"test/vscode:/vscode.git/clone" did not exist on "235d586bfb62e75352fed3b0f1e8dd1624d87dad"
fused_csc_sampling_graph.cc 70.5 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file fused_csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
#include <graphbolt/cuda_sampling_ops.h>
8
#include <graphbolt/fused_csc_sampling_graph.h>
9
#include <graphbolt/serialize.h>
10
11
#include <torch/torch.h>

12
13
#include <algorithm>
#include <array>
14
15
#include <cmath>
#include <limits>
16
#include <numeric>
17
#include <tuple>
18
#include <type_traits>
19
#include <vector>
20

21
#include "./macro.h"
22
#include "./random.h"
23
#include "./shared_memory_helper.h"
24
#include "./utils.h"
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
namespace {
torch::optional<torch::Dict<std::string, torch::Tensor>> TensorizeDict(
    const torch::optional<torch::Dict<std::string, int64_t>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, torch::Tensor> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), torch::tensor(pair.value(), torch::kInt64));
  }
  return result;
}

torch::optional<torch::Dict<std::string, int64_t>> DetensorizeDict(
    const torch::optional<torch::Dict<std::string, torch::Tensor>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, int64_t> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), pair.value().item<int64_t>());
  }
  return result;
}
}  // namespace

52
53
54
namespace graphbolt {
namespace sampling {

55
56
static const int kPickleVersion = 6199;

57
FusedCSCSamplingGraph::FusedCSCSamplingGraph(
58
    const torch::Tensor& indptr, const torch::Tensor& indices,
59
    const torch::optional<torch::Tensor>& node_type_offset,
60
    const torch::optional<torch::Tensor>& type_per_edge,
61
62
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
63
    const torch::optional<NodeAttrMap>& node_attributes,
64
    const torch::optional<EdgeAttrMap>& edge_attributes)
65
    : indptr_(indptr),
66
      indices_(indices),
67
      node_type_offset_(node_type_offset),
68
      type_per_edge_(type_per_edge),
69
70
      node_type_to_id_(node_type_to_id),
      edge_type_to_id_(edge_type_to_id),
71
      node_attributes_(node_attributes),
72
      edge_attributes_(edge_attributes) {
73
74
75
76
77
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

78
c10::intrusive_ptr<FusedCSCSamplingGraph> FusedCSCSamplingGraph::Create(
79
    const torch::Tensor& indptr, const torch::Tensor& indices,
80
    const torch::optional<torch::Tensor>& node_type_offset,
81
    const torch::optional<torch::Tensor>& type_per_edge,
82
83
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
84
    const torch::optional<NodeAttrMap>& node_attributes,
85
    const torch::optional<EdgeAttrMap>& edge_attributes) {
86
87
88
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
89
90
91
92
    TORCH_CHECK(node_type_to_id.has_value());
    TORCH_CHECK(
        offset.size(0) ==
        static_cast<int64_t>(node_type_to_id.value().size() + 1));
93
94
95
96
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
97
    TORCH_CHECK(edge_type_to_id.has_value());
98
  }
99
100
  if (node_attributes.has_value()) {
    for (const auto& pair : node_attributes.value()) {
101
102
103
104
105
106
      TORCH_CHECK(
          pair.value().size(0) == indptr.size(0) - 1,
          "Expected node_attribute.size(0) and num_nodes to be equal, "
          "but node_attribute.size(0) was ",
          pair.value().size(0), ", and num_nodes was ", indptr.size(0) - 1,
          ".");
107
108
    }
  }
109
110
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
111
112
113
114
115
      TORCH_CHECK(
          pair.value().size(0) == indices.size(0),
          "Expected edge_attribute.size(0) and num_edges to be equal, "
          "but edge_attribute.size(0) was ",
          pair.value().size(0), ", and num_edges was ", indices.size(0), ".");
116
117
    }
  }
118
  return c10::make_intrusive<FusedCSCSamplingGraph>(
119
      indptr, indices, node_type_offset, type_per_edge, node_type_to_id,
120
      edge_type_to_id, node_attributes, edge_attributes);
121
122
}

123
void FusedCSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
124
  const int64_t magic_num =
125
      read_from_archive<int64_t>(archive, "FusedCSCSamplingGraph/magic_num");
126
127
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
128
129
      "Magic numbers mismatch when loading FusedCSCSamplingGraph.");
  indptr_ =
130
131
132
133
134
135
136
      read_from_archive<torch::Tensor>(archive, "FusedCSCSamplingGraph/indptr");
  indices_ = read_from_archive<torch::Tensor>(
      archive, "FusedCSCSamplingGraph/indices");
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_offset")) {
    node_type_offset_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/node_type_offset");
137
  }
138
139
140
141
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_type_per_edge")) {
    type_per_edge_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/type_per_edge");
142
  }
143

144
145
146
147
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_to_id")) {
    node_type_to_id_ = read_from_archive<NodeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/node_type_to_id");
148
149
  }

150
151
152
153
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_type_to_id")) {
    edge_type_to_id_ = read_from_archive<EdgeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/edge_type_to_id");
154
155
  }

156
157
158
159
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_attributes")) {
    node_attributes_ = read_from_archive<NodeAttrMap>(
        archive, "FusedCSCSamplingGraph/node_attributes");
160
  }
161
162
163
164
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_attributes")) {
    edge_attributes_ = read_from_archive<EdgeAttrMap>(
        archive, "FusedCSCSamplingGraph/edge_attributes");
165
  }
166
167
}

