fused_csc_sampling_graph.cc 63 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file fused_csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
#include <graphbolt/fused_csc_sampling_graph.h>
8
#include <graphbolt/serialize.h>
9
10
#include <torch/torch.h>

11
12
#include <algorithm>
#include <array>
13
14
#include <cmath>
#include <limits>
15
#include <numeric>
16
17
#include <tuple>
#include <vector>
18

19
#include "./random.h"
20
#include "./shared_memory_helper.h"
21
#include "./utils.h"
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
namespace {
torch::optional<torch::Dict<std::string, torch::Tensor>> TensorizeDict(
    const torch::optional<torch::Dict<std::string, int64_t>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, torch::Tensor> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), torch::tensor(pair.value(), torch::kInt64));
  }
  return result;
}

torch::optional<torch::Dict<std::string, int64_t>> DetensorizeDict(
    const torch::optional<torch::Dict<std::string, torch::Tensor>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, int64_t> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), pair.value().item<int64_t>());
  }
  return result;
}
}  // namespace

49
50
51
namespace graphbolt {
namespace sampling {

52
53
static const int kPickleVersion = 6199;

54
FusedCSCSamplingGraph::FusedCSCSamplingGraph(
55
    const torch::Tensor& indptr, const torch::Tensor& indices,
56
    const torch::optional<torch::Tensor>& node_type_offset,
57
    const torch::optional<torch::Tensor>& type_per_edge,
58
59
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
60
    const torch::optional<NodeAttrMap>& node_attributes,
61
    const torch::optional<EdgeAttrMap>& edge_attributes)
62
    : indptr_(indptr),
63
      indices_(indices),
64
      node_type_offset_(node_type_offset),
65
      type_per_edge_(type_per_edge),
66
67
      node_type_to_id_(node_type_to_id),
      edge_type_to_id_(edge_type_to_id),
68
      node_attributes_(node_attributes),
69
      edge_attributes_(edge_attributes) {
70
71
72
73
74
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

75
c10::intrusive_ptr<FusedCSCSamplingGraph> FusedCSCSamplingGraph::Create(
76
    const torch::Tensor& indptr, const torch::Tensor& indices,
77
    const torch::optional<torch::Tensor>& node_type_offset,
78
    const torch::optional<torch::Tensor>& type_per_edge,
79
80
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
81
    const torch::optional<NodeAttrMap>& node_attributes,
82
    const torch::optional<EdgeAttrMap>& edge_attributes) {
83
84
85
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
86
87
88
89
    TORCH_CHECK(node_type_to_id.has_value());
    TORCH_CHECK(
        offset.size(0) ==
        static_cast<int64_t>(node_type_to_id.value().size() + 1));
90
91
92
93
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
94
    TORCH_CHECK(edge_type_to_id.has_value());
95
  }
96
97
98
99
100
  if (node_attributes.has_value()) {
    for (const auto& pair : node_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indptr.size(0) - 1);
    }
  }
101
102
103
104
105
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
106
  return c10::make_intrusive<FusedCSCSamplingGraph>(
107
      indptr, indices, node_type_offset, type_per_edge, node_type_to_id,
108
      edge_type_to_id, node_attributes, edge_attributes);
109
110
}

111
void FusedCSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
112
  const int64_t magic_num =
113
      read_from_archive<int64_t>(archive, "FusedCSCSamplingGraph/magic_num");
114
115
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
116
117
      "Magic numbers mismatch when loading FusedCSCSamplingGraph.");
  indptr_ =
118
119
120
121
122
123
124
      read_from_archive<torch::Tensor>(archive, "FusedCSCSamplingGraph/indptr");
  indices_ = read_from_archive<torch::Tensor>(
      archive, "FusedCSCSamplingGraph/indices");
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_offset")) {
    node_type_offset_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/node_type_offset");
125
  }
126
127
128
129
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_type_per_edge")) {
    type_per_edge_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/type_per_edge");
130
  }
131

132
133
134
135
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_to_id")) {
    node_type_to_id_ = read_from_archive<NodeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/node_type_to_id");
136
137
  }

138
139
140
141
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_type_to_id")) {
    edge_type_to_id_ = read_from_archive<EdgeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/edge_type_to_id");
142
143
  }

144
145
146
147
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_attributes")) {
    node_attributes_ = read_from_archive<NodeAttrMap>(
        archive, "FusedCSCSamplingGraph/node_attributes");
148
  }
149
150
151
152
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_attributes")) {
    edge_attributes_ = read_from_archive<EdgeAttrMap>(
        archive, "FusedCSCSamplingGraph/edge_attributes");
153
  }
154
155
}

