Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
eb434893
Unverified
Commit
eb434893
authored
Nov 10, 2023
by
Rhett Ying
Committed by
GitHub
Nov 10, 2023
Browse files
[GraphBolt] fix incorrect indptr of in_subgraph (#6555)
parent
b35757a0
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
37 additions
and
33 deletions
+37
-33
graphbolt/src/fused_csc_sampling_graph.cc
graphbolt/src/fused_csc_sampling_graph.cc
+25
-22
python/dgl/graphbolt/impl/fused_csc_sampling_graph.py
python/dgl/graphbolt/impl/fused_csc_sampling_graph.py
+2
-1
tests/python/pytorch/graphbolt/impl/test_fused_csc_sampling_graph.py
...n/pytorch/graphbolt/impl/test_fused_csc_sampling_graph.py
+10
-10
No files found.
graphbolt/src/fused_csc_sampling_graph.cc
View file @
eb434893
...
@@ -186,33 +186,36 @@ c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
...
@@ -186,33 +186,36 @@ c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
const
torch
::
Tensor
&
nodes
)
const
{
const
torch
::
Tensor
&
nodes
)
const
{
using
namespace
torch
::
indexing
;
using
namespace
torch
::
indexing
;
const
int32_t
kDefaultGrainSize
=
100
;
const
int32_t
kDefaultGrainSize
=
100
;
torch
::
Tensor
indptr
=
torch
::
zeros_like
(
indptr_
);
const
auto
num_seeds
=
nodes
.
size
(
0
);
const
size_t
num_seeds
=
nodes
.
siz
e
(
0
);
torch
::
Tensor
indptr
=
torch
::
zeros
({
num_seeds
+
1
},
indptr_
.
dtyp
e
(
)
);
std
::
vector
<
torch
::
Tensor
>
indices_arr
(
num_seeds
);
std
::
vector
<
torch
::
Tensor
>
indices_arr
(
num_seeds
);
torch
::
Tensor
original_column_node_ids
=
torch
::
zeros
({
num_seeds
},
indptr_
.
dtype
());
std
::
vector
<
torch
::
Tensor
>
edge_ids_arr
(
num_seeds
);
std
::
vector
<
torch
::
Tensor
>
edge_ids_arr
(
num_seeds
);
std
::
vector
<
torch
::
Tensor
>
type_per_edge_arr
(
num_seeds
);
std
::
vector
<
torch
::
Tensor
>
type_per_edge_arr
(
num_seeds
);
torch
::
parallel_for
(
0
,
num_seeds
,
kDefaultGrainSize
,
[
&
](
size_t
start
,
size_t
end
)
{
for
(
size_t
i
=
start
;
i
<
end
;
++
i
)
{
const
int64_t
node_id
=
nodes
[
i
].
item
<
int64_t
>
();
const
int64_t
start_idx
=
indptr_
[
node_id
].
item
<
int64_t
>
();
const
int64_t
end_idx
=
indptr_
[
node_id
+
1
].
item
<
int64_t
>
();
indptr
[
node_id
+
1
]
=
end_idx
-
start_idx
;
indices_arr
[
i
]
=
indices_
.
slice
(
0
,
start_idx
,
end_idx
);
edge_ids_arr
[
i
]
=
torch
::
arange
(
start_idx
,
end_idx
);
if
(
type_per_edge_
)
{
type_per_edge_arr
[
i
]
=
type_per_edge_
.
value
().
slice
(
0
,
start_idx
,
end_idx
);
}
}
});
const
auto
&
nonzero_idx
=
torch
::
nonzero
(
indptr
).
reshape
(
-
1
);
AT_DISPATCH_INTEGRAL_TYPES
(
torch
::
Tensor
compact_indptr
=
indptr_
.
scalar_type
(),
"InSubgraph"
,
([
&
]
{
torch
::
zeros
({
nonzero_idx
.
size
(
0
)
+
1
},
indptr_
.
dtype
());
torch
::
parallel_for
(
compact_indptr
.
index_put_
({
Slice
(
1
,
None
)},
indptr
.
index
({
nonzero_idx
}));
0
,
num_seeds
,
kDefaultGrainSize
,
[
&
](
size_t
start
,
size_t
end
)
{
for
(
size_t
i
=
start
;
i
<
end
;
++
i
)
{
const
auto
node_id
=
nodes
[
i
].
