"tests/vscode:/vscode.git/clone" did not exist on "8ccb8206bf2791fd2cf43bf8ebc7ec51a3cfb720"
fused_csc_sampling_graph.cc 69.6 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file fused_csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
#include <graphbolt/cuda_sampling_ops.h>
8
#include <graphbolt/fused_csc_sampling_graph.h>
9
#include <graphbolt/serialize.h>
10
11
#include <torch/torch.h>

12
13
#include <algorithm>
#include <array>
14
15
#include <cmath>
#include <limits>
16
#include <numeric>
17
18
#include <tuple>
#include <vector>
19

20
#include "./macro.h"
21
#include "./random.h"
22
#include "./shared_memory_helper.h"
23
#include "./utils.h"
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
namespace {
torch::optional<torch::Dict<std::string, torch::Tensor>> TensorizeDict(
    const torch::optional<torch::Dict<std::string, int64_t>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, torch::Tensor> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), torch::tensor(pair.value(), torch::kInt64));
  }
  return result;
}

torch::optional<torch::Dict<std::string, int64_t>> DetensorizeDict(
    const torch::optional<torch::Dict<std::string, torch::Tensor>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, int64_t> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), pair.value().item<int64_t>());
  }
  return result;
}
}  // namespace

51
52
53
namespace graphbolt {
namespace sampling {

54
55
static const int kPickleVersion = 6199;

56
FusedCSCSamplingGraph::FusedCSCSamplingGraph(
57
    const torch::Tensor& indptr, const torch::Tensor& indices,
58
    const torch::optional<torch::Tensor>& node_type_offset,
59
    const torch::optional<torch::Tensor>& type_per_edge,
60
61
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
62
    const torch::optional<NodeAttrMap>& node_attributes,
63
    const torch::optional<EdgeAttrMap>& edge_attributes)
64
    : indptr_(indptr),
65
      indices_(indices),
66
      node_type_offset_(node_type_offset),
67
      type_per_edge_(type_per_edge),
68
69
      node_type_to_id_(node_type_to_id),
      edge_type_to_id_(edge_type_to_id),
70
      node_attributes_(node_attributes),
71
      edge_attributes_(edge_attributes) {
72
73
74
75
76
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

77
c10::intrusive_ptr<FusedCSCSamplingGraph> FusedCSCSamplingGraph::Create(
78
    const torch::Tensor& indptr, const torch::Tensor& indices,
79
    const torch::optional<torch::Tensor>& node_type_offset,
80
    const torch::optional<torch::Tensor>& type_per_edge,
81
82
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
83
    const torch::optional<NodeAttrMap>& node_attributes,
84
    const torch::optional<EdgeAttrMap>& edge_attributes) {
85
86
87
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
88
89
90
91
    TORCH_CHECK(node_type_to_id.has_value());
    TORCH_CHECK(
        offset.size(0) ==
        static_cast<int64_t>(node_type_to_id.value().size() + 1));
92
93
94
95
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
96
    TORCH_CHECK(edge_type_to_id.has_value());
97
  }
98
99
  if (node_attributes.has_value()) {
    for (const auto& pair : node_attributes.value()) {
100
101
102
103
104
105
      TORCH_CHECK(
          pair.value().size(0) == indptr.size(0) - 1,
          "Expected node_attribute.size(0) and num_nodes to be equal, "
          "but node_attribute.size(0) was ",
          pair.value().size(0), ", and num_nodes was ", indptr.size(0) - 1,
          ".");
106
107
    }
  }
108
109
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
110
111
112
113
114
      TORCH_CHECK(
          pair.value().size(0) == indices.size(0),
          "Expected edge_attribute.size(0) and num_edges to be equal, "
          "but edge_attribute.size(0) was ",
          pair.value().size(0), ", and num_edges was ", indices.size(0), ".");
115
116
    }
  }
117
  return c10::make_intrusive<FusedCSCSamplingGraph>(
118
      indptr, indices, node_type_offset, type_per_edge, node_type_to_id,
119
      edge_type_to_id, node_attributes, edge_attributes);
120
121
}

122
void FusedCSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
123
  const int64_t magic_num =
124
      read_from_archive<int64_t>(archive, "FusedCSCSamplingGraph/magic_num");
125
126
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
127
128
      "Magic numbers mismatch when loading FusedCSCSamplingGraph.");
  indptr_ =
129
130
131
132
133
134
135
      read_from_archive<torch::Tensor>(archive, "FusedCSCSamplingGraph/indptr");
  indices_ = read_from_archive<torch::Tensor>(
      archive, "FusedCSCSamplingGraph/indices");
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_offset")) {
    node_type_offset_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/node_type_offset");
136
  }
137
138
139
140
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_type_per_edge")) {
    type_per_edge_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/type_per_edge");
141
  }
142

143
144
145
146
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_to_id")) {
    node_type_to_id_ = read_from_archive<NodeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/node_type_to_id");
147
148
  }

149
150
151
152
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_type_to_id")) {
    edge_type_to_id_ = read_from_archive<EdgeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/edge_type_to_id");
153
154
  }

155
156
157
158
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_attributes")) {
    node_attributes_ = read_from_archive<NodeAttrMap>(
        archive, "FusedCSCSamplingGraph/node_attributes");
159
  }
160
161
162
163
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_attributes")) {
    edge_attributes_ = read_from_archive<EdgeAttrMap>(
        archive, "FusedCSCSamplingGraph/edge_attributes");
164
  }
165
166
}