168
169
170
171
172
173
void FusedCSCSamplingGraph::Save(
    torch::serialize::OutputArchive& archive) const {
  archive.write(
      "FusedCSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
  archive.write("FusedCSCSamplingGraph/indptr", indptr_);
  archive.write("FusedCSCSamplingGraph/indices", indices_);
174
  archive.write(
175
176
      "FusedCSCSamplingGraph/has_node_type_offset",
      node_type_offset_.has_value());
177
178
  if (node_type_offset_) {
    archive.write(
179
        "FusedCSCSamplingGraph/node_type_offset", node_type_offset_.value());
180
181
  }
  archive.write(
182
      "FusedCSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
183
  if (type_per_edge_) {
184
185
    archive.write(
        "FusedCSCSamplingGraph/type_per_edge", type_per_edge_.value());
186
  }
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  archive.write(
      "FusedCSCSamplingGraph/has_node_type_to_id",
      node_type_to_id_.has_value());
  if (node_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/node_type_to_id", node_type_to_id_.value());
  }
  archive.write(
      "FusedCSCSamplingGraph/has_edge_type_to_id",
      edge_type_to_id_.has_value());
  if (edge_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/edge_type_to_id", edge_type_to_id_.value());
  }
201
202
203
204
205
206
207
  archive.write(
      "FusedCSCSamplingGraph/has_node_attributes",
      node_attributes_.has_value());
  if (node_attributes_) {
    archive.write(
        "FusedCSCSamplingGraph/node_attributes", node_attributes_.value());
  }
208
  archive.write(
209
210
      "FusedCSCSamplingGraph/has_edge_attributes",
      edge_attributes_.has_value());
211
  if (edge_attributes_) {
212
213
    archive.write(
        "FusedCSCSamplingGraph/edge_attributes", edge_attributes_.value());
214
  }
215
216
}

217
void FusedCSCSamplingGraph::SetState(
218
219
220
221
222
223
224
225
226
    const torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>&
        state) {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  const auto& independent_tensors = state.at("independent_tensors");
  TORCH_CHECK(
      independent_tensors.at("version_number")
          .equal(torch::tensor({kPickleVersion})),
227
      "Version number mismatches when loading pickled FusedCSCSamplingGraph.")
228
229
230
231
232
233
234
235
236
  indptr_ = independent_tensors.at("indptr");
  indices_ = independent_tensors.at("indices");
  if (independent_tensors.find("node_type_offset") !=
      independent_tensors.end()) {
    node_type_offset_ = independent_tensors.at("node_type_offset");
  }
  if (independent_tensors.find("type_per_edge") != independent_tensors.end()) {
    type_per_edge_ = independent_tensors.at("type_per_edge");
  }
237
238
239
240
241
242
  if (state.find("node_type_to_id") != state.end()) {
    node_type_to_id_ = DetensorizeDict(state.at("node_type_to_id"));
  }
  if (state.find("edge_type_to_id") != state.end()) {
    edge_type_to_id_ = DetensorizeDict(state.at("edge_type_to_id"));
  }
243
244
245
  if (state.find("node_attributes") != state.end()) {
    node_attributes_ = state.at("node_attributes");
  }
246
247
248
249
250
251
  if (state.find("edge_attributes") != state.end()) {
    edge_attributes_ = state.at("edge_attributes");
  }
}

torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>
252
FusedCSCSamplingGraph::GetState() const {
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>> state;
  torch::Dict<std::string, torch::Tensor> independent_tensors;
  // Serialization version number. It indicates the serialization method of the
  // whole state.
  independent_tensors.insert("version_number", torch::tensor({kPickleVersion}));
  independent_tensors.insert("indptr", indptr_);
  independent_tensors.insert("indices", indices_);
  if (node_type_offset_.has_value()) {
    independent_tensors.insert("node_type_offset", node_type_offset_.value());
  }
  if (type_per_edge_.has_value()) {
    independent_tensors.insert("type_per_edge", type_per_edge_.value());
  }
  state.insert("independent_tensors", independent_tensors);
270
271
272
273
274
275
  if (node_type_to_id_.has_value()) {
    state.insert("node_type_to_id", TensorizeDict(node_type_to_id_).value());
  }
  if (edge_type_to_id_.has_value()) {
    state.insert("edge_type_to_id", TensorizeDict(edge_type_to_id_).value());
  }
276
277
278
  if (node_attributes_.has_value()) {
    state.insert("node_attributes", node_attributes_.value());
  }
279
280
281
282
283
284
  if (edge_attributes_.has_value()) {
    state.insert("edge_attributes", edge_attributes_.value());
  }
  return state;
}

285
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
286
    const torch::Tensor& nodes) const {
287
  if (utils::is_on_gpu(nodes) && utils::is_accessible_from_gpu(indptr_) &&
288
289
290
291
292
293
294
      utils::is_accessible_from_gpu(indices_) &&
      (!type_per_edge_.has_value() ||
       utils::is_accessible_from_gpu(type_per_edge_.value()))) {
    GRAPHBOLT_DISPATCH_CUDA_ONLY_DEVICE(c10::DeviceType::CUDA, "InSubgraph", {
      return ops::InSubgraph(indptr_, indices_, nodes, type_per_edge_);
    });
  }
295
296
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
297
298
  const auto num_seeds = nodes.size(0);
  torch::Tensor indptr = torch::zeros({num_seeds + 1}, indptr_.dtype());
299
  std::vector<torch::Tensor> indices_arr(num_seeds);
300
301
  torch::Tensor original_column_node_ids =
      torch::zeros({num_seeds}, indptr_.dtype());
302
303
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
304

