fused_csc_sampling_graph.cc 49 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file fused_csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
#include <graphbolt/fused_csc_sampling_graph.h>
8
#include <graphbolt/serialize.h>
9
10
#include <torch/torch.h>

11
12
#include <algorithm>
#include <array>
13
14
#include <cmath>
#include <limits>
15
#include <numeric>
16
17
#include <tuple>
#include <vector>
18

19
#include "./random.h"
20
#include "./shared_memory_helper.h"
21

22
23
24
namespace graphbolt {
namespace sampling {

25
26
static const int kPickleVersion = 6199;

27
FusedCSCSamplingGraph::FusedCSCSamplingGraph(
28
    const torch::Tensor& indptr, const torch::Tensor& indices,
29
    const torch::optional<torch::Tensor>& node_type_offset,
30
31
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes)
32
    : indptr_(indptr),
33
      indices_(indices),
34
      node_type_offset_(node_type_offset),
35
36
      type_per_edge_(type_per_edge),
      edge_attributes_(edge_attributes) {
37
38
39
40
41
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

42
c10::intrusive_ptr<FusedCSCSamplingGraph> FusedCSCSamplingGraph::FromCSC(
43
    const torch::Tensor& indptr, const torch::Tensor& indices,
44
    const torch::optional<torch::Tensor>& node_type_offset,
45
46
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes) {
47
48
49
50
51
52
53
54
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
  }
55
56
57
58
59
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
60
  return c10::make_intrusive<FusedCSCSamplingGraph>(
61
      indptr, indices, node_type_offset, type_per_edge, edge_attributes);
62
63
}

64
void FusedCSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
65
  const int64_t magic_num =
66
      read_from_archive(archive, "FusedCSCSamplingGraph/magic_num").toInt();
67
68
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
69
70
71
72
73
74
      "Magic numbers mismatch when loading FusedCSCSamplingGraph.");
  indptr_ =
      read_from_archive(archive, "FusedCSCSamplingGraph/indptr").toTensor();
  indices_ =
      read_from_archive(archive, "FusedCSCSamplingGraph/indices").toTensor();
  if (read_from_archive(archive, "FusedCSCSamplingGraph/has_node_type_offset")
75
76
          .toBool()) {
    node_type_offset_ =
77
        read_from_archive(archive, "FusedCSCSamplingGraph/node_type_offset")
78
79
            .toTensor();
  }
80
  if (read_from_archive(archive, "FusedCSCSamplingGraph/has_type_per_edge")
81
82
          .toBool()) {
    type_per_edge_ =
83
84
        read_from_archive(archive, "FusedCSCSamplingGraph/type_per_edge")
            .toTensor();
85
  }
86
87
88
89

  // Optional edge attributes.
  torch::IValue has_edge_attributes;
  if (archive.try_read(
90
          "FusedCSCSamplingGraph/has_edge_attributes", has_edge_attributes) &&
91
92
      has_edge_attributes.toBool()) {
    torch::Dict<torch::IValue, torch::IValue> generic_dict =
93
        read_from_archive(archive, "FusedCSCSamplingGraph/edge_attributes")
94
95
96
97
98
99
100
101
102
103
104
            .toGenericDict();
    EdgeAttrMap target_dict;
    for (const auto& pair : generic_dict) {
      std::string key = pair.key().toStringRef();
      torch::Tensor value = pair.value().toTensor();
      // Use move to avoid copy.
      target_dict.insert(std::move(key), std::move(value));
    }
    // Same as above.
    edge_attributes_ = std::move(target_dict);
  }
105
106
}

107
108
109
110
111
112
void FusedCSCSamplingGraph::Save(
    torch::serialize::OutputArchive& archive) const {
  archive.write(
      "FusedCSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
  archive.write("FusedCSCSamplingGraph/indptr", indptr_);
  archive.write("FusedCSCSamplingGraph/indices", indices_);
113
  archive.write(
114
115
      "FusedCSCSamplingGraph/has_node_type_offset",
      node_type_offset_.has_value());
116
117
  if (node_type_offset_) {
    archive.write(
118
        "FusedCSCSamplingGraph/node_type_offset", node_type_offset_.value());
119
120
  }
  archive.write(
121
      "FusedCSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
122
  if (type_per_edge_) {
123
124
    archive.write(
        "FusedCSCSamplingGraph/type_per_edge", type_per_edge_.value());
125
  }
126
  archive.write(
127
128
      "FusedCSCSamplingGraph/has_edge_attributes",
      edge_attributes_.has_value());
129
  if (edge_attributes_) {
130
131
    archive.write(
        "FusedCSCSamplingGraph/edge_attributes", edge_attributes_.value());
132
  }
133
134
}