167
168
169
170
171
172
void FusedCSCSamplingGraph::Save(
    torch::serialize::OutputArchive& archive) const {
  archive.write(
      "FusedCSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
  archive.write("FusedCSCSamplingGraph/indptr", indptr_);
  archive.write("FusedCSCSamplingGraph/indices", indices_);
173
  archive.write(
174
175
      "FusedCSCSamplingGraph/has_node_type_offset",
      node_type_offset_.has_value());
176
177
  if (node_type_offset_) {
    archive.write(
178
        "FusedCSCSamplingGraph/node_type_offset", node_type_offset_.value());
179
180
  }
  archive.write(
181
      "FusedCSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
182
  if (type_per_edge_) {
183
184
    archive.write(
        "FusedCSCSamplingGraph/type_per_edge", type_per_edge_.value());
185
  }
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  archive.write(
      "FusedCSCSamplingGraph/has_node_type_to_id",
      node_type_to_id_.has_value());
  if (node_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/node_type_to_id", node_type_to_id_.value());
  }
  archive.write(
      "FusedCSCSamplingGraph/has_edge_type_to_id",
      edge_type_to_id_.has_value());
  if (edge_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/edge_type_to_id", edge_type_to_id_.value());
  }
200
201
202
203
204
205
206
  archive.write(
      "FusedCSCSamplingGraph/has_node_attributes",
      node_attributes_.has_value());
  if (node_attributes_) {
    archive.write(
        "FusedCSCSamplingGraph/node_attributes", node_attributes_.value());
  }
207
  archive.write(
208
209
      "FusedCSCSamplingGraph/has_edge_attributes",
      edge_attributes_.has_value());
210
  if (edge_attributes_) {
211
212
    archive.write(
        "FusedCSCSamplingGraph/edge_attributes", edge_attributes_.value());
213
  }
214
215
}

216
void FusedCSCSamplingGraph::SetState(
217
218
219
220
221
222
223
224
225
    const torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>&
        state) {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  const auto& independent_tensors = state.at("independent_tensors");
  TORCH_CHECK(
      independent_tensors.at("version_number")
          .equal(torch::tensor({kPickleVersion})),
226
      "Version number mismatches when loading pickled FusedCSCSamplingGraph.")
227
228
229
230
231
232
233
234
235
  indptr_ = independent_tensors.at("indptr");
  indices_ = independent_tensors.at("indices");
  if (independent_tensors.find("node_type_offset") !=
      independent_tensors.end()) {
    node_type_offset_ = independent_tensors.at("node_type_offset");
  }
  if (independent_tensors.find("type_per_edge") != independent_tensors.end()) {
    type_per_edge_ = independent_tensors.at("type_per_edge");
  }
236
237
238
239
240
241
  if (state.find("node_type_to_id") != state.end()) {
    node_type_to_id_ = DetensorizeDict(state.at("node_type_to_id"));
  }
  if (state.find("edge_type_to_id") != state.end()) {
    edge_type_to_id_ = DetensorizeDict(state.at("edge_type_to_id"));
  }
242
243
244
  if (state.find("node_attributes") != state.end()) {
    node_attributes_ = state.at("node_attributes");
  }
245
246
247
248
249
250
  if (state.find("edge_attributes") != state.end()) {
    edge_attributes_ = state.at("edge_attributes");
  }
}

torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>
251
FusedCSCSamplingGraph::GetState() const {
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>> state;
  torch::Dict<std::string, torch::Tensor> independent_tensors;
  // Serialization version number. It indicates the serialization method of the
  // whole state.
  independent_tensors.insert("version_number", torch::tensor({kPickleVersion}));
  independent_tensors.insert("indptr", indptr_);
  independent_tensors.insert("indices", indices_);
  if (node_type_offset_.has_value()) {
    independent_tensors.insert("node_type_offset", node_type_offset_.value());
  }
  if (type_per_edge_.has_value()) {
    independent_tensors.insert("type_per_edge", type_per_edge_.value());
  }
  state.insert("independent_tensors", independent_tensors);
269
270
271
272
273
274
  if (node_type_to_id_.has_value()) {
    state.insert("node_type_to_id", TensorizeDict(node_type_to_id_).value());
  }
  if (edge_type_to_id_.has_value()) {
    state.insert("edge_type_to_id", TensorizeDict(edge_type_to_id_).value());
  }
275
276
277
  if (node_attributes_.has_value()) {
    state.insert("node_attributes", node_attributes_.value());
  }
278
279
280
281
282
283
  if (edge_attributes_.has_value()) {
    state.insert("edge_attributes", edge_attributes_.value());
  }
  return state;
}

284
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
285
    const torch::Tensor& nodes) const {
286
  if (utils::is_on_gpu(nodes) && utils::is_accessible_from_gpu(indptr_) &&
287
288
289
290
291
292
293
      utils::is_accessible_from_gpu(indices_) &&
      (!type_per_edge_.has_value() ||
       utils::is_accessible_from_gpu(type_per_edge_.value()))) {
    GRAPHBOLT_DISPATCH_CUDA_ONLY_DEVICE(c10::DeviceType::CUDA, "InSubgraph", {
      return ops::InSubgraph(indptr_, indices_, nodes, type_per_edge_);
    });
  }
294
295
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
296
297
  const auto num_seeds = nodes.size(0);
  torch::Tensor indptr = torch::zeros({num_seeds + 1}, indptr_.dtype());
298
  std::vector<torch::Tensor> indices_arr(num_seeds);
299
300
  torch::Tensor original_column_node_ids =
      torch::zeros({num_seeds}, indptr_.dtype());
301
302
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
303