item
<
scalar_t
>
();
const
auto
start_idx
=
indptr_
[
node_id
].
item
<
scalar_t
>
();
const
auto
end_idx
=
indptr_
[
node_id
+
1
].
item
<
scalar_t
>
();
indptr
[
i
+
1
]
=
end_idx
-
start_idx
;
original_column_node_ids
[
i
]
=
node_id
;
indices_arr
[
i
]
=
indices_
.
slice
(
0
,
start_idx
,
end_idx
);
edge_ids_arr
[
i
]
=
torch
::
arange
(
start_idx
,
end_idx
);
if
(
type_per_edge_
)
{
type_per_edge_arr
[
i
]
=
type_per_edge_
.
value
().
slice
(
0
,
start_idx
,
end_idx
);
}
}
});
}));
return
c10
::
make_intrusive
<
FusedSampledSubgraph
>
(
return
c10
::
make_intrusive
<
FusedSampledSubgraph
>
(
compact_
indptr
.
cumsum
(
0
),
torch
::
cat
(
indices_arr
),
nonzero_idx
-
1
,
indptr
.
cumsum
(
0
),
torch
::
cat
(
indices_arr
),
original_column_node_ids
,
torch
::
arange
(
0
,
NumNodes
()),
torch
::
cat
(
edge_ids_arr
),
torch
::
arange
(
0
,
NumNodes
()),
torch
::
cat
(
edge_ids_arr
),
type_per_edge_
type_per_edge_
?
torch
::
optional
<
torch
::
Tensor
>
{
torch
::
cat
(
type_per_edge_arr
)}
?
torch
::
optional
<
torch
::
Tensor
>
{
torch
::
cat
(
type_per_edge_arr
)}
...
...
python/dgl/graphbolt/impl/fused_csc_sampling_graph.py
View file @
eb434893
...
@@ -289,7 +289,8 @@ class FusedCSCSamplingGraph(SamplingGraph):
...
@@ -289,7 +289,8 @@ class FusedCSCSamplingGraph(SamplingGraph):
"""Return the subgraph induced on the inbound edges of the given nodes.
"""Return the subgraph induced on the inbound edges of the given nodes.
An in subgraph is equivalent to creating a new graph using the incoming
An in subgraph is equivalent to creating a new graph using the incoming
edges of the given nodes.
edges of the given nodes. Subgraph is compacted according to the order
of passed-in `nodes`.
Parameters
Parameters
----------
----------
...
...
tests/python/pytorch/graphbolt/impl/test_fused_csc_sampling_graph.py
View file @
eb434893
...
@@ -497,20 +497,20 @@ def test_in_subgraph_homogeneous():
...
@@ -497,20 +497,20 @@ def test_in_subgraph_homogeneous():
graph
=
gb
.
from_fused_csc
(
indptr
,
indices
)
graph
=
gb
.
from_fused_csc
(
indptr
,
indices
)
# Extract in subgraph.
# Extract in subgraph.
nodes
=
torch
.
LongTensor
([
1
,
3
,
4
])
nodes
=
torch
.
LongTensor
([
4
,
1
,
3
])
in_subgraph
=
graph
.
in_subgraph
(
nodes
)
in_subgraph
=
graph
.
in_subgraph
(
nodes
)
# Verify in subgraph.
# Verify in subgraph.
assert
torch
.
equal
(
assert
torch
.
equal
(
in_subgraph
.
node_pairs
[
0
],
torch
.
LongTensor
([
2
,
3
,
1
,
2
,
0
,
3
,
4
])
in_subgraph
.
node_pairs
[
0
],
torch
.
LongTensor
([
0
,
3
,
4
,
2
,
3
,
1
,
2
])
)
)
assert
torch
.
equal
(
assert
torch
.
equal
(
in_subgraph
.
node_pairs
[
1
],
torch
.
LongTensor
([
1
,
1
,
3
,
3
,
4
,
4
,
4
])
in_subgraph
.
node_pairs
[
1
],
torch
.
LongTensor
([
4
,
4
,
4
,
1
,
1
,
3
,
3
])
)
)
assert
in_subgraph
.
original_column_node_ids
is
None
assert
in_subgraph
.
original_column_node_ids
is
None
assert
in_subgraph
.
original_row_node_ids
is
None
assert
in_subgraph
.
original_row_node_ids
is
None
assert
torch
.
equal
(
assert
torch
.
equal
(
in_subgraph
.
original_edge_ids
,
torch
.