156
157
158
159
160
161
void FusedCSCSamplingGraph::Save(
    torch::serialize::OutputArchive& archive) const {
  archive.write(
      "FusedCSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
  archive.write("FusedCSCSamplingGraph/indptr", indptr_);
  archive.write("FusedCSCSamplingGraph/indices", indices_);
162
  archive.write(
163
164
      "FusedCSCSamplingGraph/has_node_type_offset",
      node_type_offset_.has_value());
165
166
  if (node_type_offset_) {
    archive.write(
167
        "FusedCSCSamplingGraph/node_type_offset", node_type_offset_.value());
168
169
  }
  archive.write(
170
      "FusedCSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
171
  if (type_per_edge_) {
172
173
    archive.write(
        "FusedCSCSamplingGraph/type_per_edge", type_per_edge_.value());
174
  }
175
176
177
178
179
180
181
182
183
184
185
186
187
188
  archive.write(
      "FusedCSCSamplingGraph/has_node_type_to_id",
      node_type_to_id_.has_value());
  if (node_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/node_type_to_id", node_type_to_id_.value());
  }
  archive.write(
      "FusedCSCSamplingGraph/has_edge_type_to_id",
      edge_type_to_id_.has_value());
  if (edge_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/edge_type_to_id", edge_type_to_id_.value());
  }
189
190
191
192
193
194
195
  archive.write(
      "FusedCSCSamplingGraph/has_node_attributes",
      node_attributes_.has_value());
  if (node_attributes_) {
    archive.write(
        "FusedCSCSamplingGraph/node_attributes", node_attributes_.value());
  }
196
  archive.write(
197
198
      "FusedCSCSamplingGraph/has_edge_attributes",
      edge_attributes_.has_value());
199
  if (edge_attributes_) {
200
201
    archive.write(
        "FusedCSCSamplingGraph/edge_attributes", edge_attributes_.value());
202
  }
203
204
}

205
void FusedCSCSamplingGraph::SetState(
206
207
208
209
210
211
212
213
214
    const torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>&
        state) {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  const auto& independent_tensors = state.at("independent_tensors");
  TORCH_CHECK(
      independent_tensors.at("version_number")
          .equal(torch::tensor({kPickleVersion})),
215
      "Version number mismatches when loading pickled FusedCSCSamplingGraph.")
216
217
218
219
220
221
222
223
224
  indptr_ = independent_tensors.at("indptr");
  indices_ = independent_tensors.at("indices");
  if (independent_tensors.find("node_type_offset") !=
      independent_tensors.end()) {
    node_type_offset_ = independent_tensors.at("node_type_offset");
  }
  if (independent_tensors.find("type_per_edge") != independent_tensors.end()) {
    type_per_edge_ = independent_tensors.at("type_per_edge");
  }
225
226
227
228
229
230
  if (state.find("node_type_to_id") != state.end()) {
    node_type_to_id_ = DetensorizeDict(state.at("node_type_to_id"));
  }
  if (state.find("edge_type_to_id") != state.end()) {
    edge_type_to_id_ = DetensorizeDict(state.at("edge_type_to_id"));
  }
231
232
233
  if (state.find("node_attributes") != state.end()) {
    node_attributes_ = state.at("node_attributes");
  }
234
235
236
237
238
239
  if (state.find("edge_attributes") != state.end()) {
    edge_attributes_ = state.at("edge_attributes");
  }
}

torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>
240
FusedCSCSamplingGraph::GetState() const {
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>> state;
  torch::Dict<std::string, torch::Tensor> independent_tensors;
  // Serialization version number. It indicates the serialization method of the
  // whole state.
  independent_tensors.insert("version_number", torch::tensor({kPickleVersion}));
  independent_tensors.insert("indptr", indptr_);
  independent_tensors.insert("indices", indices_);
  if (node_type_offset_.has_value()) {
    independent_tensors.insert("node_type_offset", node_type_offset_.value());
  }
  if (type_per_edge_.has_value()) {
    independent_tensors.insert("type_per_edge", type_per_edge_.value());
  }
  state.insert("independent_tensors", independent_tensors);
258
259
260
261
262
263
  if (node_type_to_id_.has_value()) {
    state.insert("node_type_to_id", TensorizeDict(node_type_to_id_).value());
  }
  if (edge_type_to_id_.has_value()) {
    state.insert("edge_type_to_id", TensorizeDict(edge_type_to_id_).value());
  }
264
265
266
  if (node_attributes_.has_value()) {
    state.insert("node_attributes", node_attributes_.value());
  }
267
268
269
270
271
272
  if (edge_attributes_.has_value()) {
    state.insert("edge_attributes", edge_attributes_.value());
  }
  return state;
}