304
  AT_DISPATCH_INDEX_TYPES(
305
306
307
308
      indptr_.scalar_type(), "InSubgraph", ([&] {
        torch::parallel_for(
            0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
              for (size_t i = start; i < end; ++i) {
309
310
311
                const auto node_id = nodes[i].item<index_t>();
                const auto start_idx = indptr_[node_id].item<index_t>();
                const auto end_idx = indptr_[node_id + 1].item<index_t>();
312
313
314
315
316
317
318
319
320
321
322
323
                indptr[i + 1] = end_idx - start_idx;
                original_column_node_ids[i] = node_id;
                indices_arr[i] = indices_.slice(0, start_idx, end_idx);
                edge_ids_arr[i] = torch::arange(start_idx, end_idx);
                if (type_per_edge_) {
                  type_per_edge_arr[i] =
                      type_per_edge_.value().slice(0, start_idx, end_idx);
                }
              }
            });
      }));

324
  return c10::make_intrusive<FusedSampledSubgraph>(
325
      indptr.cumsum(0), torch::cat(indices_arr), original_column_node_ids,
326
327
328
329
330
331
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
348
349
350
351
352
 * @return A lambda function (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors) -> torch::Tensor, which takes seed offset (the offset of the
 * seed to sample), offset (the starting edge ID of the given node) and
 * num_neighbors (number of neighbors) as params and returns the pick number of
 * the given node.
353
354
355
356
357
358
359
360
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&fanouts, replace, &probs_or_mask, &type_per_edge](
361
             int64_t seed_offset, int64_t offset, int64_t num_neighbors) {
362
363
364
365
366
367
368
369
370
371
    if (fanouts.size() > 1) {
      return NumPickByEtype(
          fanouts, replace, type_per_edge.value(), probs_or_mask, offset,
          num_neighbors);
    } else {
      return NumPick(fanouts[0], replace, probs_or_mask, offset, num_neighbors);
    }
  };
}

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
auto GetTemporalNumPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&seed_timestamp, &csc_indices, &fanouts, replace, &probs_or_mask,
          &type_per_edge, &node_timestamp, &edge_timestamp](
             int64_t seed_offset, int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return TemporalNumPickByEtype(
          seed_timestamp, csc_indices, fanouts, replace, type_per_edge.value(),
          probs_or_mask, node_timestamp, edge_timestamp, seed_offset, offset,
          num_neighbors);
    } else {
      return TemporalNumPick(
          seed_timestamp, csc_indices, fanouts[0], replace, probs_or_mask,
          node_timestamp, edge_timestamp, seed_offset, offset, num_neighbors);
    }
  };
}

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
414
415
416
417
418
 * @return A lambda function: (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors, PickedType* picked_data_ptr) -> torch::Tensor, which takes
 * seed_offset (the offset of the seed to sample), offset (the starting edge ID
 * of the given node) and num_neighbors (number of neighbors) as params and puts
 * the picked neighbors at the address specified by picked_data_ptr.
419
 */
420
template <SamplerType S>
421
422
423
424
425
426
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
427
428
             int64_t seed_offset, int64_t offset, int64_t num_neighbors,
             auto picked_data_ptr) {
429
430
431
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
432
433
434
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
435
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr);
436
    } else {
437
      int64_t num_sampled = Pick(
438
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
439
          args, picked_data_ptr);
440
441
442
443
      if (type_per_edge) {
        std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
      }
      return num_sampled;
444
445
446
447
    }
  };
}

448
template <SamplerType S>
449
450
451
452
453
454
455
auto GetTemporalPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args) {
  return
      [&seed_timestamp, &csc_indices, &fanouts, replace, &options,
       &type_per_edge, &probs_or_mask, &node_timestamp, &edge_timestamp, args](
          int64_t seed_offset, int64_t offset, int64_t num_neighbors,
          auto picked_data_ptr) {
        // If fanouts.size() > 1, perform sampling for each edge type of each
        // node; otherwise just sample once for each node with no regard of edge
        // types.
        if (fanouts.size() > 1) {
          return TemporalPickByEtype(
              seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
              fanouts, replace, options, type_per_edge.value(), probs_or_mask,
              node_timestamp, edge_timestamp, args, picked_data_ptr);
        } else {
          int64_t num_sampled = TemporalPick(
              seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
              fanouts[0], replace, options, probs_or_mask, node_timestamp,
              edge_timestamp, args, picked_data_ptr);
          if (type_per_edge.has_value()) {
            std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
          }
          return num_sampled;
        }
      };
481
482
}

483
template <typename NumPickFn, typename PickFn>
484
485
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::SampleNeighborsImpl(
486
487
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
488
  const int64_t num_nodes = nodes.size(0);
489
  const auto indptr_options = indptr_.options();
490
  torch::Tensor num_picked_neighbors_per_node =
491
      torch::empty({num_nodes + 1}, indptr_options);
492

493
494
495
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
496
497
498
499
500
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;

501
  AT_DISPATCH_INDEX_TYPES(
502
      indptr_.scalar_type(), "SampleNeighborsImplWrappedWithIndptr", ([&] {
503
504
        using indptr_t = index_t;
        AT_DISPATCH_INDEX_TYPES(
505
            nodes.scalar_type(), "SampleNeighborsImplWrappedWithNodes", ([&] {
506
              using nodes_t = index_t;
507
508
509
510
511
              const auto indptr_data = indptr_.data_ptr<indptr_t>();
              auto num_picked_neighbors_data_ptr =
                  num_picked_neighbors_per_node.data_ptr<indptr_t>();
              num_picked_neighbors_data_ptr[0] = 0;
              const auto nodes_data_ptr = nodes.data_ptr<nodes_t>();
512

513
514
515
516
517
518
519
520
521
522
523
524
              // Step 1. Calculate pick number of each node.
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      TORCH_CHECK(
                          nid >= 0 && nid < NumNodes(),
                          "The seed nodes' IDs should fall within the range of "
                          "the "
                          "graph's node IDs.");
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
525

526
527
528
                      num_picked_neighbors_data_ptr[i + 1] =
                          num_neighbors == 0
                              ? 0
529
                              : num_pick_fn(i, offset, num_neighbors);
530
531
                    }
                  });
532

533
534
535
536
              // Step 2. Calculate prefix sum to get total length and offsets of
              // each node. It's also the indptr of the generated subgraph.
              subgraph_indptr = num_picked_neighbors_per_node.cumsum(
                  0, indptr_.scalar_type());
537

538
539
540
541
542
543
544
545
546
547
              // Step 3. Allocate the tensor for picked neighbors.
              const auto total_length =
                  subgraph_indptr.data_ptr<indptr_t>()[num_nodes];
              picked_eids = torch::empty({total_length}, indptr_options);
              subgraph_indices =
                  torch::empty({total_length}, indices_.options());
              if (type_per_edge_.has_value()) {
                subgraph_type_per_edge = torch::empty(
                    {total_length}, type_per_edge_.value().options());
              }
548

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
              // Step 4. Pick neighbors for each node.
              auto picked_eids_data_ptr = picked_eids.data_ptr<indptr_t>();
              auto subgraph_indptr_data_ptr =
                  subgraph_indptr.data_ptr<indptr_t>();
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
                      const auto picked_number =
                          num_picked_neighbors_data_ptr[i + 1];
                      const auto picked_offset = subgraph_indptr_data_ptr[i];
                      if (picked_number > 0) {
                        auto actual_picked_count = pick_fn(
564
                            i, offset, num_neighbors,
565
566
567
568
569
570
                            picked_eids_data_ptr + picked_offset);
                        TORCH_CHECK(
                            actual_picked_count == picked_number,
                            "Actual picked count doesn't match the calculated "
                            "pick "
                            "number.");
571

572
573
                        // Step 5. Calculate other attributes and return the
                        // subgraph.
574
                        AT_DISPATCH_INDEX_TYPES(
575
576
577
                            subgraph_indices.scalar_type(),
                            "IndexSelectSubgraphIndices", ([&] {
                              auto subgraph_indices_data_ptr =
578
                                  subgraph_indices.data_ptr<index_t>();
579
                              auto indices_data_ptr =
580
                                  indices_.data_ptr<index_t>();
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
                              for (auto i = picked_offset;
                                   i < picked_offset + picked_number; ++i) {
                                subgraph_indices_data_ptr[i] =
                                    indices_data_ptr[picked_eids_data_ptr[i]];
                              }
                            }));
                        if (type_per_edge_.has_value()) {
                          AT_DISPATCH_INTEGRAL_TYPES(
                              subgraph_type_per_edge.value().scalar_type(),
                              "IndexSelectTypePerEdge", ([&] {
                                auto subgraph_type_per_edge_data_ptr =
                                    subgraph_type_per_edge.value()
                                        .data_ptr<scalar_t>();
                                auto type_per_edge_data_ptr =
                                    type_per_edge_.value().data_ptr<scalar_t>();
                                for (auto i = picked_offset;
                                     i < picked_offset + picked_number; ++i) {
                                  subgraph_type_per_edge_data_ptr[i] =
                                      type_per_edge_data_ptr
                                          [picked_eids_data_ptr[i]];
                                }
                              }));
603
                        }
604
605
606
607
                      }
                    }
                  });
            }));
608
      }));
609

610
611
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
612

613
  return c10::make_intrusive<FusedSampledSubgraph>(
614
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
615
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
616
617
}

618
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::SampleNeighbors(
619
    torch::optional<torch::Tensor> nodes, const std::vector<int64_t>& fanouts,
620
    bool replace, bool layer, bool return_eids,
621
622
623
    torch::optional<std::string> probs_name,
    torch::optional<torch::Tensor> random_seed,
    double seed2_contribution) const {
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
  auto probs_or_mask = this->EdgeAttribute(probs_name);

  // If nodes does not have a value, then we expect all arguments to be resident
  // on the GPU. If nodes has a value, then we expect them to be accessible from
  // GPU. This is required for the dispatch to work when CUDA is not available.
  if (((!nodes.has_value() && utils::is_on_gpu(indptr_) &&
        utils::is_on_gpu(indices_) &&
        (!probs_or_mask.has_value() ||
         utils::is_on_gpu(probs_or_mask.value())) &&
        (!type_per_edge_.has_value() ||
         utils::is_on_gpu(type_per_edge_.value()))) ||
       (nodes.has_value() && utils::is_on_gpu(nodes.value()) &&
        utils::is_accessible_from_gpu(indptr_) &&
        utils::is_accessible_from_gpu(indices_) &&
        (!probs_or_mask.has_value() ||
         utils::is_accessible_from_gpu(probs_or_mask.value())) &&
        (!type_per_edge_.has_value() ||
         utils::is_accessible_from_gpu(type_per_edge_.value())))) &&
      !replace) {
643
644
645
646
    GRAPHBOLT_DISPATCH_CUDA_ONLY_DEVICE(
        c10::DeviceType::CUDA, "SampleNeighbors", {
          return ops::SampleNeighbors(
              indptr_, indices_, nodes, fanouts, replace, layer, return_eids,
647
              type_per_edge_, probs_or_mask, random_seed, seed2_contribution);
648
649
        });
  }
650
  TORCH_CHECK(nodes.has_value(), "Nodes can not be None on the CPU.");
651
652

  if (probs_or_mask.has_value()) {
653
654
655
656
657
658
659
660
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
661