135
void FusedCSCSamplingGraph::SetState(
136
137
138
139
140
141
142
143
144
    const torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>&
        state) {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  const auto& independent_tensors = state.at("independent_tensors");
  TORCH_CHECK(
      independent_tensors.at("version_number")
          .equal(torch::tensor({kPickleVersion})),
145
      "Version number mismatches when loading pickled FusedCSCSamplingGraph.")
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
  indptr_ = independent_tensors.at("indptr");
  indices_ = independent_tensors.at("indices");
  if (independent_tensors.find("node_type_offset") !=
      independent_tensors.end()) {
    node_type_offset_ = independent_tensors.at("node_type_offset");
  }
  if (independent_tensors.find("type_per_edge") != independent_tensors.end()) {
    type_per_edge_ = independent_tensors.at("type_per_edge");
  }
  if (state.find("edge_attributes") != state.end()) {
    edge_attributes_ = state.at("edge_attributes");
  }
}

torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>
161
FusedCSCSamplingGraph::GetState() const {
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>> state;
  torch::Dict<std::string, torch::Tensor> independent_tensors;
  // Serialization version number. It indicates the serialization method of the
  // whole state.
  independent_tensors.insert("version_number", torch::tensor({kPickleVersion}));
  independent_tensors.insert("indptr", indptr_);
  independent_tensors.insert("indices", indices_);
  if (node_type_offset_.has_value()) {
    independent_tensors.insert("node_type_offset", node_type_offset_.value());
  }
  if (type_per_edge_.has_value()) {
    independent_tensors.insert("type_per_edge", type_per_edge_.value());
  }
  state.insert("independent_tensors", independent_tensors);
  if (edge_attributes_.has_value()) {
    state.insert("edge_attributes", edge_attributes_.value());
  }
  return state;
}

185
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
186
187
188
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
189
190
  const auto num_seeds = nodes.size(0);
  torch::Tensor indptr = torch::zeros({num_seeds + 1}, indptr_.dtype());
191
  std::vector<torch::Tensor> indices_arr(num_seeds);
192
193
  torch::Tensor original_column_node_ids =
      torch::zeros({num_seeds}, indptr_.dtype());
194
195
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

  AT_DISPATCH_INTEGRAL_TYPES(
      indptr_.scalar_type(), "InSubgraph", ([&] {
        torch::parallel_for(
            0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
              for (size_t i = start; i < end; ++i) {
                const auto node_id = nodes[i].item<scalar_t>();
                const auto start_idx = indptr_[node_id].item<scalar_t>();
                const auto end_idx = indptr_[node_id + 1].item<scalar_t>();
                indptr[i + 1] = end_idx - start_idx;
                original_column_node_ids[i] = node_id;
                indices_arr[i] = indices_.slice(0, start_idx, end_idx);
                edge_ids_arr[i] = torch::arange(start_idx, end_idx);
                if (type_per_edge_) {
                  type_per_edge_arr[i] =
                      type_per_edge_.value().slice(0, start_idx, end_idx);
                }
              }
            });
      }));

217
  return c10::make_intrusive<FusedSampledSubgraph>(
218
      indptr.cumsum(0), torch::cat(indices_arr), original_column_node_ids,
219
220
221
222
223
224
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
 * @return A lambda function (int64_t offset, int64_t num_neighbors) ->
 * torch::Tensor, which takes offset (the starting edge ID of the given node)
 * and num_neighbors (number of neighbors) as params and returns the pick number
 * of the given node.
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&fanouts, replace, &probs_or_mask, &type_per_edge](
             int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return NumPickByEtype(
          fanouts, replace, type_per_edge.value(), probs_or_mask, offset,
          num_neighbors);
    } else {
      return NumPick(fanouts[0], replace, probs_or_mask, offset, num_neighbors);
    }
  };
}