305
  AT_DISPATCH_INDEX_TYPES(
306
307
308
309
      indptr_.scalar_type(), "InSubgraph", ([&] {
        torch::parallel_for(
            0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
              for (size_t i = start; i < end; ++i) {
310
311
312
                const auto node_id = nodes[i].item<index_t>();
                const auto start_idx = indptr_[node_id].item<index_t>();
                const auto end_idx = indptr_[node_id + 1].item<index_t>();
313
314
315
316
317
318
319
320
321
322
323
324
                indptr[i + 1] = end_idx - start_idx;
                original_column_node_ids[i] = node_id;
                indices_arr[i] = indices_.slice(0, start_idx, end_idx);
                edge_ids_arr[i] = torch::arange(start_idx, end_idx);
                if (type_per_edge_) {
                  type_per_edge_arr[i] =
                      type_per_edge_.value().slice(0, start_idx, end_idx);
                }
              }
            });
      }));

325
  return c10::make_intrusive<FusedSampledSubgraph>(
326
      indptr.cumsum(0), torch::cat(indices_arr), original_column_node_ids,
327
328
329
330
331
332
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
349
350
351
352
353
 * @return A lambda function (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors) -> torch::Tensor, which takes seed offset (the offset of the
 * seed to sample), offset (the starting edge ID of the given node) and
 * num_neighbors (number of neighbors) as params and returns the pick number of
 * the given node.
354
355
356
357
358
359
360
361
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&fanouts, replace, &probs_or_mask, &type_per_edge](
362
             int64_t seed_offset, int64_t offset, int64_t num_neighbors) {
363
364
365
366
367
368
369
370
371
372
    if (fanouts.size() > 1) {
      return NumPickByEtype(
          fanouts, replace, type_per_edge.value(), probs_or_mask, offset,
          num_neighbors);
    } else {
      return NumPick(fanouts[0], replace, probs_or_mask, offset, num_neighbors);
    }
  };
}

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
auto GetTemporalNumPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&seed_timestamp, &csc_indices, &fanouts, replace, &probs_or_mask,
          &type_per_edge, &node_timestamp, &edge_timestamp](
             int64_t seed_offset, int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return TemporalNumPickByEtype(
          seed_timestamp, csc_indices, fanouts, replace, type_per_edge.value(),
          probs_or_mask, node_timestamp, edge_timestamp, seed_offset, offset,
          num_neighbors);
    } else {
      return TemporalNumPick(
          seed_timestamp, csc_indices, fanouts[0], replace, probs_or_mask,
          node_timestamp, edge_timestamp, seed_offset, offset, num_neighbors);
    }
  };
}

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
415
416
417
418
419
 * @return A lambda function: (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors, PickedType* picked_data_ptr) -> torch::Tensor, which takes
 * seed_offset (the offset of the seed to sample), offset (the starting edge ID
 * of the given node) and num_neighbors (number of neighbors) as params and puts
 * the picked neighbors at the address specified by picked_data_ptr.
420
 */
421
template <SamplerType S>
422
423
424
425
426
427
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
428
429
             int64_t seed_offset, int64_t offset, int64_t num_neighbors,
             auto picked_data_ptr) {
430
431
432
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
433
434
435
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
436
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr);
437
    } else {
438
      int64_t num_sampled = Pick(
439
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
440
          args, picked_data_ptr);
441
442
443
444
      if (type_per_edge) {
        std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
      }
      return num_sampled;
445
446
447
448
    }
  };
}

449
template <SamplerType S>
450
451
452
453
454
455
456
auto GetTemporalPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args) {
  return
      [&seed_timestamp, &csc_indices, &fanouts, replace, &options,
       &type_per_edge, &probs_or_mask, &node_timestamp, &edge_timestamp, args](
          int64_t seed_offset, int64_t offset, int64_t num_neighbors,
          auto picked_data_ptr) {
        // If fanouts.size() > 1, perform sampling for each edge type of each
        // node; otherwise just sample once for each node with no regard of edge
        // types.
        if (fanouts.size() > 1) {
          return TemporalPickByEtype(
              seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
              fanouts, replace, options, type_per_edge.value(), probs_or_mask,
              node_timestamp, edge_timestamp, args, picked_data_ptr);
        } else {
          int64_t num_sampled = TemporalPick(
              seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
              fanouts[0], replace, options, probs_or_mask, node_timestamp,
              edge_timestamp, args, picked_data_ptr);
          if (type_per_edge.has_value()) {
            std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
          }
          return num_sampled;
        }
      };
482
483
}

484
template <typename NumPickFn, typename PickFn>
485
486
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::SampleNeighborsImpl(
487
488
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
489
  const int64_t num_nodes = nodes.size(0);
490
  const auto indptr_options = indptr_.options();
491
  torch::Tensor num_picked_neighbors_per_node =
492
      torch::empty({num_nodes + 1}, indptr_options);
493

494
495
496
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
497
498
499
500
501
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;

502
  AT_DISPATCH_INDEX_TYPES(
503
      indptr_.scalar_type(), "SampleNeighborsImplWrappedWithIndptr", ([&] {
504
505
        using indptr_t = index_t;
        AT_DISPATCH_INDEX_TYPES(
506
            nodes.scalar_type(), "SampleNeighborsImplWrappedWithNodes", ([&] {
507
              using nodes_t = index_t;
508
509
510
511
512
              const auto indptr_data = indptr_.data_ptr<indptr_t>();
              auto num_picked_neighbors_data_ptr =
                  num_picked_neighbors_per_node.data_ptr<indptr_t>();
              num_picked_neighbors_data_ptr[0] = 0;
              const auto nodes_data_ptr = nodes.data_ptr<nodes_t>();
513

514
515
516
517
518
519
520
521
522
523
524
525
              // Step 1. Calculate pick number of each node.
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      TORCH_CHECK(
                          nid >= 0 && nid < NumNodes(),
                          "The seed nodes' IDs should fall within the range of "
                          "the "
                          "graph's node IDs.");
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
526

527
528
529
                      num_picked_neighbors_data_ptr[i + 1] =
                          num_neighbors == 0
                              ? 0
530
                              : num_pick_fn(i, offset, num_neighbors);
531
532
                    }
                  });
533