662
  if (layer) {
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    SamplerArgs<SamplerType::LABOR> args = [&] {
      if (random_seed.has_value()) {
        return SamplerArgs<SamplerType::LABOR>{
            indices_,
            {random_seed.value(), static_cast<float>(seed2_contribution)},
            NumNodes()};
      } else {
        return SamplerArgs<SamplerType::LABOR>{
            indices_,
            RandomEngine::ThreadLocal()->RandInt(
                static_cast<int64_t>(0), std::numeric_limits<int64_t>::max()),
            NumNodes()};
      }
    }();
677
    return SampleNeighborsImpl(
678
        nodes.value(), return_eids,
679
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
680
681
682
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
683
684
685
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
686
        nodes.value(), return_eids,
687
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
688
689
690
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
691
692
693
  }
}

694
695
696
697
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::TemporalSampleNeighbors(
    const torch::Tensor& input_nodes,
    const torch::Tensor& input_nodes_timestamp,
698
699
    const std::vector<int64_t>& fanouts, bool replace, bool layer,
    bool return_eids, torch::optional<std::string> probs_name,
700
701
702
    torch::optional<std::string> node_timestamp_attr_name,
    torch::optional<std::string> edge_timestamp_attr_name) const {
  // 1. Get probs_or_mask.
703
704
705
706
707
708
709
710
711
712
  auto probs_or_mask = this->EdgeAttribute(probs_name);
  if (probs_name.has_value()) {
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
713
  // 2. Get the timestamp attribute for nodes of the graph
714
  auto node_timestamp = this->NodeAttribute(node_timestamp_attr_name);
715
  // 3. Get the timestamp attribute for edges of the graph
716
717
  auto edge_timestamp = this->EdgeAttribute(edge_timestamp_attr_name);
  // 4. Call SampleNeighborsImpl
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
        input_nodes, return_eids,
        GetTemporalNumPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            type_per_edge_, probs_or_mask, node_timestamp, edge_timestamp),
        GetTemporalPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            indptr_.options(), type_per_edge_, probs_or_mask, node_timestamp,
            edge_timestamp, args));
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
        input_nodes, return_eids,
        GetTemporalNumPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            type_per_edge_, probs_or_mask, node_timestamp, edge_timestamp),
        GetTemporalPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            indptr_.options(), type_per_edge_, probs_or_mask, node_timestamp,
            edge_timestamp, args));
  }
743
744
}

745
746
static c10::intrusive_ptr<FusedCSCSamplingGraph>
BuildGraphFromSharedMemoryHelper(SharedMemoryHelper&& helper) {
747
748
749
750
751
  helper.InitializeRead();
  auto indptr = helper.ReadTorchTensor();
  auto indices = helper.ReadTorchTensor();
  auto node_type_offset = helper.ReadTorchTensor();
  auto type_per_edge = helper.ReadTorchTensor();
752
753
  auto node_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
  auto edge_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
754
  auto node_attributes = helper.ReadTorchTensorDict();
755
  auto edge_attributes = helper.ReadTorchTensorDict();
756
  auto graph = c10::make_intrusive<FusedCSCSamplingGraph>(
757
      indptr.value(), indices.value(), node_type_offset, type_per_edge,
758
      node_type_to_id, edge_type_to_id, node_attributes, edge_attributes);
759
760
761
  auto shared_memory = helper.ReleaseSharedMemory();
  graph->HoldSharedMemoryObject(
      std::move(shared_memory.first), std::move(shared_memory.second));
762
763
764
  return graph;
}

765
766
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::CopyToSharedMemory(
767
    const std::string& shared_memory_name) {
768
  SharedMemoryHelper helper(shared_memory_name);
769
770
771
772
  helper.WriteTorchTensor(indptr_);
  helper.WriteTorchTensor(indices_);
  helper.WriteTorchTensor(node_type_offset_);
  helper.WriteTorchTensor(type_per_edge_);
773
774
  helper.WriteTorchTensorDict(TensorizeDict(node_type_to_id_));
  helper.WriteTorchTensorDict(TensorizeDict(edge_type_to_id_));
775
  helper.WriteTorchTensorDict(node_attributes_);
776
777
778
  helper.WriteTorchTensorDict(edge_attributes_);
  helper.Flush();
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
779
780
}

781
782
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::LoadFromSharedMemory(
783
    const std::string& shared_memory_name) {
784
  SharedMemoryHelper helper(shared_memory_name);
785
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
786
787
}

788
void FusedCSCSamplingGraph::HoldSharedMemoryObject(
789
790
791
792
793
    SharedMemoryPtr tensor_metadata_shm, SharedMemoryPtr tensor_data_shm) {
  tensor_metadata_shm_ = std::move(tensor_metadata_shm);
  tensor_data_shm_ = std::move(tensor_data_shm);
}

794
795
796
797
int64_t NumPick(
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
798
799
800
801
802
803
804
805
806
807
808
  int64_t num_valid_neighbors = num_neighbors;
  if (probs_or_mask.has_value()) {
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
809
810
811
812
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