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
281
282
283
284
285
 * @return A lambda function: (int64_t offset, int64_t num_neighbors,
 * PickedType* picked_data_ptr) -> torch::Tensor, which takes offset (the
 * starting edge ID of the given node) and num_neighbors (number of neighbors)
 * as params and puts the picked neighbors at the address specified by
 * picked_data_ptr.
286
 */
287
template <SamplerType S>
288
289
290
291
292
293
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
294
295
296
297
             int64_t offset, int64_t num_neighbors, auto picked_data_ptr) {
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
298
299
300
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
301
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr);
302
    } else {
303
      int64_t num_sampled = Pick(
304
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
305
          args, picked_data_ptr);
306
307
308
309
      if (type_per_edge) {
        std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
      }
      return num_sampled;
310
311
312
313
    }
  };
}

314
template <typename NumPickFn, typename PickFn>
315
316
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::SampleNeighborsImpl(
317
318
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
319
  const int64_t num_nodes = nodes.size(0);
320
  const auto indptr_options = indptr_.options();
321
  torch::Tensor num_picked_neighbors_per_node =
322
      torch::empty({num_nodes + 1}, indptr_options);
323

324
325
326
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
327
328
329
330
331
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;

332
  AT_DISPATCH_INTEGRAL_TYPES(
333
334
335
336
337
338
339
340
341
342
      indptr_.scalar_type(), "SampleNeighborsImplWrappedWithIndptr", ([&] {
        using indptr_t = scalar_t;
        AT_DISPATCH_INTEGRAL_TYPES(
            nodes.scalar_type(), "SampleNeighborsImplWrappedWithNodes", ([&] {
              using nodes_t = scalar_t;
              const auto indptr_data = indptr_.data_ptr<indptr_t>();
              auto num_picked_neighbors_data_ptr =
                  num_picked_neighbors_per_node.data_ptr<indptr_t>();
              num_picked_neighbors_data_ptr[0] = 0;
              const auto nodes_data_ptr = nodes.data_ptr<nodes_t>();
343

344
345
346
347
348
349
350
351
352
353
354
355
              // Step 1. Calculate pick number of each node.
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      TORCH_CHECK(
                          nid >= 0 && nid < NumNodes(),
                          "The seed nodes' IDs should fall within the range of "
                          "the "
                          "graph's node IDs.");
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
356

357
358
359
360
361
362
                      num_picked_neighbors_data_ptr[i + 1] =
                          num_neighbors == 0
                              ? 0
                              : num_pick_fn(offset, num_neighbors);
                    }
                  });
363

364
365
366
367
              // Step 2. Calculate prefix sum to get total length and offsets of
              // each node. It's also the indptr of the generated subgraph.
              subgraph_indptr = num_picked_neighbors_per_node.cumsum(
                  0, indptr_.scalar_type());
368

369
370
371
372
373
374
375
376
377
378
              // Step 3. Allocate the tensor for picked neighbors.
              const auto total_length =
                  subgraph_indptr.data_ptr<indptr_t>()[num_nodes];
              picked_eids = torch::empty({total_length}, indptr_options);
              subgraph_indices =
                  torch::empty({total_length}, indices_.options());
              if (type_per_edge_.has_value()) {
                subgraph_type_per_edge = torch::empty(
                    {total_length}, type_per_edge_.value().options());
              }
379

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
              // Step 4. Pick neighbors for each node.
              auto picked_eids_data_ptr = picked_eids.data_ptr<indptr_t>();
              auto subgraph_indptr_data_ptr =
                  subgraph_indptr.data_ptr<indptr_t>();
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
                      const auto picked_number =
                          num_picked_neighbors_data_ptr[i + 1];
                      const auto picked_offset = subgraph_indptr_data_ptr[i];
                      if (picked_number > 0) {
                        auto actual_picked_count = pick_fn(
                            offset, num_neighbors,
                            picked_eids_data_ptr + picked_offset);
                        TORCH_CHECK(
                            actual_picked_count == picked_number,
                            "Actual picked count doesn't match the calculated "
                            "pick "
                            "number.");
402