LongTensor
([
3
,
4
,
7
,
8
,
9
,
10
,
11
])
in_subgraph
.
original_edge_ids
,
torch
.
LongTensor
([
9
,
10
,
11
,
3
,
4
,
7
,
8
])
)
)
...
@@ -564,7 +564,7 @@ def test_in_subgraph_heterogeneous():
...
@@ -564,7 +564,7 @@ def test_in_subgraph_heterogeneous():
# Extract in subgraph.
# Extract in subgraph.
nodes
=
{
nodes
=
{
"N0"
:
torch
.
LongTensor
([
1
]),
"N0"
:
torch
.
LongTensor
([
1
]),
"N1"
:
torch
.
LongTensor
([
1
,
2
]),
"N1"
:
torch
.
LongTensor
([
2
,
1
]),
}
}
in_subgraph
=
graph
.
in_subgraph
(
nodes
)
in_subgraph
=
graph
.
in_subgraph
(
nodes
)
...
@@ -576,10 +576,10 @@ def test_in_subgraph_heterogeneous():
...
@@ -576,10 +576,10 @@ def test_in_subgraph_heterogeneous():
in_subgraph
.
node_pairs
[
"N0:R0:N0"
][
1
],
torch
.
LongTensor
([])
in_subgraph
.
node_pairs
[
"N0:R0:N0"
][
1
],
torch
.
LongTensor
([])
)
)
assert
torch
.
equal
(
assert
torch
.
equal
(
in_subgraph
.
node_pairs
[
"N0:R1:N1"
][
0
],
torch
.
LongTensor
([
1
,
0
])
in_subgraph
.
node_pairs
[
"N0:R1:N1"
][
0
],
torch
.
LongTensor
([
0
,
1
])
)
)
assert
torch
.
equal
(
assert
torch
.
equal
(
in_subgraph
.
node_pairs
[
"N0:R1:N1"
][
1
],
torch
.
LongTensor
([
1
,
2
])
in_subgraph
.
node_pairs
[
"N0:R1:N1"
][
1
],
torch
.
LongTensor
([
2
,
1
])
)
)
assert
torch
.
equal
(
assert
torch
.
equal
(
in_subgraph
.
node_pairs
[
"N1:R2:N0"
][
0
],
torch
.
LongTensor
([
0
,
1
])
in_subgraph
.
node_pairs
[
"N1:R2:N0"
][
0
],
torch
.
LongTensor
([
0
,
1
])
...
@@ -588,15 +588,15 @@ def test_in_subgraph_heterogeneous():
...
@@ -588,15 +588,15 @@ def test_in_subgraph_heterogeneous():
in_subgraph
.
node_pairs
[
"N1:R2:N0"
][
1
],
torch
.
LongTensor
([
1
,
1
])
in_subgraph
.
node_pairs
[
"N1:R2:N0"
][
1
],
torch
.
LongTensor
([
1
,
1
])
)
)
assert
torch
.
equal
(
assert
torch
.
equal
(
in_subgraph
.
node_pairs
[
"N1:R3:N1"
][
0
],
torch
.
LongTensor
([
0
,
1
,
2
])
in_subgraph
.
node_pairs
[
"N1:R3:N1"
][
0
],
torch
.
LongTensor
([
1
,
2
,
0
])
)
)
assert
torch
.
equal
(
assert
torch
.
equal
(
in_subgraph
.
node_pairs
[
"N1:R3:N1"
][
1
],
torch
.
LongTensor
([
1
,
2
,
2
])
in_subgraph
.
node_pairs
[
"N1:R3:N1"
][
1
],
torch
.
LongTensor
([
2
,
2
,
1
])
)
)
assert
in_subgraph
.
original_column_node_ids
is
None
assert
in_subgraph
.
original_column_node_ids
is
None
assert
in_subgraph
.
original_row_node_ids
is
None
assert
in_subgraph
.
original_row_node_ids
is
None
assert
torch
.
equal
(
assert
torch
.
equal
(
in_subgraph
.
original_edge_ids
,
torch
.
LongTensor
([
3
,
4
,
7
,
8
,
9
,
10
,
11
])
in_subgraph
.
original_edge_ids
,
torch
.
LongTensor
([
3
,
4
,
9
,
10
,
11
,
7
,
8
])
)
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment