCSCSamplingGraph/edge_attributes", edge_attributes_.value());
215
  }
216
217
}

218
void FusedCSCSamplingGraph::SetState(
219
220
221
222
223
224
225
226
227
    const torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>&
        state) {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  const auto& independent_tensors = state.at("independent_tensors");
  TORCH_CHECK(
      independent_tensors.at("version_number")
          .equal(torch::tensor({kPickleVersion})),
228
      "Version number mismatches when loading pickled FusedCSCSamplingGraph.")
229
230
231
232
233
234
235
236
237
  indptr_ = independent_tensors.at("indptr");
  indices_ = independent_tensors.at("indices");
  if (independent_tensors.find("node_type_offset") !=
      independent_tensors.end()) {
    node_type_offset_ = independent_tensors.at("node_type_offset");
  }
  if (independent_tensors.find("type_per_edge") != independent_tensors.end()) {
    type_per_edge_ = independent_tensors.at("type_per_edge");
  }
238
239
240
241
242
243
  if (state.find("node_type_to_id") != state.end()) {
    node_type_to_id_ = DetensorizeDict(state.at("node_type_to_id"));
  }
  if (state.find("edge_type_to_id") != state.end()) {
    edge_type_to_id_ = DetensorizeDict(state.at("edge_type_to_id"));
  }
244
245
246
  if (state.find("node_attributes") != state.end()) {
    node_attributes_ = state.at("node_attributes");
  }
247
248
249
250
251
252
  if (state.find("edge_attributes") != state.end()) {
    edge_attributes_ = state.at("edge_attributes");
  }
}

torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>
253
FusedCSCSamplingGraph::GetState() const {
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>> state;
  torch::Dict<std::string, torch::Tensor> independent_tensors;
  // Serialization version number. It indicates the serialization method of the
  // whole state.
  independent_tensors.insert("version_number", torch::tensor({kPickleVersion}));
  independent_tensors.insert("indptr", indptr_);
  independent_tensors.insert("indices", indices_);
  if (node_type_offset_.has_value()) {
    independent_tensors.insert("node_type_offset", node_type_offset_.value());
  }
  if (type_per_edge_.has_value()) {
    independent_tensors.insert("type_per_edge", type_per_edge_.value());
  }
  state.insert("independent_tensors", independent_tensors);
271
272
273
274
275
276
  if (node_type_to_id_.has_value()) {
    state.insert("node_type_to_id", TensorizeDict(node_type_to_id_).value());
  }
  if (edge_type_to_id_.has_value()) {
    state.insert("edge_type_to_id", TensorizeDict(edge_type_to_id_).value());
  }
277
278
279
  if (node_attributes_.has_value()) {
    state.insert("node_attributes", node_attributes_.value());
  }
280
281
282
283
284
285
  if (edge_attributes_.has_value()) {
    state.insert("edge_attributes", edge_attributes_.value());
  }
  return state;
}

286
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
287
    const torch::Tensor& nodes) const {
288
  if (utils::is_on_gpu(nodes) && utils::is_accessible_from_gpu(indptr_) &&
289
290
291
292
293
294
295
      utils::is_accessible_from_gpu(indices_) &&
      (!type_per_edge_.has_value() ||
       utils::is_accessible_from_gpu(type_per_edge_.value()))) {
    GRAPHBOLT_DISPATCH_CUDA_ONLY_DEVICE(c10::DeviceType::CUDA, "InSubgraph", {
      return ops::InSubgraph(indptr_, indices_, nodes, type_per_edge_);
    });
  }
296
297
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
298
299
  const auto num_seeds = nodes.size(0);
  torch::Tensor indptr = torch::zeros({num_seeds + 1}, indptr_.dtype());
300
  std::vector<torch::Tensor> indices_arr(num_seeds);
301
302
  torch::Tensor original_column_node_ids =
      torch::zeros({num_seeds}, indptr_.dtype());
303
304
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
305

306
  AT_DISPATCH_INDEX_TYPES(
307
308
309
310
      indptr_.scalar_type(), "InSubgraph", ([&] {
        torch::parallel_for(
            0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
              for (size_t i = start; i < end; ++i) {
311
312
313
                const auto node_id = nodes[i].item<index_t>();
                const auto start_idx = indptr_[node_id].item<index_t>();
                const auto end_idx = indptr_[node_id + 1].item<index_t>();
314
315
316
317
318
319
320
321
322
323
324
325
                indptr[i + 1] = end_idx - start_idx;
                original_column_node_ids[i] = node_id;
                indices_arr[i] = indices_.slice(0, start_idx, end_idx);
                edge_ids_arr[i] = torch::arange(start_idx, end_idx);
                if (type_per_edge_) {
                  type_per_edge_arr[i] =
                      type_per_edge_.value().slice(0, start_idx, end_idx);
                }
              }
            });
      }));

326
  return c10::make_intrusive<FusedSampledSubgraph>(
327
      indptr.cumsum(0), torch::cat(indices_arr), original_column_node_ids,
328
329
330
331
332
333
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
350
351
352
353
354
 * @return A lambda function (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors) -> torch::Tensor, which takes seed offset (the offset of the
 * seed to sample), offset (the starting edge ID of the given node) and
 * num_neighbors (number of neighbors) as params and returns the pick number of
 * the given node.
355
356
357
358
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
359
360
    const torch::optional<torch::Tensor>& probs_or_mask,
    bool with_seed_offsets) {
361
362
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
363
364
365
366
  return [&fanouts, replace, &probs_or_mask, &type_per_edge, with_seed_offsets](
             int64_t offset, int64_t num_neighbors, auto num_picked_ptr,
             int64_t seed_index,
             const std::vector<int64_t>& etype_id_to_num_picked_offset) {
367
    if (fanouts.size() > 1) {
368
369
370
371
      NumPickByEtype(
          with_seed_offsets, fanouts, replace, type_per_edge.value(),
          probs_or_mask, offset, num_neighbors, num_picked_ptr, seed_index,
          etype_id_to_num_picked_offset);
372
    } else {
373
374
375
      NumPick(
          fanouts[0], replace, probs_or_mask, offset, num_neighbors,
          num_picked_ptr + seed_index);
376
377
378
379
    }
  };
}

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
auto GetTemporalNumPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&seed_timestamp, &csc_indices, &fanouts, replace, &probs_or_mask,
          &type_per_edge, &node_timestamp, &edge_timestamp](
             int64_t seed_offset, int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return TemporalNumPickByEtype(
          seed_timestamp, csc_indices, fanouts, replace, type_per_edge.value(),
          probs_or_mask, node_timestamp, edge_timestamp, seed_offset, offset,
          num_neighbors);
    } else {
      return TemporalNumPick(
          seed_timestamp, csc_indices, fanouts[0], replace, probs_or_mask,
          node_timestamp, edge_timestamp, seed_offset, offset, num_neighbors);
    }
  };
}

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
422
423
424
425
426
 * @return A lambda function: (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors, PickedType* picked_data_ptr) -> torch::Tensor, which takes
 * seed_offset (the offset of the seed to sample), offset (the starting edge ID
 * of the given node) and num_neighbors (number of neighbors) as params and puts
 * the picked neighbors at the address specified by picked_data_ptr.
427
 */
428
template <SamplerType S>
429
430
431
432
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
433
434
435
436
437
438
439
    const torch::optional<torch::Tensor>& probs_or_mask, bool with_seed_offsets,
    SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args,
          with_seed_offsets](
             int64_t offset, int64_t num_neighbors, auto picked_data_ptr,
             int64_t seed_offset, auto subgraph_indptr_ptr,
             const std::vector<int64_t>& etype_id_to_num_picked_offset) {
440
441
442
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
443
444
    if (fanouts.size() > 1) {
      return PickByEtype(
445
446
447
          with_seed_offsets, offset, num_neighbors, fanouts, replace, options,
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr,
          seed_offset, subgraph_indptr_ptr, etype_id_to_num_picked_offset);
448
    } else {
449
      int64_t num_sampled = Pick(
450
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
451
          args, picked_data_ptr + subgraph_indptr_ptr[seed_offset]);
452
453
454
455
      if (type_per_edge) {
        std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
      }
      return num_sampled;
456
457
458
459
    }
  };
}

460
template <SamplerType S>
461
462
463
464
465
466
467
auto GetTemporalPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args) {
  return
      [&seed_timestamp, &csc_indices, &fanouts, replace, &options,
       &type_per_edge, &probs_or_mask, &node_timestamp, &edge_timestamp, args](
          int64_t seed_offset, int64_t offset, int64_t num_neighbors,
          auto picked_data_ptr) {
        // If fanouts.size() > 1, perform sampling for each edge type of each
        // node; otherwise just sample once for each node with no regard of edge
        // types.
        if (fanouts.size() > 1) {
          return TemporalPickByEtype(
              seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
              fanouts, replace, options, type_per_edge.value(), probs_or_mask,
              node_timestamp, edge_timestamp, args, picked_data_ptr);
        } else {
          int64_t num_sampled = TemporalPick(
              seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
              fanouts[0], replace, options, probs_or_mask, node_timestamp,
              edge_timestamp, args, picked_data_ptr);
          if (type_per_edge.has_value()) {
            std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
          }
          return num_sampled;
        }
      };
493
494
}

495
template <TemporalOption Temporal, typename NumPickFn, typename PickFn>
496
497
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::SampleNeighborsImpl(
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    const torch::Tensor& seeds,
    torch::optional<std::vector<int64_t>>& seed_offsets,
    const std::vector<int64_t>& fanouts, bool return_eids,
    NumPickFn num_pick_fn, PickFn pick_fn) const {
  const int64_t num_seeds = seeds.size(0);
  const auto indptr_options = indptr_.options();

  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;
  torch::optional<torch::Tensor> edge_offsets = torch::nullopt;

  bool with_seed_offsets = seed_offsets.has_value();
515
516
  bool hetero_with_seed_offsets = with_seed_offsets && fanouts.size() > 1 &&
                                  Temporal == TemporalOption::NOT_TEMPORAL;
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

  // Get the number of edge types. If it's homo or if the size of fanouts is 1
  // (hetero graph but sampled as a homo graph), set num_etypes as 1.
  // In temporal sampling, this will not be used for now since the logic hasn't
  // been adopted for temporal sampling.
  const int64_t num_etypes =
      (edge_type_to_id_.has_value() && hetero_with_seed_offsets)
          ? edge_type_to_id_->size()
          : 1;
  std::vector<int64_t> etype_id_to_src_ntype_id(num_etypes);
  std::vector<int64_t> etype_id_to_dst_ntype_id(num_etypes);
  torch::optional<torch::Tensor> subgraph_indptr_substract = torch::nullopt;
  // The pick numbers are stored in a single tensor by the order of etype. Each
  // etype corresponds to a group of seeds whose ntype are the same as the
  // dst_type. `etype_id_to_num_picked_offset` indicates the beginning offset
  // where each etype's corresponding seeds' pick numbers are stored in the pick
  // number tensor.
  std::vector<int64_t> etype_id_to_num_picked_offset(num_etypes + 1);
  if (hetero_with_seed_offsets) {
    for (auto& etype_and_id : edge_type_to_id_.value()) {
      auto etype = etype_and_id.key();
      auto id = etype_and_id.value();
      auto [src_type, dst_type] = utils::parse_src_dst_ntype_from_etype(etype);
      auto dst_ntype_id = node_type_to_id_->at(dst_type);
      etype_id_to_src_ntype_id[id] = node_type_to_id_->at(src_type);
      etype_id_to_dst_ntype_id[id] = dst_ntype_id;
      etype_id_to_num_picked_offset[id + 1] =
          seed_offsets->at(dst_ntype_id + 1) - seed_offsets->at(dst_ntype_id) +
          1;
    }
    std::partial_sum(
        etype_id_to_num_picked_offset.begin(),
        etype_id_to_num_picked_offset.end(),
        etype_id_to_num_picked_offset.begin());
  } else {
    etype_id_to_dst_ntype_id[0] = 0;
    etype_id_to_num_picked_offset[1] = num_seeds + 1;
  }
  // `num_rows` indicates the length of `num_picked_neighbors_per_node`, which
  // is used for storing pick numbers. In non-temporal hetero sampling, it
  // equals to sum_{etype} #seeds with ntype=dst_type(etype). In homo sampling,
  // it equals to `num_seeds`.
  const int64_t num_rows = etype_id_to_num_picked_offset[num_etypes];
  torch::Tensor num_picked_neighbors_per_node =
561
562
      // Need to use zeros because all nodes don't have all etypes.
      torch::zeros({num_rows}, indptr_options);
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