534
535
536
537
              // Step 2. Calculate prefix sum to get total length and offsets of
              // each node. It's also the indptr of the generated subgraph.
              subgraph_indptr = num_picked_neighbors_per_node.cumsum(
                  0, indptr_.scalar_type());
538

539
540
541
542
543
544
545
546
547
548
              // Step 3. Allocate the tensor for picked neighbors.
              const auto total_length =
                  subgraph_indptr.data_ptr<indptr_t>()[num_nodes];
              picked_eids = torch::empty({total_length}, indptr_options);
              subgraph_indices =
                  torch::empty({total_length}, indices_.options());
              if (type_per_edge_.has_value()) {
                subgraph_type_per_edge = torch::empty(
                    {total_length}, type_per_edge_.value().options());
              }
549

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
              // Step 4. Pick neighbors for each node.
              auto picked_eids_data_ptr = picked_eids.data_ptr<indptr_t>();
              auto subgraph_indptr_data_ptr =
                  subgraph_indptr.data_ptr<indptr_t>();
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
                      const auto picked_number =
                          num_picked_neighbors_data_ptr[i + 1];
                      const auto picked_offset = subgraph_indptr_data_ptr[i];
                      if (picked_number > 0) {
                        auto actual_picked_count = pick_fn(
565
                            i, offset, num_neighbors,
566
567
568
569
570
571
                            picked_eids_data_ptr + picked_offset);
                        TORCH_CHECK(
                            actual_picked_count == picked_number,
                            "Actual picked count doesn't match the calculated "
                            "pick "
                            "number.");
572

573
574
                        // Step 5. Calculate other attributes and return the
                        // subgraph.
575
                        AT_DISPATCH_INDEX_TYPES(
576
577
578
                            subgraph_indices.scalar_type(),
                            "IndexSelectSubgraphIndices", ([&] {
                              auto subgraph_indices_data_ptr =
579
                                  subgraph_indices.data_ptr<index_t>();
580
                              auto indices_data_ptr =
581
                                  indices_.data_ptr<index_t>();
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
                              for (auto i = picked_offset;
                                   i < picked_offset + picked_number; ++i) {
                                subgraph_indices_data_ptr[i] =
                                    indices_data_ptr[picked_eids_data_ptr[i]];
                              }
                            }));
                        if (type_per_edge_.has_value()) {
                          AT_DISPATCH_INTEGRAL_TYPES(
                              subgraph_type_per_edge.value().scalar_type(),
                              "IndexSelectTypePerEdge", ([&] {
                                auto subgraph_type_per_edge_data_ptr =
                                    subgraph_type_per_edge.value()
                                        .data_ptr<scalar_t>();
                                auto type_per_edge_data_ptr =
                                    type_per_edge_.value().data_ptr<scalar_t>();
                                for (auto i = picked_offset;
                                     i < picked_offset + picked_number; ++i) {
                                  subgraph_type_per_edge_data_ptr[i] =
                                      type_per_edge_data_ptr
                                          [picked_eids_data_ptr[i]];
                                }
                              }));
604
                        }
605
606
607
608
                      }
                    }
                  });
            }));
609
      }));
610

611
612
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
613

614
  return c10::make_intrusive<FusedSampledSubgraph>(
615
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
616
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
617
618
}

619
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::SampleNeighbors(
620
621
622
623
    torch::optional<torch::Tensor> seeds,
    torch::optional<std::vector<int64_t>> seed_offsets,
    const std::vector<int64_t>& fanouts, bool replace, bool layer,
    bool return_eids, torch::optional<std::string> probs_name,
624
625
    torch::optional<torch::Tensor> random_seed,
    double seed2_contribution) const {
626
627
  auto probs_or_mask = this->EdgeAttribute(probs_name);

628
629
  // If seeds does not have a value, then we expect all arguments to be resident
  // on the GPU. If seeds has a value, then we expect them to be accessible from
630
  // GPU. This is required for the dispatch to work when CUDA is not available.
631
  if (((!seeds.has_value() && utils::is_on_gpu(indptr_) &&
632
633
634
635
636
        utils::is_on_gpu(indices_) &&
        (!probs_or_mask.has_value() ||
         utils::is_on_gpu(probs_or_mask.value())) &&
        (!type_per_edge_.has_value() ||
         utils::is_on_gpu(type_per_edge_.value()))) ||
637
       (seeds.has_value() && utils::is_on_gpu(seeds.value()) &&
638
639
640
641
642
643
644
        utils::is_accessible_from_gpu(indptr_) &&
        utils::is_accessible_from_gpu(indices_) &&
        (!probs_or_mask.has_value() ||
         utils::is_accessible_from_gpu(probs_or_mask.value())) &&
        (!type_per_edge_.has_value() ||
         utils::is_accessible_from_gpu(type_per_edge_.value())))) &&
      !replace) {
645
646
647
    GRAPHBOLT_DISPATCH_CUDA_ONLY_DEVICE(
        c10::DeviceType::CUDA, "SampleNeighbors", {
          return ops::SampleNeighbors(
648
              indptr_, indices_, seeds, seed_offsets, fanouts, replace, layer,
649
650
651
              return_eids, type_per_edge_, probs_or_mask, node_type_offset_,
              node_type_to_id_, edge_type_to_id_, random_seed,
              seed2_contribution);
652
653
        });
  }
654
  TORCH_CHECK(seeds.has_value(), "Nodes can not be None on the CPU.");
655
656

  if (probs_or_mask.has_value()) {
657
658
659
660
661
662
663
664
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
665