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
                        // Step 5. Calculate other attributes and return the
                        // subgraph.
                        AT_DISPATCH_INTEGRAL_TYPES(
                            subgraph_indices.scalar_type(),
                            "IndexSelectSubgraphIndices", ([&] {
                              auto subgraph_indices_data_ptr =
                                  subgraph_indices.data_ptr<scalar_t>();
                              auto indices_data_ptr =
                                  indices_.data_ptr<scalar_t>();
                              for (auto i = picked_offset;
                                   i < picked_offset + picked_number; ++i) {
                                subgraph_indices_data_ptr[i] =
                                    indices_data_ptr[picked_eids_data_ptr[i]];
                              }
                            }));
                        if (type_per_edge_.has_value()) {
                          AT_DISPATCH_INTEGRAL_TYPES(
                              subgraph_type_per_edge.value().scalar_type(),
                              "IndexSelectTypePerEdge", ([&] {
                                auto subgraph_type_per_edge_data_ptr =
                                    subgraph_type_per_edge.value()
                                        .data_ptr<scalar_t>();
                                auto type_per_edge_data_ptr =
                                    type_per_edge_.value().data_ptr<scalar_t>();
                                for (auto i = picked_offset;
                                     i < picked_offset + picked_number; ++i) {
                                  subgraph_type_per_edge_data_ptr[i] =
                                      type_per_edge_data_ptr
                                          [picked_eids_data_ptr[i]];
                                }
                              }));
434
                        }
435
436
437
438
                      }
                    }
                  });
            }));
439
      }));
440

441
442
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
443

444
  return c10::make_intrusive<FusedSampledSubgraph>(
445
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
446
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
447
448
}

449
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::SampleNeighbors(
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
  torch::optional<torch::Tensor> probs_or_mask = torch::nullopt;
  if (probs_name.has_value() && !probs_name.value().empty()) {
    probs_or_mask = edge_attributes_.value().at(probs_name.value());
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
464

465
466
467
468
469
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
470
        nodes, return_eids,
471
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
472
473
474
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
475
476
477
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
478
        nodes, return_eids,
479
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
480
481
482
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
483
484
485
  }
}

486
std::tuple<torch::Tensor, torch::Tensor>
487
FusedCSCSamplingGraph::SampleNegativeEdgesUniform(
488
489
490
491
492
493
494
495
496
497
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

498
499
static c10::intrusive_ptr<FusedCSCSamplingGraph>
BuildGraphFromSharedMemoryHelper(SharedMemoryHelper&& helper) {
500
501
502
503
504
505
  helper.InitializeRead();
  auto indptr = helper.ReadTorchTensor();
  auto indices = helper.ReadTorchTensor();
  auto node_type_offset = helper.ReadTorchTensor();
  auto type_per_edge = helper.ReadTorchTensor();
  auto edge_attributes = helper.ReadTorchTensorDict();
506
  auto graph = c10::make_intrusive<FusedCSCSamplingGraph>(
507
508
      indptr.value(), indices.value(), node_type_offset, type_per_edge,
      edge_attributes);
509
510
511
  auto shared_memory = helper.ReleaseSharedMemory();
  graph->HoldSharedMemoryObject(
      std::move(shared_memory.first), std::move(shared_memory.second));
512
513
514
  return graph;
}

515
516
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::CopyToSharedMemory(
517
    const std::string& shared_memory_name) {
518
519
520
521
522
523
524
525
  SharedMemoryHelper helper(shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  helper.WriteTorchTensor(indptr_);
  helper.WriteTorchTensor(indices_);
  helper.WriteTorchTensor(node_type_offset_);
  helper.WriteTorchTensor(type_per_edge_);
  helper.WriteTorchTensorDict(edge_attributes_);
  helper.Flush();
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
526
527
}

528
529
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::LoadFromSharedMemory(
530
    const std::string& shared_memory_name) {
531
532
  SharedMemoryHelper helper(shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
533
534
}

535
void FusedCSCSamplingGraph::HoldSharedMemoryObject(
536
537
538
539
540
    SharedMemoryPtr tensor_metadata_shm, SharedMemoryPtr tensor_data_shm) {
  tensor_metadata_shm_ = std::move(tensor_metadata_shm);
  tensor_data_shm_ = std::move(tensor_data_shm);
}

541
542
543
544
int64_t NumPick(
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
545
546
547
548
549
550
551
552
553
554
555
  int64_t num_valid_neighbors = num_neighbors;
  if (probs_or_mask.has_value()) {
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

int64_t NumPickByEtype(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += NumPick(
              fanouts[etype], replace, probs_or_mask, etype_begin,
              etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