  AT_DISPATCH_INDEX_TYPES(
      indptr_.scalar_type(), "SampleNeighborsImplWrappedWithIndptr", ([&] {
        using indptr_t = index_t;
        AT_DISPATCH_INDEX_TYPES(
            seeds.scalar_type(), "SampleNeighborsImplWrappedWithSeeds", ([&] {
              using seeds_t = index_t;
              const auto indptr_data = indptr_.data_ptr<indptr_t>();
              const auto num_picked_neighbors_data_ptr =
                  num_picked_neighbors_per_node.data_ptr<indptr_t>();
              num_picked_neighbors_data_ptr[0] = 0;
              const auto seeds_data_ptr = seeds.data_ptr<seeds_t>();

              // Step 1. Calculate pick number of each node.
              torch::parallel_for(
                  0, num_seeds, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = seeds_data_ptr[i];
                      TORCH_CHECK(
                          nid >= 0 && nid < NumNodes(),
                          "The seed nodes' IDs should fall within the range of "
                          "the graph's node IDs.");
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
                      if constexpr (Temporal == TemporalOption::TEMPORAL) {
                        num_picked_neighbors_data_ptr[i + 1] =
                            num_neighbors == 0
                                ? 0
                                : num_pick_fn(i, offset, num_neighbors);
                      } else {
                        const auto seed_type_id =
                            (hetero_with_seed_offsets)
                                ? std::upper_bound(
                                      seed_offsets->begin(),
                                      seed_offsets->end(), i) -
                                      seed_offsets->begin() - 1
                                : 0;
                        // `seed_index` indicates the index of the current
                        // seed within the group of seeds which have the same
                        // node type.
                        const auto seed_index =
                            (hetero_with_seed_offsets)
                                ? i - seed_offsets->at(seed_type_id)
                                : i;
                        num_pick_fn(
                            offset, num_neighbors,
                            num_picked_neighbors_data_ptr + 1, seed_index,
                            etype_id_to_num_picked_offset);
                      }
613
614
615
                    }
                  });

616
617
618
619
620
621
622
              // Step 2. Calculate prefix sum to get total length and offsets of
              // each node. It's also the indptr of the generated subgraph.
              subgraph_indptr = num_picked_neighbors_per_node.cumsum(
                  0, indptr_.scalar_type());
              auto subgraph_indptr_data_ptr =
                  subgraph_indptr.data_ptr<indptr_t>();

623
624
              if (hetero_with_seed_offsets) {
                torch::Tensor num_picked_offset_tensor =
625
626
627
628
629
630
631
                    torch::empty({num_etypes + 1}, indptr_options);
                const auto num_picked_offset_data_ptr =
                    num_picked_offset_tensor.data_ptr<indptr_t>();
                std::copy(
                    etype_id_to_num_picked_offset.begin(),
                    etype_id_to_num_picked_offset.end(),
                    num_picked_offset_data_ptr);
632
                torch::Tensor substract_offset =
633
                    torch::empty({num_etypes}, indptr_options);
634
635
636
                const auto substract_offset_data_ptr =
                    substract_offset.data_ptr<indptr_t>();
                for (auto i = 0; i < num_etypes; ++i) {
637
638
639
                  // Collect the total pick number subtract offsets.
                  substract_offset_data_ptr[i] = subgraph_indptr_data_ptr
                      [etype_id_to_num_picked_offset[i]];
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
                }
                subgraph_indptr_substract = ops::ExpandIndptr(
                    num_picked_offset_tensor, indptr_.scalar_type(),
                    substract_offset);
              }

              // When doing non-temporal hetero sampling, we generate an
              // edge_offsets tensor.
              if (hetero_with_seed_offsets) {
                edge_offsets = torch::empty({num_etypes + 1}, indptr_options);
                AT_DISPATCH_INTEGRAL_TYPES(
                    edge_offsets.value().scalar_type(), "CalculateEdgeOffsets",
                    ([&] {
                      auto edge_offsets_data_ptr =
                          edge_offsets.value().data_ptr<scalar_t>();
                      edge_offsets_data_ptr[0] = 0;
                      for (auto i = 0; i < num_etypes; ++i) {
                        edge_offsets_data_ptr[i + 1] = subgraph_indptr_data_ptr
                            [etype_id_to_num_picked_offset[i + 1] - 1];
                      }
                    }));
              }

              // Step 3. Allocate the tensor for picked neighbors.
              const auto total_length =
                  subgraph_indptr.data_ptr<indptr_t>()[num_rows - 1];
              picked_eids = torch::empty({total_length}, indptr_options);
              subgraph_indices =
                  torch::empty({total_length}, indices_.options());
              if (!hetero_with_seed_offsets && type_per_edge_.has_value()) {
                subgraph_type_per_edge = torch::empty(
                    {total_length}, type_per_edge_.value().options());
              }

              auto picked_eids_data_ptr = picked_eids.data_ptr<indptr_t>();
              torch::parallel_for(
                  0, num_seeds, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = seeds_data_ptr[i];
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
                      auto picked_number = 0;
                      const auto seed_type_id =
                          (hetero_with_seed_offsets)
                              ? std::upper_bound(
                                    seed_offsets->begin(), seed_offsets->end(),
                                    i) -
                                    seed_offsets->begin() - 1
                              : 0;
                      const auto seed_index =
                          (hetero_with_seed_offsets)
                              ? i - seed_offsets->at(seed_type_id)
                              : i;

                      // Step 4. Pick neighbors for each node.
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
                      if constexpr (Temporal == TemporalOption::TEMPORAL) {
                        picked_number = num_picked_neighbors_data_ptr[i + 1];
                        auto picked_offset = subgraph_indptr_data_ptr[i];
                        if (picked_number > 0) {
                          auto actual_picked_count = pick_fn(
                              i, offset, num_neighbors,
                              picked_eids_data_ptr + picked_offset);
                          TORCH_CHECK(
                              actual_picked_count == picked_number,
                              "Actual picked count doesn't match the calculated"
                              " pick number.");
                        }
                      } else {
                        picked_number = pick_fn(
                            offset, num_neighbors, picked_eids_data_ptr,
                            seed_index, subgraph_indptr_data_ptr,
                            etype_id_to_num_picked_offset);
                        if (!hetero_with_seed_offsets) {
                          TORCH_CHECK(
                              num_picked_neighbors_data_ptr[i + 1] ==
                                  picked_number,
                              "Actual picked count doesn't match the calculated"
                              " pick number.");
                        }
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
                      }