666
  if (layer) {
667
668
669
670
671
672
    if (random_seed.has_value() && random_seed->numel() >= 2) {
      SamplerArgs<SamplerType::LABOR_DEPENDENT> args{
          indices_,
          {random_seed.value(), static_cast<float>(seed2_contribution)},
          NumNodes()};
      return SampleNeighborsImpl(
673
          seeds.value(), return_eids,
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
          GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
          GetPickFn(
              fanouts, replace, indptr_.options(), type_per_edge_,
              probs_or_mask, args));
    } else {
      auto args = [&] {
        if (random_seed.has_value() && random_seed->numel() == 1) {
          return SamplerArgs<SamplerType::LABOR>{
              indices_, random_seed.value(), NumNodes()};
        } else {
          return SamplerArgs<SamplerType::LABOR>{
              indices_,
              RandomEngine::ThreadLocal()->RandInt(
                  static_cast<int64_t>(0), std::numeric_limits<int64_t>::max()),
              NumNodes()};
        }
      }();
      return SampleNeighborsImpl(
692
          seeds.value(), return_eids,
693
694
695
696
697
          GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
          GetPickFn(
              fanouts, replace, indptr_.options(), type_per_edge_,
              probs_or_mask, args));
    }
698
699
700
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
701
        seeds.value(), return_eids,
702
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
703
704
705
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
706
707
708
  }
}

709
710
711
712
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::TemporalSampleNeighbors(
    const torch::Tensor& input_nodes,
    const torch::Tensor& input_nodes_timestamp,
713
714
    const std::vector<int64_t>& fanouts, bool replace, bool layer,
    bool return_eids, torch::optional<std::string> probs_name,
715
716
717
    torch::optional<std::string> node_timestamp_attr_name,
    torch::optional<std::string> edge_timestamp_attr_name) const {
  // 1. Get probs_or_mask.
718
719
720
721
722
723
724
725
726
727
  auto probs_or_mask = this->EdgeAttribute(probs_name);
  if (probs_name.has_value()) {
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
728
  // 2. Get the timestamp attribute for nodes of the graph
729
  auto node_timestamp = this->NodeAttribute(node_timestamp_attr_name);
730
  // 3. Get the timestamp attribute for edges of the graph
731
732
  auto edge_timestamp = this->EdgeAttribute(edge_timestamp_attr_name);
  // 4. Call SampleNeighborsImpl
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
        input_nodes, return_eids,
        GetTemporalNumPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            type_per_edge_, probs_or_mask, node_timestamp, edge_timestamp),
        GetTemporalPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            indptr_.options(), type_per_edge_, probs_or_mask, node_timestamp,
            edge_timestamp, args));
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
        input_nodes, return_eids,
        GetTemporalNumPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            type_per_edge_, probs_or_mask, node_timestamp, edge_timestamp),
        GetTemporalPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            indptr_.options(), type_per_edge_, probs_or_mask, node_timestamp,
            edge_timestamp, args));
  }
758
759
}

760
761
static c10::intrusive_ptr<FusedCSCSamplingGraph>
BuildGraphFromSharedMemoryHelper(SharedMemoryHelper&& helper) {
762
763
764
765
766
  helper.InitializeRead();
  auto indptr = helper.ReadTorchTensor();
  auto indices = helper.ReadTorchTensor();
  auto node_type_offset = helper.ReadTorchTensor();
  auto type_per_edge = helper.ReadTorchTensor();
767
768
  auto node_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
  auto edge_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
769
  auto node_attributes = helper.ReadTorchTensorDict();
770
  auto edge_attributes = helper.ReadTorchTensorDict();
771
  auto graph = c10::make_intrusive<FusedCSCSamplingGraph>(
772
      indptr.value(), indices.value(), node_type_offset, type_per_edge,
773
      node_type_to_id, edge_type_to_id, node_attributes, edge_attributes);
774
775
776
  auto shared_memory = helper.ReleaseSharedMemory();
  graph->HoldSharedMemoryObject(
      std::move(shared_memory.first), std::move(shared_memory.second));
777
778
779
  return graph;
}

780
781
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::CopyToSharedMemory(
782
    const std::string& shared_memory_name) {
783
  SharedMemoryHelper helper(shared_memory_name);
784
785
786
787
  helper.WriteTorchTensor(indptr_);
  helper.WriteTorchTensor(indices_);
  helper.WriteTorchTensor(node_type_offset_);
  helper.WriteTorchTensor(type_per_edge_);
788
789
  helper.WriteTorchTensorDict(TensorizeDict(node_type_to_id_));
  helper.WriteTorchTensorDict(TensorizeDict(edge_type_to_id_));
790
  helper.WriteTorchTensorDict(node_attributes_);
791
792
793
  helper.WriteTorchTensorDict(edge_attributes_);
  helper.Flush();
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
794
795
}

796
797
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::LoadFromSharedMemory(
798
    const std::string& shared_memory_name) {
799
  SharedMemoryHelper helper(shared_memory_name);
800
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
801
802
}

803
void FusedCSCSamplingGraph::HoldSharedMemoryObject(
804
805
806
807
808
    SharedMemoryPtr tensor_metadata_shm, SharedMemoryPtr tensor_data_shm) {
  tensor_metadata_shm_ = std::move(tensor_metadata_shm);
  tensor_data_shm_ = std::move(tensor_data_shm);
}

809
810
811
812
int64_t NumPick(
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
813
814
815
816
817
818
819
820
821
822
823
  int64_t num_valid_neighbors = num_neighbors;
  if (probs_or_mask.has_value()) {
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
824
825
826
827
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