590
591
592
593
594
595
596
597
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
598
599
600
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
601
602
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
603
 * @param replace Boolean indicating whether the sample is performed with or
604
605
606
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
607
608
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
609
 */
610
template <typename PickedType>
611
inline int64_t UniformPick(
612
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
613
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
614
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
615
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
616
    return num_neighbors;
617
  } else if (replace) {
618
619
620
621
622
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
623
    return fanout;
624
  } else {
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
659
      return fanout;
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
680
      return fanout;
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
704
      return picked_set.size();
705
    }
706
707
708
  }
}

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
727
728
729
730
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
731
732
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
733
 * @param replace Boolean indicating whether the sample is performed with or
734
735
736
737
738
739
740
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
741
742
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
743
 */
744
template <typename PickedType>
745
inline int64_t NonUniformPick(
746
747
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
748
749
    const torch::optional<torch::Tensor>& probs_or_mask,
    PickedType* picked_data_ptr) {
750
751
752
753
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
  auto positive_probs_indices = local_probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
754
  if (num_positive_probs == 0) return 0;
755
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
756
757
758
759
    std::memcpy(
        picked_data_ptr,
        (positive_probs_indices + offset).data_ptr<PickedType>(),
        num_positive_probs * sizeof(PickedType));
760
    return num_positive_probs;
761
762
  } else {
    if (!replace) fanout = std::min(fanout, num_positive_probs);
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
    if (fanout == 0) return 0;
    AT_DISPATCH_FLOATING_TYPES(
        local_probs.scalar_type(), "MultinomialSampling", ([&] {
          auto local_probs_data_ptr = local_probs.data_ptr<scalar_t>();
          auto positive_probs_indices_ptr =
              positive_probs_indices.data_ptr<PickedType>();

          if (!replace) {
            // The algorithm is from gumbel softmax.
            // s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1).
            // Here we can apply exp to the formula which will not affect result
            // of argmax or topk. Then we have
            // s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
            // We can also simplify the formula above by
            // s = argmax( p / q ) where q ~ Exp(1).
            if (fanout == 1) {
              // Return argmax(p / q).
              scalar_t max_prob = 0;
              PickedType max_prob_index = -1;
              // We only care about the neighbors with non-zero probability.
              for (auto i = 0; i < num_positive_probs; ++i) {
                // Calculate (p / q) for the current neighbor.
                scalar_t current_prob =
                    local_probs_data_ptr[positive_probs_indices_ptr[i]] /
                    RandomEngine::ThreadLocal()->Exponential(1.);
                if (current_prob > max_prob) {
                  max_prob = current_prob;
                  max_prob_index = positive_probs_indices_ptr[i];
                }
              }
              *picked_data_ptr = max_prob_index + offset;
            } else {
              // Return topk(p / q).
              std::vector<std::pair<scalar_t, PickedType>> q(
                  num_positive_probs);
              for (auto i = 0; i < num_positive_probs; ++i) {
                q[i].first =
                    local_probs_data_ptr[positive_probs_indices_ptr[i]] /
                    RandomEngine::ThreadLocal()->Exponential(1.);
                q[i].second = positive_probs_indices_ptr[i];
              }
              if (fanout < num_positive_probs / 64) {
                // Use partial_sort.
                std::partial_sort(
                    q.begin(), q.begin() + fanout, q.end(), std::greater{});
                for (auto i = 0; i < fanout; ++i) {
                  picked_data_ptr[i] = q[i].second + offset;
                }
              } else {
                // Use nth_element.
                std::nth_element(
                    q.begin(), q.begin() + fanout - 1, q.end(), std::greater{});
                for (auto i = 0; i < fanout; ++i) {
                  picked_data_ptr[i] = q[i].second + offset;
                }
              }
            }
          } else {
            // Calculate cumulative sum of probabilities.
            std::vector<scalar_t> prefix_sum_probs(num_positive_probs);
            scalar_t sum_probs = 0;
            for (auto i = 0; i < num_positive_probs; ++i) {
              sum_probs += local_probs_data_ptr[positive_probs_indices_ptr[i]];
              prefix_sum_probs[i] = sum_probs;
            }
            // Normalize.
            if ((sum_probs > 1.00001) || (sum_probs < 0.99999)) {
              for (auto i = 0; i < num_positive_probs; ++i) {
                prefix_sum_probs[i] /= sum_probs;
              }
            }
            for (auto i = 0; i < fanout; ++i) {
              // Sample a probability mass from a uniform distribution.
              double uniform_sample =
                  RandomEngine::ThreadLocal()->Uniform(0., 1.);
              // Use a binary search to find the index.
              int sampled_index = std::lower_bound(
                                      prefix_sum_probs.begin(),
                                      prefix_sum_probs.end(), uniform_sample) -
                                  prefix_sum_probs.begin();
              picked_data_ptr[i] =
                  positive_probs_indices_ptr[sampled_index] + offset;
            }
          }
        }));
848
    return fanout;
849
850
851
  }
}