                      // Step 5. Calculate other attributes and return the
                      // subgraph.
                      if (picked_number > 0) {
                        AT_DISPATCH_INDEX_TYPES(
                            subgraph_indices.scalar_type(),
                            "IndexSelectSubgraphIndices", ([&] {
                              auto subgraph_indices_data_ptr =
                                  subgraph_indices.data_ptr<index_t>();
                              auto indices_data_ptr =
                                  indices_.data_ptr<index_t>();
                              for (auto i = 0; i < num_etypes; ++i) {
                                if (etype_id_to_dst_ntype_id[i] != seed_type_id)
                                  continue;
                                const auto indptr_offset =
                                    with_seed_offsets
                                        ? etype_id_to_num_picked_offset[i] +
                                              seed_index
                                        : seed_index;
                                const auto picked_begin =
                                    subgraph_indptr_data_ptr[indptr_offset];
                                const auto picked_end =
                                    subgraph_indptr_data_ptr[indptr_offset + 1];
                                for (auto j = picked_begin; j < picked_end;
                                     ++j) {
                                  subgraph_indices_data_ptr[j] =
                                      indices_data_ptr[picked_eids_data_ptr[j]];
                                  if (hetero_with_seed_offsets &&
                                      node_type_offset_.has_value()) {
                                    // Substract the node type offset from
                                    // subgraph indices. Assuming
                                    // node_type_offset has the same dtype as
                                    // indices.
                                    auto node_type_offset_data =
                                        node_type_offset_.value()
                                            .data_ptr<index_t>();
                                    subgraph_indices_data_ptr[j] -=
                                        node_type_offset_data
                                            [etype_id_to_src_ntype_id[i]];
                                  }
                                }
                              }
                            }));

                        if (!hetero_with_seed_offsets &&
                            type_per_edge_.has_value()) {
                          // When hetero graph is sampled as a homo graph, we
                          // still generate type_per_edge tensor for this
                          // situation.
                          AT_DISPATCH_INTEGRAL_TYPES(
                              subgraph_type_per_edge.value().scalar_type(),
                              "IndexSelectTypePerEdge", ([&] {
                                auto subgraph_type_per_edge_data_ptr =
                                    subgraph_type_per_edge.value()
                                        .data_ptr<scalar_t>();
                                auto type_per_edge_data_ptr =
                                    type_per_edge_.value().data_ptr<scalar_t>();
                                const auto picked_offset =
                                    subgraph_indptr_data_ptr[seed_index];
                                for (auto j = picked_offset;
                                     j < picked_offset + picked_number; ++j)
                                  subgraph_type_per_edge_data_ptr[j] =
                                      type_per_edge_data_ptr
                                          [picked_eids_data_ptr[j]];
                              }));
                        }
                      }
                    }
                  });
            }));
      }));

  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);

  if (subgraph_indptr_substract.has_value()) {
    subgraph_indptr -= subgraph_indptr_substract.value();
  }

  return c10::make_intrusive<FusedSampledSubgraph>(
      subgraph_indptr, subgraph_indices, seeds, torch::nullopt,
      subgraph_reverse_edge_ids, subgraph_type_per_edge, edge_offsets);
}

804
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::SampleNeighbors(
805
806
807
808
    torch::optional<torch::Tensor> seeds,
    torch::optional<std::vector<int64_t>> seed_offsets,
    const std::vector<int64_t>& fanouts, bool replace, bool layer,
    bool return_eids, torch::optional<std::string> probs_name,
809
810
    torch::optional<torch::Tensor> random_seed,
    double seed2_contribution) const {
811
812
  auto probs_or_mask = this->EdgeAttribute(probs_name);

813
814
  // If seeds does not have a value, then we expect all arguments to be resident
  // on the GPU. If seeds has a value, then we expect them to be accessible from
815
  // GPU. This is required for the dispatch to work when CUDA is not available.
816
  if (((!seeds.has_value() && utils::is_on_gpu(indptr_) &&
817
818
819
820
821
        utils::is_on_gpu(indices_) &&
        (!probs_or_mask.has_value() ||
         utils::is_on_gpu(probs_or_mask.value())) &&
        (!type_per_edge_.has_value() ||
         utils::is_on_gpu(type_per_edge_.value()))) ||
822
       (seeds.has_value() && utils::is_on_gpu(seeds.value()) &&
823
824
825
826
827
828
829
        utils::is_accessible_from_gpu(indptr_) &&
        utils::is_accessible_from_gpu(indices_) &&
        (!probs_or_mask.has_value() ||
         utils::is_accessible_from_gpu(probs_or_mask.value())) &&
        (!type_per_edge_.has_value() ||
         utils::is_accessible_from_gpu(type_per_edge_.value())))) &&
      !replace) {
830
831
832
    GRAPHBOLT_DISPATCH_CUDA_ONLY_DEVICE(
        c10::DeviceType::CUDA, "SampleNeighbors", {
          return ops::SampleNeighbors(
833
              indptr_, indices_, seeds, seed_offsets, fanouts, replace, layer,
834
835
836
              return_eids, type_per_edge_, probs_or_mask, node_type_offset_,
              node_type_to_id_, edge_type_to_id_, random_seed,
              seed2_contribution);
837
838
        });
  }
839
  TORCH_CHECK(seeds.has_value(), "Nodes can not be None on the CPU.");
840
841

  if (probs_or_mask.has_value()) {
842
843
844
845
846
847
848
849
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
850

851
852
  bool with_seed_offsets = seed_offsets.has_value();

853
  if (layer) {
854
855
856
857
858
    if (random_seed.has_value() && random_seed->numel() >= 2) {
      SamplerArgs<SamplerType::LABOR_DEPENDENT> args{
          indices_,
          {random_seed.value(), static_cast<float>(seed2_contribution)},
          NumNodes()};
859
      return SampleNeighborsImpl<TemporalOption::NOT_TEMPORAL>(
860
861
862
863
          seeds.value(), seed_offsets, fanouts, return_eids,
          GetNumPickFn(
              fanouts, replace, type_per_edge_, probs_or_mask,
              with_seed_offsets),
864
865
          GetPickFn(
              fanouts, replace, indptr_.options(), type_per_edge_,
866
              probs_or_mask, with_seed_offsets, args));
867
868
869
870
871
872
873
874
875
876
877
878
879
    } else {
      auto args = [&] {
        if (random_seed.has_value() && random_seed->numel() == 1) {
          return SamplerArgs<SamplerType::LABOR>{
              indices_, random_seed.value(), NumNodes()};
        } else {
          return SamplerArgs<SamplerType::LABOR>{
              indices_,
              RandomEngine::ThreadLocal()->RandInt(
                  static_cast<int64_t>(0), std::numeric_limits<int64_t>::max()),
              NumNodes()};
        }
      }();
880
      return SampleNeighborsImpl<TemporalOption::NOT_TEMPORAL>(
881
882
883
884
          seeds.value(), seed_offsets, fanouts, return_eids,
          GetNumPickFn(
              fanouts, replace, type_per_edge_, probs_or_mask,
              with_seed_offsets),
885
886
          GetPickFn(
              fanouts, replace, indptr_.options(), type_per_edge_,
887
              probs_or_mask, with_seed_offsets, args));
888
    }
889
890
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
891
    return SampleNeighborsImpl<TemporalOption::NOT_TEMPORAL>(
892
893
894
        seeds.value(), seed_offsets, fanouts, return_eids,
        GetNumPickFn(
            fanouts, replace, type_per_edge_, probs_or_mask, with_seed_offsets),
895
896
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
897
            with_seed_offsets, args));
898
899
900
  }
}