813
814
815
816
817
818
819
820
821
822
823
torch::Tensor TemporalMask(
    int64_t seed_timestamp, torch::Tensor csc_indices,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp,
    std::pair<int64_t, int64_t> edge_range) {
  auto [l, r] = edge_range;
  torch::Tensor mask = torch::ones({r - l}, torch::kBool);
  if (node_timestamp.has_value()) {
    auto neighbor_timestamp =
        node_timestamp.value().index_select(0, csc_indices.slice(0, l, r));
824
    mask &= neighbor_timestamp < seed_timestamp;
825
826
  }
  if (edge_timestamp.has_value()) {
827
    mask &= edge_timestamp.value().slice(0, l, r) < seed_timestamp;
828
829
830
831
832
833
834
  }
  if (probs_or_mask.has_value()) {
    mask &= probs_or_mask.value().slice(0, l, r) != 0;
  }
  return mask;
}

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
/**
 * @brief Fast path for temporal sampling without probability. It is used when
 * the number of neighbors is large. It randomly samples neighbors and checks
 * the timestamp of the neighbors. It is successful if the number of sampled
 * neighbors in kTriedThreshold trials is equal to the fanout.
 */
std::pair<bool, std::vector<int64_t>> FastTemporalPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices, int64_t fanout,
    bool replace, const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  constexpr int64_t kTriedThreshold = 1000;
  auto timestamp = utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset);
  std::vector<int64_t> sampled_edges;
  sampled_edges.reserve(fanout);
  std::set<int64_t> sampled_edge_set;
  int64_t sample_count = 0;
  int64_t tried = 0;
  while (sample_count < fanout && tried < kTriedThreshold) {
    int64_t edge_id =
        RandomEngine::ThreadLocal()->RandInt(offset, offset + num_neighbors);
    ++tried;
    if (!replace && sampled_edge_set.count(edge_id) > 0) {
      continue;
    }
    if (node_timestamp.has_value()) {
      int64_t neighbor_id =
          utils::GetValueByIndex<int64_t>(csc_indices, edge_id);
      if (utils::GetValueByIndex<int64_t>(
              node_timestamp.value(), neighbor_id) >= timestamp)
        continue;
    }
    if (edge_timestamp.has_value() &&
        utils::GetValueByIndex<int64_t>(edge_timestamp.value(), edge_id) >=
            timestamp) {
      continue;
    }
    if (!replace) {
      sampled_edge_set.insert(edge_id);
    }
    sampled_edges.push_back(edge_id);
    sample_count++;
  }
  if (sample_count < fanout) {
    return {false, {}};
  }
  return {true, sampled_edges};
}

884
885
886
887
888
889
int64_t TemporalNumPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indics, int64_t fanout,
    bool replace, const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
890
891
892
893
894
895
896
897
898
899
  constexpr int64_t kFastPathThreshold = 1000;
  if (num_neighbors > kFastPathThreshold && !probs_or_mask.has_value()) {
    // TODO: Currently we use the fast path both in TemporalNumPick and
    // TemporalPick. We may only sample once in TemporalNumPick and use the
    // sampled edges in TemporalPick to avoid sampling twice.
    auto [success, sampled_edges] = FastTemporalPick(
        seed_timestamp, csc_indics, fanout, replace, node_timestamp,
        edge_timestamp, seed_offset, offset, num_neighbors);
    if (success) return sampled_edges.size();
  }
900
901
902
903
904
905
906
907
908
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indics,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  int64_t num_valid_neighbors = utils::GetValueByIndex<int64_t>(mask.sum(), 0);
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
int64_t NumPickByEtype(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += NumPick(
              fanouts[etype], replace, probs_or_mask, etype_begin,
              etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
int64_t TemporalNumPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalNumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += TemporalNumPick(
              seed_timestamp, csc_indices, fanouts[etype], replace,
              probs_or_mask, node_timestamp, edge_timestamp, seed_offset,
              etype_begin, etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

973
974
975
976
977
978
979
980
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
981
982
983
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
984
985
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
986
 * @param replace Boolean indicating whether the sample is performed with or
987
988
989
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
990
991
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
992
 */
993
template <typename PickedType>
994
inline int64_t UniformPick(
995
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
996
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
997
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
998
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
999
    return num_neighbors;
1000
  } else if (replace) {
1001
1002
1003
1004
1005
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
1006
    return fanout;
1007
  } else {
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
1042
      return fanout;
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
1063
      return fanout;
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
1087
      return picked_set.size();
1088
    }
1089
1090
1091
  }
}

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
/** @brief An operator to perform non-uniform sampling. */
static torch::Tensor NonUniformPickOp(
    torch::Tensor probs, int64_t fanout, bool replace) {
  auto positive_probs_indices = probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
  if (num_positive_probs == 0) return torch::empty({0}, torch::kLong);
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
    return positive_probs_indices;
  }
  if (!replace) fanout = std::min(fanout, num_positive_probs);
  if (fanout == 0) return torch::empty({0}, torch::kLong);
  auto ret_tensor = torch::empty({fanout}, torch::kLong);
  auto ret_ptr = ret_tensor.data_ptr<int64_t>();
  AT_DISPATCH_FLOATING_TYPES(
      probs.scalar_type(), "MultinomialSampling", ([&] {
        auto probs_data_ptr = probs.data_ptr<scalar_t>();
        auto positive_probs_indices_ptr =
            positive_probs_indices.data_ptr<int64_t>();