828
829
830
831
832
833
834
835
836
837
838
torch::Tensor TemporalMask(
    int64_t seed_timestamp, torch::Tensor csc_indices,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp,
    std::pair<int64_t, int64_t> edge_range) {
  auto [l, r] = edge_range;
  torch::Tensor mask = torch::ones({r - l}, torch::kBool);
  if (node_timestamp.has_value()) {
    auto neighbor_timestamp =
        node_timestamp.value().index_select(0, csc_indices.slice(0, l, r));
839
    mask &= neighbor_timestamp < seed_timestamp;
840
841
  }
  if (edge_timestamp.has_value()) {
842
    mask &= edge_timestamp.value().slice(0, l, r) < seed_timestamp;
843
844
845
846
847
848
849
  }
  if (probs_or_mask.has_value()) {
    mask &= probs_or_mask.value().slice(0, l, r) != 0;
  }
  return mask;
}

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
/**
 * @brief Fast path for temporal sampling without probability. It is used when
 * the number of neighbors is large. It randomly samples neighbors and checks
 * the timestamp of the neighbors. It is successful if the number of sampled
 * neighbors in kTriedThreshold trials is equal to the fanout.
 */
std::pair<bool, std::vector<int64_t>> FastTemporalPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices, int64_t fanout,
    bool replace, const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  constexpr int64_t kTriedThreshold = 1000;
  auto timestamp = utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset);
  std::vector<int64_t> sampled_edges;
  sampled_edges.reserve(fanout);
  std::set<int64_t> sampled_edge_set;
  int64_t sample_count = 0;
  int64_t tried = 0;
  while (sample_count < fanout && tried < kTriedThreshold) {
    int64_t edge_id =
        RandomEngine::ThreadLocal()->RandInt(offset, offset + num_neighbors);
    ++tried;
    if (!replace && sampled_edge_set.count(edge_id) > 0) {
      continue;
    }
    if (node_timestamp.has_value()) {
876
877
878
879
880
881
882
883
884
885
      bool flag = true;
      AT_DISPATCH_INDEX_TYPES(
          csc_indices.scalar_type(), "CheckNodeTimeStamp", ([&] {
            int64_t neighbor_id =
                utils::GetValueByIndex<index_t>(csc_indices, edge_id);
            if (utils::GetValueByIndex<int64_t>(
                    node_timestamp.value(), neighbor_id) >= timestamp)
              flag = false;
          }));
      if (!flag) continue;
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
    }
    if (edge_timestamp.has_value() &&
        utils::GetValueByIndex<int64_t>(edge_timestamp.value(), edge_id) >=
            timestamp) {
      continue;
    }
    if (!replace) {
      sampled_edge_set.insert(edge_id);
    }
    sampled_edges.push_back(edge_id);
    sample_count++;
  }
  if (sample_count < fanout) {
    return {false, {}};
  }
  return {true, sampled_edges};
}

904
905
906
907
908
909
int64_t TemporalNumPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indics, int64_t fanout,
    bool replace, const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
910
911
912
913
914
915
916
917
918
919
  constexpr int64_t kFastPathThreshold = 1000;
  if (num_neighbors > kFastPathThreshold && !probs_or_mask.has_value()) {
    // TODO: Currently we use the fast path both in TemporalNumPick and
    // TemporalPick. We may only sample once in TemporalNumPick and use the
    // sampled edges in TemporalPick to avoid sampling twice.
    auto [success, sampled_edges] = FastTemporalPick(
        seed_timestamp, csc_indics, fanout, replace, node_timestamp,
        edge_timestamp, seed_offset, offset, num_neighbors);
    if (success) return sampled_edges.size();
  }
920
921
922
923
924
925
926
927
928
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indics,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  int64_t num_valid_neighbors = utils::GetValueByIndex<int64_t>(mask.sum(), 0);
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
int64_t NumPickByEtype(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += NumPick(
              fanouts[etype], replace, probs_or_mask, etype_begin,
              etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
int64_t TemporalNumPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalNumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += TemporalNumPick(
              seed_timestamp, csc_indices, fanouts[etype], replace,
              probs_or_mask, node_timestamp, edge_timestamp, seed_offset,
              etype_begin, etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

993
994
995
996
997
998
999
1000
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1001
1002
1003
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
1004
1005
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
1006
 * @param replace Boolean indicating whether the sample is performed with or
1007
1008
1009
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
1010
1011
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1012
 */
1013
template <typename PickedType>
1014
inline int64_t UniformPick(
1015
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
1016
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
1017
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
1018
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
1019
    return num_neighbors;
1020
  } else if (replace) {
1021
1022
1023
1024
1025
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
1026
    return fanout;
1027
  } else {
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
1062
      return fanout;
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
1083
      return fanout;
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
1107
      return picked_set.size();
1108
    }
1109
1110
1111
  }
}

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
/** @brief An operator to perform non-uniform sampling. */
static torch::Tensor NonUniformPickOp(
    torch::Tensor probs, int64_t fanout, bool replace) {
  auto positive_probs_indices = probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
  if (num_positive_probs == 0) return torch::empty({0}, torch::kLong);
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
    return positive_probs_indices;
  }
  if (!replace) fanout = std::min(fanout, num_positive_probs);
  if (fanout == 0) return torch::empty({0}, torch::kLong);
  auto ret_tensor = torch::empty({fanout}, torch::kLong);
  auto ret_ptr = ret_tensor.data_ptr<int64_t>();
  AT_DISPATCH_FLOATING_TYPES(
      probs.scalar_type(), "MultinomialSampling", ([&] {
        auto probs_data_ptr = probs.data_ptr<scalar_t>();
        auto positive_probs_indices_ptr =
            positive_probs_indices.data_ptr<int64_t>();