901
902
903
904
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::TemporalSampleNeighbors(
    const torch::Tensor& input_nodes,
    const torch::Tensor& input_nodes_timestamp,
905
906
    const std::vector<int64_t>& fanouts, bool replace, bool layer,
    bool return_eids, torch::optional<std::string> probs_name,
907
908
    torch::optional<std::string> node_timestamp_attr_name,
    torch::optional<std::string> edge_timestamp_attr_name) const {
909
  torch::optional<std::vector<int64_t>> seed_offsets = torch::nullopt;
910
  // 1. Get probs_or_mask.
911
912
913
914
915
916
917
918
919
920
  auto probs_or_mask = this->EdgeAttribute(probs_name);
  if (probs_name.has_value()) {
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
921
  // 2. Get the timestamp attribute for nodes of the graph
922
  auto node_timestamp = this->NodeAttribute(node_timestamp_attr_name);
923
  // 3. Get the timestamp attribute for edges of the graph
924
925
  auto edge_timestamp = this->EdgeAttribute(edge_timestamp_attr_name);
  // 4. Call SampleNeighborsImpl
926
927
928
929
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
930
931
    return SampleNeighborsImpl<TemporalOption::TEMPORAL>(
        input_nodes, seed_offsets, fanouts, return_eids,
932
933
934
935
936
937
938
939
940
        GetTemporalNumPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            type_per_edge_, probs_or_mask, node_timestamp, edge_timestamp),
        GetTemporalPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            indptr_.options(), type_per_edge_, probs_or_mask, node_timestamp,
            edge_timestamp, args));
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
941
942
    return SampleNeighborsImpl<TemporalOption::TEMPORAL>(
        input_nodes, seed_offsets, fanouts, return_eids,
943
944
945
946
947
948
949
950
        GetTemporalNumPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            type_per_edge_, probs_or_mask, node_timestamp, edge_timestamp),
        GetTemporalPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            indptr_.options(), type_per_edge_, probs_or_mask, node_timestamp,
            edge_timestamp, args));
  }
951
952
}

953
954
static c10::intrusive_ptr<FusedCSCSamplingGraph>
BuildGraphFromSharedMemoryHelper(SharedMemoryHelper&& helper) {
955
956
957
958
959
  helper.InitializeRead();
  auto indptr = helper.ReadTorchTensor();
  auto indices = helper.ReadTorchTensor();
  auto node_type_offset = helper.ReadTorchTensor();
  auto type_per_edge = helper.ReadTorchTensor();
960
961
  auto node_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
  auto edge_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
962
  auto node_attributes = helper.ReadTorchTensorDict();
963
  auto edge_attributes = helper.ReadTorchTensorDict();
964
  auto graph = c10::make_intrusive<FusedCSCSamplingGraph>(
965
      indptr.value(), indices.value(), node_type_offset, type_per_edge,
966
      node_type_to_id, edge_type_to_id, node_attributes, edge_attributes);
967
968
969
  auto shared_memory = helper.ReleaseSharedMemory();
  graph->HoldSharedMemoryObject(
      std::move(shared_memory.first), std::move(shared_memory.second));
970
971
972
  return graph;
}

973
974
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::CopyToSharedMemory(
975
    const std::string& shared_memory_name) {
976
  SharedMemoryHelper helper(shared_memory_name);
977
978
979
980
  helper.WriteTorchTensor(indptr_);
  helper.WriteTorchTensor(indices_);
  helper.WriteTorchTensor(node_type_offset_);
  helper.WriteTorchTensor(type_per_edge_);
981
982
  helper.WriteTorchTensorDict(TensorizeDict(node_type_to_id_));
  helper.WriteTorchTensorDict(TensorizeDict(edge_type_to_id_));
983
  helper.WriteTorchTensorDict(node_attributes_);
984
985
986
  helper.WriteTorchTensorDict(edge_attributes_);
  helper.Flush();
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
987
988
}

989
990
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::LoadFromSharedMemory(
991
    const std::string& shared_memory_name) {
992
  SharedMemoryHelper helper(shared_memory_name);
993
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
994
995
}

996
void FusedCSCSamplingGraph::HoldSharedMemoryObject(
997
998
999
1000
1001
    SharedMemoryPtr tensor_metadata_shm, SharedMemoryPtr tensor_data_shm) {
  tensor_metadata_shm_ = std::move(tensor_metadata_shm);
  tensor_data_shm_ = std::move(tensor_data_shm);
}

1002
1003
template <typename PickedNumType>
void NumPick(
1004
1005
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
1006
    int64_t num_neighbors, PickedNumType* picked_num_ptr) {
1007
  int64_t num_valid_neighbors = num_neighbors;
1008
  if (probs_or_mask.has_value() && num_neighbors > 0) {
1009
1010
1011
1012
1013
1014
1015
1016
1017
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
1018
1019
1020
1021
1022
  if (num_valid_neighbors == 0 || fanout == -1) {
    *picked_num_ptr = num_valid_neighbors;
  } else {
    *picked_num_ptr = replace ? fanout : std::min(fanout, num_valid_neighbors);
  }
1023
1024
}

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
torch::Tensor TemporalMask(
    int64_t seed_timestamp, torch::Tensor csc_indices,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp,
    std::pair<int64_t, int64_t> edge_range) {
  auto [l, r] = edge_range;
  torch::Tensor mask = torch::ones({r - l}, torch::kBool);
  if (node_timestamp.has_value()) {
    auto neighbor_timestamp =
        node_timestamp.value().index_select(0, csc_indices.slice(0, l, r));
1036
    mask &= neighbor_timestamp < seed_timestamp;
1037
1038
  }
  if (edge_timestamp.has_value()) {
1039
    mask &= edge_timestamp.value().slice(0, l, r) < seed_timestamp;
1040
1041
1042
1043
1044
1045
1046
  }
  if (probs_or_mask.has_value()) {
    mask &= probs_or_mask.value().slice(0, l, r) != 0;
  }
  return mask;
}

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
/**
 * @brief Fast path for temporal sampling without probability. It is used when
 * the number of neighbors is large. It randomly samples neighbors and checks
 * the timestamp of the neighbors. It is successful if the number of sampled
 * neighbors in kTriedThreshold trials is equal to the fanout.
 */
std::pair<bool, std::vector<int64_t>> FastTemporalPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices, int64_t fanout,
    bool replace, const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  constexpr int64_t kTriedThreshold = 1000;
  auto timestamp = utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset);
  std::vector<int64_t> sampled_edges;
  sampled_edges.reserve(fanout);
  std::set<int64_t> sampled_edge_set;
  int64_t sample_count = 0;
  int64_t tried = 0;
  while (sample_count < fanout && tried < kTriedThreshold) {
    int64_t edge_id =
        RandomEngine::ThreadLocal()->RandInt(offset, offset + num_neighbors);
    ++tried;
    if (!replace && sampled_edge_set.count(edge_id) > 0) {
      continue;
    }
    if (node_timestamp.has_value()) {
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
      bool flag = true;
      AT_DISPATCH_INDEX_TYPES(
          csc_indices.scalar_type(), "CheckNodeTimeStamp", ([&] {
            int64_t neighbor_id =
                utils::GetValueByIndex<index_t>(csc_indices, edge_id);
            if (utils::GetValueByIndex<int64_t>(
                    node_timestamp.value(), neighbor_id) >= timestamp)
              flag = false;
          }));
      if (!flag) continue;
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    }
    if (edge_timestamp.has_value() &&
        utils::GetValueByIndex<int64_t>(edge_timestamp.value(), edge_id) >=
            timestamp) {
      continue;
    }
    if (!replace) {
      sampled_edge_set.insert(edge_id);
    }
    sampled_edges.push_back(edge_id);
    sample_count++;
  }
  if (sample_count < fanout) {
    return {false, {}};
  }
  return {true, sampled_edges};
}

1101
1102
1103
1104
1105
1106
int64_t TemporalNumPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indics, int64_t fanout,
    bool replace, const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
  constexpr int64_t kFastPathThreshold = 1000;
  if (num_neighbors > kFastPathThreshold && !probs_or_mask.has_value()) {
    // TODO: Currently we use the fast path both in TemporalNumPick and
    // TemporalPick. We may only sample once in TemporalNumPick and use the
    // sampled edges in TemporalPick to avoid sampling twice.
    auto [success, sampled_edges] = FastTemporalPick(
        seed_timestamp, csc_indics, fanout, replace, node_timestamp,
        edge_timestamp, seed_offset, offset, num_neighbors);
    if (success) return sampled_edges.size();
  }
1117
1118
1119
1120
1121
1122
1123
1124
1125
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indics,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  int64_t num_valid_neighbors = utils::GetValueByIndex<int64_t>(mask.sum(), 0);
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

1126
1127
1128
template <typename PickedNumType>
void NumPickByEtype(
    bool with_seed_offsets, const std::vector<int64_t>& fanouts, bool replace,
1129
1130
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
1131
1132
    int64_t num_neighbors, PickedNumType* num_picked_ptr, int64_t seed_index,
    const std::vector<int64_t>& etype_id_to_num_picked_offset) {
1133
1134
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
1135
  PickedNumType total_count = 0;
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
          if (with_seed_offsets) {
            // The pick numbers aren't stored continuously, but separately for
            // each different etype.
            const auto offset =
                etype_id_to_num_picked_offset[etype] + seed_index;
            NumPick(
                fanouts[etype], replace, probs_or_mask, etype_begin,
                etype_end - etype_begin, num_picked_ptr + offset);
          } else {
            PickedNumType picked_count = 0;
            NumPick(
                fanouts[etype], replace, probs_or_mask, etype_begin,
                etype_end - etype_begin, &picked_count);
            total_count += picked_count;
          }
1164
1165
1166
          etype_begin = etype_end;
        }
      }));
1167
1168
1169
  if (!with_seed_offsets) {
    num_picked_ptr[seed_index] = total_count;
  }
1170
1171
}

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
int64_t TemporalNumPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalNumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += TemporalNumPick(
              seed_timestamp, csc_indices, fanouts[etype], replace,
              probs_or_mask, node_timestamp, edge_timestamp, seed_offset,
              etype_begin, etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

1206
1207
1208
1209
1210
1211
1212
1213
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1214
1215
1216
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
1217
1218
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
1219
 * @param replace Boolean indicating whether the sample is performed with or
1220
1221
1222
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
1223
1224
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1225
 */
1226
template <typename PickedType>
1227
inline int64_t UniformPick(
1228
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
1229
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
1230
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
1231
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
1232
    return num_neighbors;
1233
  } else if (replace) {
1234
1235
1236
1237
1238
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
1239
    return fanout;
1240
  } else {
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
1275
      return fanout;
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
1296
      return fanout;
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
1320
      return picked_set.size();
1321
    }
1322
1323
1324
  }
}

1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
/** @brief An operator to perform non-uniform sampling. */
static torch::Tensor NonUniformPickOp(
    torch::Tensor probs, int64_t fanout, bool replace) {
  auto positive_probs_indices = probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
  if (num_positive_probs == 0) return torch::empty({0}, torch::kLong);
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
    return positive_probs_indices;
  }
  if (!replace) fanout = std::min(fanout, num_positive_probs);
  if (fanout == 0) return torch::empty({0}, torch::kLong);
  auto ret_tensor = torch::empty({fanout}, torch::kLong);
  auto ret_ptr = ret_tensor.data_ptr<int64_t>();
  AT_DISPATCH_FLOATING_TYPES(
      probs.scalar_type(), "MultinomialSampling", ([&] {
        auto probs_data_ptr = probs.data_ptr<scalar_t>();
        auto positive_probs_indices_ptr =
            positive_probs_indices.data_ptr<int64_t>();