        if (!replace) {
          // The algorithm is from gumbel softmax.
          // s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1).
          // Here we can apply exp to the formula which will not affect result
          // of argmax or topk. Then we have
          // s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
          // We can also simplify the formula above by
          // s = argmax( p / q ) where q ~ Exp(1).
          if (fanout == 1) {
            // Return argmax(p / q).
            scalar_t max_prob = 0;
            int64_t max_prob_index = -1;
            // We only care about the neighbors with non-zero probability.
            for (auto i = 0; i < num_positive_probs; ++i) {
              // Calculate (p / q) for the current neighbor.
              scalar_t current_prob =
                  probs_data_ptr[positive_probs_indices_ptr[i]] /
                  RandomEngine::ThreadLocal()->Exponential(1.);
              if (current_prob > max_prob) {
                max_prob = current_prob;
                max_prob_index = positive_probs_indices_ptr[i];
              }
            }
            ret_ptr[0] = max_prob_index;
          } else {
            // Return topk(p / q).
            std::vector<std::pair<scalar_t, int64_t>> q(num_positive_probs);
            for (auto i = 0; i < num_positive_probs; ++i) {
              q[i].first = probs_data_ptr[positive_probs_indices_ptr[i]] /
                           RandomEngine::ThreadLocal()->Exponential(1.);
              q[i].second = positive_probs_indices_ptr[i];
            }
            if (fanout < num_positive_probs / 64) {
              // Use partial_sort.
              std::partial_sort(
                  q.begin(), q.begin() + fanout, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            } else {
              // Use nth_element.
              std::nth_element(
                  q.begin(), q.begin() + fanout - 1, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            }
          }
        } else {
          // Calculate cumulative sum of probabilities.
          std::vector<scalar_t> prefix_sum_probs(num_positive_probs);
          scalar_t sum_probs = 0;
          for (auto i = 0; i < num_positive_probs; ++i) {
            sum_probs += probs_data_ptr[positive_probs_indices_ptr[i]];
            prefix_sum_probs[i] = sum_probs;
          }
          // Normalize.
          if ((sum_probs > 1.00001) || (sum_probs < 0.99999)) {
            for (auto i = 0; i < num_positive_probs; ++i) {
              prefix_sum_probs[i] /= sum_probs;
            }
          }
          for (auto i = 0; i < fanout; ++i) {
            // Sample a probability mass from a uniform distribution.
            double uniform_sample =
                RandomEngine::ThreadLocal()->Uniform(0., 1.);
            // Use a binary search to find the index.
            int sampled_index = std::lower_bound(
                                    prefix_sum_probs.begin(),
                                    prefix_sum_probs.end(), uniform_sample) -
                                prefix_sum_probs.begin();
            ret_ptr[i] = positive_probs_indices_ptr[sampled_index];
          }
        }
      }));
  return ret_tensor;
}

1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1207
1208
1209
1210
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
1211
1212
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
1213
 * @param replace Boolean indicating whether the sample is performed with or
1214
1215
1216
1217
1218
1219
1220
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
1221
1222
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1223
 */
1224
template <typename PickedType>
1225
inline int64_t NonUniformPick(
1226
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
1227
    const torch::TensorOptions& options, const torch::Tensor& probs_or_mask,
1228
    PickedType* picked_data_ptr) {
1229
  auto local_probs =
1230
1231
1232
      probs_or_mask.size(0) > num_neighbors
          ? probs_or_mask.slice(0, offset, offset + num_neighbors)
          : probs_or_mask;
1233
1234
1235
1236
1237
  auto picked_indices = NonUniformPickOp(local_probs, fanout, replace);
  auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
  for (int i = 0; i < picked_indices.numel(); ++i) {
    picked_data_ptr[i] =
        static_cast<PickedType>(picked_indices_ptr[i]) + offset;
1238
  }
1239
  return picked_indices.numel();
1240
1241
}

1242
template <typename PickedType>
1243
int64_t Pick(
1244
1245
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
1246
    const torch::optional<torch::Tensor>& probs_or_mask,
1247
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
1248
  if (probs_or_mask.has_value()) {
1249
    return NonUniformPick(
1250
        offset, num_neighbors, fanout, replace, options, probs_or_mask.value(),
1251
        picked_data_ptr);
1252
  } else {
1253
    return UniformPick(
1254
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1255
1256
1257
  }
}

1258
template <SamplerType S, typename PickedType>
1259
1260
1261
1262
1263
1264
int64_t TemporalPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors, int64_t fanout,
    bool replace, const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
1265
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args,
1266
    PickedType* picked_data_ptr) {
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
  constexpr int64_t kFastPathThreshold = 1000;
  if (S == SamplerType::NEIGHBOR && num_neighbors > kFastPathThreshold &&
      !probs_or_mask.has_value()) {
    auto [success, sampled_edges] = FastTemporalPick(
        seed_timestamp, csc_indices, fanout, replace, node_timestamp,
        edge_timestamp, seed_offset, offset, num_neighbors);
    if (success) {
      for (size_t i = 0; i < sampled_edges.size(); ++i) {
        picked_data_ptr[i] = static_cast<PickedType>(sampled_edges[i]);
      }
      return sampled_edges.size();
    }
  }
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indices,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  torch::Tensor masked_prob;
  if (probs_or_mask.has_value()) {
    masked_prob =
        probs_or_mask.value().slice(0, offset, offset + num_neighbors) * mask;
  } else {
    masked_prob = mask.to(torch::kFloat32);
  }
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
  if constexpr (S == SamplerType::NEIGHBOR) {
    auto picked_indices = NonUniformPickOp(masked_prob, fanout, replace);
    auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
    for (int i = 0; i < picked_indices.numel(); ++i) {
      picked_data_ptr[i] =
          static_cast<PickedType>(picked_indices_ptr[i]) + offset;
    }
    return picked_indices.numel();
  }
  if constexpr (S == SamplerType::LABOR) {
    return Pick(
        offset, num_neighbors, fanout, replace, options, masked_prob, args,
        picked_data_ptr);
1304
1305
1306
  }
}