852
template <typename PickedType>
853
int64_t Pick(
854
855
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
856
    const torch::optional<torch::Tensor>& probs_or_mask,
857
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
858
  if (probs_or_mask.has_value()) {
859
    return NonUniformPick(
860
861
        offset, num_neighbors, fanout, replace, options, probs_or_mask,
        picked_data_ptr);
862
  } else {
863
    return UniformPick(
864
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
865
866
867
  }
}

868
template <SamplerType S, typename PickedType>
869
int64_t PickByEtype(
870
871
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
872
    const torch::Tensor& type_per_edge,
873
874
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
875
876
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
877
  int64_t pick_offset = 0;
878
879
880
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
881
882
883
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
884
          TORCH_CHECK(
885
              etype >= 0 && etype < (int64_t)fanouts.size(),
886
              "Etype values exceed the number of fanouts.");
887
          int64_t fanout = fanouts[etype];
888
889
890
891
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
892
893
          // Do sampling for one etype.
          if (fanout != 0) {
894
            int64_t picked_count = Pick(
895
                etype_begin, etype_end - etype_begin, fanout, replace, options,
896
897
                probs_or_mask, args, picked_data_ptr + pick_offset);
            pick_offset += picked_count;
898
899
900
901
          }
          etype_begin = etype_end;
        }
      }));
902
  return pick_offset;
903
904
}

905
template <typename PickedType>
906
int64_t Pick(
907
908
909
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
910
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
911
  if (fanout == 0) return 0;
912
  if (probs_or_mask.has_value()) {
913
    if (fanout < 0) {
914
      return NonUniformPick(
915
916
917
          offset, num_neighbors, fanout, replace, options, probs_or_mask,
          picked_data_ptr);
    } else {
918
      int64_t picked_count;
919
920
921
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
922
              picked_count = LaborPick<true, true, scalar_t>(
923
924
925
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
926
              picked_count = LaborPick<true, false, scalar_t>(
927
928
929
930
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
931
      return picked_count;
932
933
    }
  } else if (fanout < 0) {
934
    return UniformPick(
935
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
936
  } else if (replace) {
937
    return LaborPick<false, true, float>(
938
        offset, num_neighbors, fanout, options,
939
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
940
  } else {  // replace = false
941
    return LaborPick<false, false, float>(
942
        offset, num_neighbors, fanout, options,
943
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
961
962
963
964
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
965
966
967
968
969
970
971
972
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
973
974
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
975
 */
976
template <
977
978
    bool NonUniform, bool Replace, typename ProbsType, typename PickedType,
    int StackSize>
979
inline int64_t LaborPick(
980
981
982
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
983
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
984
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
985
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
986
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
987
    return num_neighbors;
988
989
  }
  // Assuming max_degree of a vertex is <= 4 billion.
990
991
992
993
994
995
996
997
998
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
999
1000
1001
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
  AT_DISPATCH_INTEGRAL_TYPES(
      args.indices.scalar_type(), "LaborPickMain", ([&] {
        const scalar_t* local_indices_data =
            args.indices.data_ptr<scalar_t>() + offset;
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
1028
1029
1030
1031
1032
1033
1034
1035
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
1036
1037
1038
1039
1040
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
              [&](scalar_t t, int64_t j, uint32_t i) {
                auto rnd = labor::jth_sorted_uniform_random(
1041
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
1042
1043
1044
1045
1046
1047
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
1048
1049
1050
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
1051
1052
1053
1054
1055
1056
1057
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
1058
                  remaining_data[i] = -1;
1059
1060
1061
1062
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1063
            const auto t = local_indices_data[i];
1064
1065
1066
1067
1068
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1069
            if (remaining_data[i] == -1) continue;
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
1121
1122
1123
1124
1125
1126
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
1127
  return num_sampled;
1128
1129
}

1130
1131
}  // namespace sampling
}  // namespace graphbolt