        if (!replace) {
          // The algorithm is from gumbel softmax.
          // s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1).
          // Here we can apply exp to the formula which will not affect result
          // of argmax or topk. Then we have
          // s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
          // We can also simplify the formula above by
          // s = argmax( p / q ) where q ~ Exp(1).
          if (fanout == 1) {
            // Return argmax(p / q).
            scalar_t max_prob = 0;
            int64_t max_prob_index = -1;
            // We only care about the neighbors with non-zero probability.
            for (auto i = 0; i < num_positive_probs; ++i) {
              // Calculate (p / q) for the current neighbor.
              scalar_t current_prob =
                  probs_data_ptr[positive_probs_indices_ptr[i]] /
                  RandomEngine::ThreadLocal()->Exponential(1.);
              if (current_prob > max_prob) {
                max_prob = current_prob;
                max_prob_index = positive_probs_indices_ptr[i];
              }
            }
            ret_ptr[0] = max_prob_index;
          } else {
            // Return topk(p / q).
            std::vector<std::pair<scalar_t, int64_t>> q(num_positive_probs);
            for (auto i = 0; i < num_positive_probs; ++i) {
              q[i].first = probs_data_ptr[positive_probs_indices_ptr[i]] /
                           RandomEngine::ThreadLocal()->Exponential(1.);
              q[i].second = positive_probs_indices_ptr[i];
            }
            if (fanout < num_positive_probs / 64) {
              // Use partial_sort.
              std::partial_sort(
                  q.begin(), q.begin() + fanout, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            } else {
              // Use nth_element.
              std::nth_element(
                  q.begin(), q.begin() + fanout - 1, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            }
          }
        } else {
          // Calculate cumulative sum of probabilities.
          std::vector<scalar_t> prefix_sum_probs(num_positive_probs);
          scalar_t sum_probs = 0;
          for (auto i = 0; i < num_positive_probs; ++i) {
            sum_probs += probs_data_ptr[positive_probs_indices_ptr[i]];
            prefix_sum_probs[i] = sum_probs;
          }
          // Normalize.
          if ((sum_probs > 1.00001) || (sum_probs < 0.99999)) {
            for (auto i = 0; i < num_positive_probs; ++i) {
              prefix_sum_probs[i] /= sum_probs;
            }
          }
          for (auto i = 0; i < fanout; ++i) {
            // Sample a probability mass from a uniform distribution.
            double uniform_sample =
                RandomEngine::ThreadLocal()->Uniform(0., 1.);
            // Use a binary search to find the index.
            int sampled_index = std::lower_bound(
                                    prefix_sum_probs.begin(),
                                    prefix_sum_probs.end(), uniform_sample) -
                                prefix_sum_probs.begin();
            ret_ptr[i] = positive_probs_indices_ptr[sampled_index];
          }
        }
      }));
  return ret_tensor;
}

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1440
1441
1442
1443
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
1444
1445
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
1446
 * @param replace Boolean indicating whether the sample is performed with or
1447
1448
1449
1450
1451
1452
1453
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
1454
1455
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1456
 */
1457
template <typename PickedType>
1458
inline int64_t NonUniformPick(
1459
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
1460
    const torch::TensorOptions& options, const torch::Tensor& probs_or_mask,
1461
    PickedType* picked_data_ptr) {
1462
  auto local_probs =
1463
1464
1465
      probs_or_mask.size(0) > num_neighbors
          ? probs_or_mask.slice(0, offset, offset + num_neighbors)
          : probs_or_mask;
1466
1467
1468
1469
1470
  auto picked_indices = NonUniformPickOp(local_probs, fanout, replace);
  auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
  for (int i = 0; i < picked_indices.numel(); ++i) {
    picked_data_ptr[i] =
        static_cast<PickedType>(picked_indices_ptr[i]) + offset;
1471
  }
1472
  return picked_indices.numel();
1473
1474
}

1475
template <typename PickedType>
1476
int64_t Pick(
1477
1478
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
1479
    const torch::optional<torch::Tensor>& probs_or_mask,
1480
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
1481
  if (fanout == 0 || num_neighbors == 0) return 0;
1482
  if (probs_or_mask.has_value()) {
1483
    return NonUniformPick(
1484
        offset, num_neighbors, fanout, replace, options, probs_or_mask.value(),
1485
        picked_data_ptr);
1486
  } else {
1487
    return UniformPick(
1488
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1489
1490
1491
  }
}

1492
template <SamplerType S, typename PickedType>
1493
1494
1495
1496
1497
1498
int64_t TemporalPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors, int64_t fanout,
    bool replace, const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
1499
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args,
1500
    PickedType* picked_data_ptr) {
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
  constexpr int64_t kFastPathThreshold = 1000;
  if (S == SamplerType::NEIGHBOR && num_neighbors > kFastPathThreshold &&
      !probs_or_mask.has_value()) {
    auto [success, sampled_edges] = FastTemporalPick(
        seed_timestamp, csc_indices, fanout, replace, node_timestamp,
        edge_timestamp, seed_offset, offset, num_neighbors);
    if (success) {
      for (size_t i = 0; i < sampled_edges.size(); ++i) {
        picked_data_ptr[i] = static_cast<PickedType>(sampled_edges[i]);
      }
      return sampled_edges.size();
    }
  }
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indices,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  torch::Tensor masked_prob;
  if (probs_or_mask.has_value()) {
    masked_prob =
        probs_or_mask.value().slice(0, offset, offset + num_neighbors) * mask;
  } else {
    masked_prob = mask.to(torch::kFloat32);
  }
1525
1526
1527
1528
1529
1530
1531
1532
1533
  if constexpr (S == SamplerType::NEIGHBOR) {
    auto picked_indices = NonUniformPickOp(masked_prob, fanout, replace);
    auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
    for (int i = 0; i < picked_indices.numel(); ++i) {
      picked_data_ptr[i] =
          static_cast<PickedType>(picked_indices_ptr[i]) + offset;
    }
    return picked_indices.numel();
  }
1534
  if constexpr (is_labor(S)) {
1535
1536
1537
    return Pick(
        offset, num_neighbors, fanout, replace, options, masked_prob, args,
        picked_data_ptr);
1538
1539
1540
  }
}