1307
template <SamplerType S, typename PickedType>
1308
int64_t PickByEtype(
1309
1310
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
1311
    const torch::Tensor& type_per_edge,
1312
1313
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
1314
1315
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
1316
  int64_t pick_offset = 0;
1317
1318
1319
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
1320
1321
1322
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
1323
          TORCH_CHECK(
1324
              etype >= 0 && etype < (int64_t)fanouts.size(),
1325
              "Etype values exceed the number of fanouts.");
1326
          int64_t fanout = fanouts[etype];
1327
1328
1329
1330
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
1331
1332
          // Do sampling for one etype.
          if (fanout != 0) {
1333
            int64_t picked_count = Pick(
1334
                etype_begin, etype_end - etype_begin, fanout, replace, options,
1335
1336
                probs_or_mask, args, picked_data_ptr + pick_offset);
            pick_offset += picked_count;
1337
1338
1339
1340
          }
          etype_begin = etype_end;
        }
      }));
1341
  return pick_offset;
1342
1343
}

1344
template <SamplerType S, typename PickedType>
1345
1346
1347
1348
1349
1350
1351
int64_t TemporalPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options, const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
1352
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args,
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
    PickedType* picked_data_ptr) {
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
  int64_t pick_offset = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalPickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          int64_t fanout = fanouts[etype];
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          if (fanout != 0) {
            int64_t picked_count = TemporalPick(
                seed_timestamp, csc_indices, seed_offset, etype_begin,
                etype_end - etype_begin, fanout, replace, options,
1376
                probs_or_mask, node_timestamp, edge_timestamp, args,
1377
1378
1379
1380
1381
1382
1383
1384
1385
                picked_data_ptr + pick_offset);
            pick_offset += picked_count;
          }
          etype_begin = etype_end;
        }
      }));
  return pick_offset;
}

1386
template <typename PickedType>
1387
int64_t Pick(
1388
1389
1390
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
1391
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
1392
  if (fanout == 0) return 0;
1393
  if (probs_or_mask.has_value()) {
1394
    if (fanout < 0) {
1395
      return NonUniformPick(
1396
1397
          offset, num_neighbors, fanout, replace, options,
          probs_or_mask.value(), picked_data_ptr);
1398
    } else {
1399
      int64_t picked_count;
1400
1401
1402
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
1403
              picked_count = LaborPick<true, true, scalar_t>(
1404
1405
1406
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
1407
              picked_count = LaborPick<true, false, scalar_t>(
1408
1409
1410
1411
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
1412
      return picked_count;
1413
1414
    }
  } else if (fanout < 0) {
1415
    return UniformPick(
1416
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1417
  } else if (replace) {
1418
    return LaborPick<false, true, float>(
1419
        offset, num_neighbors, fanout, options,
1420
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1421
  } else {  // replace = false
1422
    return LaborPick<false, false, float>(
1423
        offset, num_neighbors, fanout, options,
1424
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1425
1426
1427
1428
1429
1430
1431
1432
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
namespace labor {

template <typename T>
inline T invcdf(T u, int64_t n, T rem) {
  constexpr T one = 1;
  return rem * (one - std::pow(one - u, one / n));
}

template <typename T>
inline T jth_sorted_uniform_random(
    continuous_seed seed, int64_t t, int64_t c, int64_t j, T& rem, int64_t n) {
  const T u = seed.uniform(t + j * c);
  // https://mathematica.stackexchange.com/a/256707
  rem -= invcdf(u, n, rem);
  return 1 - rem;
}

};  // namespace labor

1452
1453
1454
1455
1456
1457
1458
1459
1460
/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1461
1462
1463
1464
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
1465
1466
1467
1468
1469
1470
1471
1472
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
1473
1474
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1475
 */
1476
template <
1477
1478
    bool NonUniform, bool Replace, typename ProbsType, typename PickedType,
    int StackSize>
1479
inline int64_t LaborPick(
1480
1481
1482
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
1483
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
1484
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
1485
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
1486
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
1487
    return num_neighbors;
1488
1489
  }
  // Assuming max_degree of a vertex is <= 4 billion.
1490
1491
1492
1493
1494
1495
1496
1497
1498
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
1499
1500
1501
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
1502
1503
1504
  if (NonUniform && probs_or_mask.value().size(0) <= num_neighbors) {
    local_probs_data -= offset;
  }
1505
  AT_DISPATCH_INDEX_TYPES(
1506
      args.indices.scalar_type(), "LaborPickMain", ([&] {
1507
1508
        const index_t* local_indices_data =
            args.indices.data_ptr<index_t>() + offset;
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
1531
1532
1533
1534
1535
1536
1537
1538
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
1539
1540
1541
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
1542
              [&](index_t t, int64_t j, uint32_t i) {
1543
                auto rnd = labor::jth_sorted_uniform_random(
1544
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
1545
1546
1547
1548
1549
1550
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
1551
1552
1553
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
1554
1555
1556
1557
1558
1559
1560
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
1561
                  remaining_data[i] = -1;
1562
1563
1564
1565
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1566
            const auto t = local_indices_data[i];
1567
1568
1569
1570
1571
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1572
            if (remaining_data[i] == -1) continue;
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
1598
            auto rnd = args.random_seed.uniform(t);  // r_t
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
1609
            auto rnd = args.random_seed.uniform(t);  // r_t
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
1622
1623
1624
1625
1626
1627
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
1628
  return num_sampled;
1629
1630
}

1631
1632
}  // namespace sampling
}  // namespace graphbolt