        if (!replace) {
          // The algorithm is from gumbel softmax.
          // s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1).
          // Here we can apply exp to the formula which will not affect result
          // of argmax or topk. Then we have
          // s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
          // We can also simplify the formula above by
          // s = argmax( p / q ) where q ~ Exp(1).
          if (fanout == 1) {
            // Return argmax(p / q).
            scalar_t max_prob = 0;
            int64_t max_prob_index = -1;
            // We only care about the neighbors with non-zero probability.
            for (auto i = 0; i < num_positive_probs; ++i) {
              // Calculate (p / q) for the current neighbor.
              scalar_t current_prob =
                  probs_data_ptr[positive_probs_indices_ptr[i]] /
                  RandomEngine::ThreadLocal()->Exponential(1.);
              if (current_prob > max_prob) {
                max_prob = current_prob;
                max_prob_index = positive_probs_indices_ptr[i];
              }
            }
            ret_ptr[0] = max_prob_index;
          } else {
            // Return topk(p / q).
            std::vector<std::pair<scalar_t, int64_t>> q(num_positive_probs);
            for (auto i = 0; i < num_positive_probs; ++i) {
              q[i].first = probs_data_ptr[positive_probs_indices_ptr[i]] /
                           RandomEngine::ThreadLocal()->Exponential(1.);
              q[i].second = positive_probs_indices_ptr[i];
            }
            if (fanout < num_positive_probs / 64) {
              // Use partial_sort.
              std::partial_sort(
                  q.begin(), q.begin() + fanout, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            } else {
              // Use nth_element.
              std::nth_element(
                  q.begin(), q.begin() + fanout - 1, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            }
          }
        } else {
          // Calculate cumulative sum of probabilities.
          std::vector<scalar_t> prefix_sum_probs(num_positive_probs);
          scalar_t sum_probs = 0;
          for (auto i = 0; i < num_positive_probs; ++i) {
            sum_probs += probs_data_ptr[positive_probs_indices_ptr[i]];
            prefix_sum_probs[i] = sum_probs;
          }
          // Normalize.
          if ((sum_probs > 1.00001) || (sum_probs < 0.99999)) {
            for (auto i = 0; i < num_positive_probs; ++i) {
              prefix_sum_probs[i] /= sum_probs;
            }
          }
          for (auto i = 0; i < fanout; ++i) {
            // Sample a probability mass from a uniform distribution.
            double uniform_sample =
                RandomEngine::ThreadLocal()->Uniform(0., 1.);
            // Use a binary search to find the index.
            int sampled_index = std::lower_bound(
                                    prefix_sum_probs.begin(),
                                    prefix_sum_probs.end(), uniform_sample) -
                                prefix_sum_probs.begin();
            ret_ptr[i] = positive_probs_indices_ptr[sampled_index];
          }
        }
      }));
  return ret_tensor;
}

1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1227
1228
1229
1230
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
1231
1232
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
1233
 * @param replace Boolean indicating whether the sample is performed with or
1234
1235
1236
1237
1238
1239
1240
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
1241
1242
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1243
 */
1244
template <typename PickedType>
1245
inline int64_t NonUniformPick(
1246
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
1247
    const torch::TensorOptions& options, const torch::Tensor& probs_or_mask,
1248
    PickedType* picked_data_ptr) {
1249
  auto local_probs =
1250
1251
1252
      probs_or_mask.size(0) > num_neighbors
          ? probs_or_mask.slice(0, offset, offset + num_neighbors)
          : probs_or_mask;
1253
1254
1255
1256
1257
  auto picked_indices = NonUniformPickOp(local_probs, fanout, replace);
  auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
  for (int i = 0; i < picked_indices.numel(); ++i) {
    picked_data_ptr[i] =
        static_cast<PickedType>(picked_indices_ptr[i]) + offset;
1258
  }
1259
  return picked_indices.numel();
1260
1261
}

1262
template <typename PickedType>
1263
int64_t Pick(
1264
1265
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
1266
    const torch::optional<torch::Tensor>& probs_or_mask,
1267
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
1268
  if (probs_or_mask.has_value()) {
1269
    return NonUniformPick(
1270
        offset, num_neighbors, fanout, replace, options, probs_or_mask.value(),
1271
        picked_data_ptr);
1272
  } else {
1273
    return UniformPick(
1274
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1275
1276
1277
  }
}

1278
template <SamplerType S, typename PickedType>
1279
1280
1281
1282
1283
1284
int64_t TemporalPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors, int64_t fanout,
    bool replace, const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
1285
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args,
1286
    PickedType* picked_data_ptr) {
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
  constexpr int64_t kFastPathThreshold = 1000;
  if (S == SamplerType::NEIGHBOR && num_neighbors > kFastPathThreshold &&
      !probs_or_mask.has_value()) {
    auto [success, sampled_edges] = FastTemporalPick(
        seed_timestamp, csc_indices, fanout, replace, node_timestamp,
        edge_timestamp, seed_offset, offset, num_neighbors);
    if (success) {
      for (size_t i = 0; i < sampled_edges.size(); ++i) {
        picked_data_ptr[i] = static_cast<PickedType>(sampled_edges[i]);
      }
      return sampled_edges.size();
    }
  }
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indices,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  torch::Tensor masked_prob;
  if (probs_or_mask.has_value()) {
    masked_prob =
        probs_or_mask.value().slice(0, offset, offset + num_neighbors) * mask;
  } else {
    masked_prob = mask.to(torch::kFloat32);
  }
1311
1312
1313
1314
1315
1316
1317
1318
1319
  if constexpr (S == SamplerType::NEIGHBOR) {
    auto picked_indices = NonUniformPickOp(masked_prob, fanout, replace);
    auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
    for (int i = 0; i < picked_indices.numel(); ++i) {
      picked_data_ptr[i] =
          static_cast<PickedType>(picked_indices_ptr[i]) + offset;
    }
    return picked_indices.numel();
  }
1320
  if constexpr (is_labor(S)) {
1321
1322
1323
    return Pick(
        offset, num_neighbors, fanout, replace, options, masked_prob, args,
        picked_data_ptr);
1324
1325
1326
  }
}