1541
template <SamplerType S, typename PickedType>
1542
int64_t PickByEtype(
1543
1544
1545
    bool with_seed_offsets, int64_t offset, int64_t num_neighbors,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options, const torch::Tensor& type_per_edge,
1546
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
1547
1548
1549
    PickedType* picked_data_ptr, int64_t seed_index,
    PickedType* subgraph_indptr_ptr,
    const std::vector<int64_t>& etype_id_to_num_picked_offset) {
1550
1551
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
1552
  int64_t picked_total_count = 0;
1553
1554
1555
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
1556
1557
1558
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
1559
          TORCH_CHECK(
1560
              etype >= 0 && etype < (int64_t)fanouts.size(),
1561
              "Etype values exceed the number of fanouts.");
1562
          int64_t fanout = fanouts[etype];
1563
1564
1565
1566
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
1567
1568
          // Do sampling for one etype. The picked nodes aren't stored
          // continuously, but separately for each different etype.
1569
          if (fanout != 0) {
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
            auto picked_count = 0;
            if (with_seed_offsets) {
              const auto indptr_offset =
                  etype_id_to_num_picked_offset[etype] + seed_index;
              picked_count = Pick(
                  etype_begin, etype_end - etype_begin, fanout, replace,
                  options, probs_or_mask, args,
                  picked_data_ptr + subgraph_indptr_ptr[indptr_offset]);
              TORCH_CHECK(
                  subgraph_indptr_ptr[indptr_offset + 1] -
                          subgraph_indptr_ptr[indptr_offset] ==
                      picked_count,
                  "Actual picked count doesn't match the calculated "
                  "pick number.");
            } else {
              picked_count = Pick(
                  etype_begin, etype_end - etype_begin, fanout, replace,
                  options, probs_or_mask, args,
                  picked_data_ptr + subgraph_indptr_ptr[seed_index] +
                      picked_total_count);
            }
            picked_total_count += picked_count;
1592
1593
1594
1595
          }
          etype_begin = etype_end;
        }
      }));
1596
  return picked_total_count;
1597
1598
}

1599
template <SamplerType S, typename PickedType>
1600
1601
1602
1603
1604
1605
1606
int64_t TemporalPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options, const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
1607
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args,
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
    PickedType* picked_data_ptr) {
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
  int64_t pick_offset = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalPickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          int64_t fanout = fanouts[etype];
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          if (fanout != 0) {
            int64_t picked_count = TemporalPick(
                seed_timestamp, csc_indices, seed_offset, etype_begin,
                etype_end - etype_begin, fanout, replace, options,
1631
                probs_or_mask, node_timestamp, edge_timestamp, args,
1632
1633
1634
1635
1636
1637
1638
1639
1640
                picked_data_ptr + pick_offset);
            pick_offset += picked_count;
          }
          etype_begin = etype_end;
        }
      }));
  return pick_offset;
}

1641
1642
template <SamplerType S, typename PickedType>
std::enable_if_t<is_labor(S), int64_t> Pick(
1643
1644
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
1645
1646
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
1647
  if (fanout == 0 || num_neighbors == 0) return 0;
1648
  if (probs_or_mask.has_value()) {
1649
    if (fanout < 0) {
1650
      return NonUniformPick(
1651
1652
          offset, num_neighbors, fanout, replace, options,
          probs_or_mask.value(), picked_data_ptr);
1653
    } else {
1654
      int64_t picked_count;
1655
1656
1657
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
1658
              picked_count = LaborPick<true, true, scalar_t>(
1659
1660
1661
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
1662
              picked_count = LaborPick<true, false, scalar_t>(
1663
1664
1665
1666
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
1667
      return picked_count;
1668
1669
    }
  } else if (fanout < 0) {
1670
    return UniformPick(
1671
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1672
  } else if (replace) {
1673
    return LaborPick<false, true, float>(
1674
        offset, num_neighbors, fanout, options,
1675
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1676
  } else {  // replace = false
1677
    return LaborPick<false, false, float>(
1678
        offset, num_neighbors, fanout, options,
1679
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1680
1681
1682
1683
1684
1685
1686
1687
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

1688
1689
1690
1691
1692
1693
1694
1695
namespace labor {

template <typename T>
inline T invcdf(T u, int64_t n, T rem) {
  constexpr T one = 1;
  return rem * (one - std::pow(one - u, one / n));
}

1696
template <typename T, typename seed_t>
1697
inline T jth_sorted_uniform_random(
1698
    seed_t seed, int64_t t, int64_t c, int64_t j, T& rem, int64_t n) {
1699
1700
1701
1702
1703
1704
1705
1706
  const T u = seed.uniform(t + j * c);
  // https://mathematica.stackexchange.com/a/256707
  rem -= invcdf(u, n, rem);
  return 1 - rem;
}

};  // namespace labor

1707
1708
1709
1710
1711
1712
1713
1714
1715
/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1716
1717
1718
1719
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
1720
1721
1722
1723
1724
1725
1726
1727
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
1728
1729
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1730
 */
1731
template <
1732
1733
1734
    bool NonUniform, bool Replace, typename ProbsType, SamplerType S,
    typename PickedType, int StackSize>
inline std::enable_if_t<is_labor(S), int64_t> LaborPick(
1735
1736
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
1737
1738
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
1739
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
1740
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
1741
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
1742
    return num_neighbors;
1743
1744
  }
  // Assuming max_degree of a vertex is <= 4 billion.
1745
1746
1747
1748
1749
1750
1751
1752
1753
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
1754
1755
1756
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
1757
1758
1759
  if (NonUniform && probs_or_mask.value().size(0) <= num_neighbors) {
    local_probs_data -= offset;
  }
1760
  AT_DISPATCH_INDEX_TYPES(
1761
      args.indices.scalar_type(), "LaborPickMain", ([&] {
1762
1763
        const auto local_indices_data =
            reinterpret_cast<index_t*>(args.indices.data_ptr()) + offset;
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
1786
1787
1788
1789
1790
1791
1792
1793
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
1794
1795
1796
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
1797
              [&](index_t t, int64_t j, uint32_t i) {
1798
                auto rnd = labor::jth_sorted_uniform_random(
1799
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
1800
1801
1802
1803
1804
1805
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
1806
1807
1808
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
1809
1810
1811
1812
1813
1814
1815
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
1816
                  remaining_data[i] = -1;
1817
1818
1819
1820
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1821
            const auto t = local_indices_data[i];
1822
1823
1824
1825
1826
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1827
            if (remaining_data[i] == -1) continue;
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
1853
            auto rnd = args.random_seed.uniform(t);  // r_t
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
1864
            auto rnd = args.random_seed.uniform(t);  // r_t
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
1877
1878
1879
1880
1881
1882
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
1883
  return num_sampled;
1884
1885
}

1886
1887
}  // namespace sampling
}  // namespace graphbolt