1327
template <SamplerType S, typename PickedType>
1328
int64_t PickByEtype(
1329
1330
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
1331
    const torch::Tensor& type_per_edge,
1332
1333
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
1334
1335
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
1336
  int64_t pick_offset = 0;
1337
1338
1339
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
1340
1341
1342
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
1343
          TORCH_CHECK(
1344
              etype >= 0 && etype < (int64_t)fanouts.size(),
1345
              "Etype values exceed the number of fanouts.");
1346
          int64_t fanout = fanouts[etype];
1347
1348
1349
1350
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
1351
1352
          // Do sampling for one etype.
          if (fanout != 0) {
1353
            int64_t picked_count = Pick(
1354
                etype_begin, etype_end - etype_begin, fanout, replace, options,
1355
1356
                probs_or_mask, args, picked_data_ptr + pick_offset);
            pick_offset += picked_count;
1357
1358
1359
1360
          }
          etype_begin = etype_end;
        }
      }));
1361
  return pick_offset;
1362
1363
}

1364
template <SamplerType S, typename PickedType>
1365
1366
1367
1368
1369
1370
1371
int64_t TemporalPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options, const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
1372
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args,
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
    PickedType* picked_data_ptr) {
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
  int64_t pick_offset = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalPickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          int64_t fanout = fanouts[etype];
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          if (fanout != 0) {
            int64_t picked_count = TemporalPick(
                seed_timestamp, csc_indices, seed_offset, etype_begin,
                etype_end - etype_begin, fanout, replace, options,
1396
                probs_or_mask, node_timestamp, edge_timestamp, args,
1397
1398
1399
1400
1401
1402
1403
1404
1405
                picked_data_ptr + pick_offset);
            pick_offset += picked_count;
          }
          etype_begin = etype_end;
        }
      }));
  return pick_offset;
}

1406
1407
template <SamplerType S, typename PickedType>
std::enable_if_t<is_labor(S), int64_t> Pick(
1408
1409
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
1410
1411
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
1412
  if (fanout == 0) return 0;
1413
  if (probs_or_mask.has_value()) {
1414
    if (fanout < 0) {
1415
      return NonUniformPick(
1416
1417
          offset, num_neighbors, fanout, replace, options,
          probs_or_mask.value(), picked_data_ptr);
1418
    } else {
1419
      int64_t picked_count;
1420
1421
1422
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
1423
              picked_count = LaborPick<true, true, scalar_t>(
1424
1425
1426
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
1427
              picked_count = LaborPick<true, false, scalar_t>(
1428
1429
1430
1431
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
1432
      return picked_count;
1433
1434
    }
  } else if (fanout < 0) {
1435
    return UniformPick(
1436
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1437
  } else if (replace) {
1438
    return LaborPick<false, true, float>(
1439
        offset, num_neighbors, fanout, options,
1440
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1441
  } else {  // replace = false
1442
    return LaborPick<false, false, float>(
1443
        offset, num_neighbors, fanout, options,
1444
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1445
1446
1447
1448
1449
1450
1451
1452
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

1453
1454
1455
1456
1457
1458
1459
1460
namespace labor {

template <typename T>
inline T invcdf(T u, int64_t n, T rem) {
  constexpr T one = 1;
  return rem * (one - std::pow(one - u, one / n));
}

1461
template <typename T, typename seed_t>
1462
inline T jth_sorted_uniform_random(
1463
    seed_t seed, int64_t t, int64_t c, int64_t j, T& rem, int64_t n) {
1464
1465
1466
1467
1468
1469
1470
1471
  const T u = seed.uniform(t + j * c);
  // https://mathematica.stackexchange.com/a/256707
  rem -= invcdf(u, n, rem);
  return 1 - rem;
}

};  // namespace labor

1472
1473
1474
1475
1476
1477
1478
1479
1480
/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1481
1482
1483
1484
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
1485
1486
1487
1488
1489
1490
1491
1492
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
1493
1494
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1495
 */
1496
template <
1497
1498
1499
    bool NonUniform, bool Replace, typename ProbsType, SamplerType S,
    typename PickedType, int StackSize>
inline std::enable_if_t<is_labor(S), int64_t> LaborPick(
1500
1501
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
1502
1503
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
1504
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
1505
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
1506
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
1507
    return num_neighbors;
1508
1509
  }
  // Assuming max_degree of a vertex is <= 4 billion.
1510
1511
1512
1513
1514
1515
1516
1517
1518
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
1519
1520
1521
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
1522
1523
1524
  if (NonUniform && probs_or_mask.value().size(0) <= num_neighbors) {
    local_probs_data -= offset;
  }
1525
  AT_DISPATCH_INDEX_TYPES(
1526
      args.indices.scalar_type(), "LaborPickMain", ([&] {
1527
1528
        const auto local_indices_data =
            reinterpret_cast<index_t*>(args.indices.data_ptr()) + offset;
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
1551
1552
1553
1554
1555
1556
1557
1558
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
1559
1560
1561
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
1562
              [&](index_t t, int64_t j, uint32_t i) {
1563
                auto rnd = labor::jth_sorted_uniform_random(
1564
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
1565
1566
1567
1568
1569
1570
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
1571
1572
1573
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
1574
1575
1576
1577
1578
1579
1580
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
1581
                  remaining_data[i] = -1;
1582
1583
1584
1585
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1586
            const auto t = local_indices_data[i];
1587
1588
1589
1590
1591
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1592
            if (remaining_data[i] == -1) continue;
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
1618
            auto rnd = args.random_seed.uniform(t);  // r_t
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
1629
            auto rnd = args.random_seed.uniform(t);  // r_t
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
1642
1643
1644
1645
1646
1647
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
1648
  return num_sampled;
1649
1650
}

1651
1652
}  // namespace sampling
}  // namespace graphbolt