273
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
274
275
276
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
277
278
  const auto num_seeds = nodes.size(0);
  torch::Tensor indptr = torch::zeros({num_seeds + 1}, indptr_.dtype());
279
  std::vector<torch::Tensor> indices_arr(num_seeds);
280
281
  torch::Tensor original_column_node_ids =
      torch::zeros({num_seeds}, indptr_.dtype());
282
283
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

  AT_DISPATCH_INTEGRAL_TYPES(
      indptr_.scalar_type(), "InSubgraph", ([&] {
        torch::parallel_for(
            0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
              for (size_t i = start; i < end; ++i) {
                const auto node_id = nodes[i].item<scalar_t>();
                const auto start_idx = indptr_[node_id].item<scalar_t>();
                const auto end_idx = indptr_[node_id + 1].item<scalar_t>();
                indptr[i + 1] = end_idx - start_idx;
                original_column_node_ids[i] = node_id;
                indices_arr[i] = indices_.slice(0, start_idx, end_idx);
                edge_ids_arr[i] = torch::arange(start_idx, end_idx);
                if (type_per_edge_) {
                  type_per_edge_arr[i] =
                      type_per_edge_.value().slice(0, start_idx, end_idx);
                }
              }
            });
      }));

305
  return c10::make_intrusive<FusedSampledSubgraph>(
306
      indptr.cumsum(0), torch::cat(indices_arr), original_column_node_ids,
307
308
309
310
311
312
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
329
330
331
332
333
 * @return A lambda function (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors) -> torch::Tensor, which takes seed offset (the offset of the
 * seed to sample), offset (the starting edge ID of the given node) and
 * num_neighbors (number of neighbors) as params and returns the pick number of
 * the given node.
334
335
336
337
338
339
340
341
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&fanouts, replace, &probs_or_mask, &type_per_edge](
342
             int64_t seed_offset, int64_t offset, int64_t num_neighbors) {
343
344
345
346
347
348
349
350
351
352
    if (fanouts.size() > 1) {
      return NumPickByEtype(
          fanouts, replace, type_per_edge.value(), probs_or_mask, offset,
          num_neighbors);
    } else {
      return NumPick(fanouts[0], replace, probs_or_mask, offset, num_neighbors);
    }
  };
}

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
auto GetTemporalNumPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&seed_timestamp, &csc_indices, &fanouts, replace, &probs_or_mask,
          &type_per_edge, &node_timestamp, &edge_timestamp](
             int64_t seed_offset, int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return TemporalNumPickByEtype(
          seed_timestamp, csc_indices, fanouts, replace, type_per_edge.value(),
          probs_or_mask, node_timestamp, edge_timestamp, seed_offset, offset,
          num_neighbors);
    } else {
      return TemporalNumPick(
          seed_timestamp, csc_indices, fanouts[0], replace, probs_or_mask,
          node_timestamp, edge_timestamp, seed_offset, offset, num_neighbors);
    }
  };
}

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
395
396
397
398
399
 * @return A lambda function: (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors, PickedType* picked_data_ptr) -> torch::Tensor, which takes
 * seed_offset (the offset of the seed to sample), offset (the starting edge ID
 * of the given node) and num_neighbors (number of neighbors) as params and puts
 * the picked neighbors at the address specified by picked_data_ptr.
400
 */
401
template <SamplerType S>
402
403
404
405
406
407
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
408
409
             int64_t seed_offset, int64_t offset, int64_t num_neighbors,
             auto picked_data_ptr) {
410
411
412
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
413
414
415
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
416
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr);
417
    } else {
418
      int64_t num_sampled = Pick(
419
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
420
          args, picked_data_ptr);
421
422
423
424
      if (type_per_edge) {
        std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
      }
      return num_sampled;
425
426
427
428
    }
  };
}

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
auto GetTemporalPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp) {
  return [&seed_timestamp, &csc_indices, &fanouts, replace, &options,
          &type_per_edge, &probs_or_mask, &node_timestamp, &edge_timestamp](
             int64_t seed_offset, int64_t offset, int64_t num_neighbors,
             auto picked_data_ptr) {
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
    if (fanouts.size() > 1) {
      return TemporalPickByEtype(
          seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
          fanouts, replace, options, type_per_edge.value(), probs_or_mask,
          node_timestamp, edge_timestamp, picked_data_ptr);
    } else {
      int64_t num_sampled = TemporalPick(
          seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
          fanouts[0], replace, options, probs_or_mask, node_timestamp,
          edge_timestamp, picked_data_ptr);
      if (type_per_edge) {
        std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
      }
      return num_sampled;
    }
  };
}

462
template <typename NumPickFn, typename PickFn>
463
464
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::SampleNeighborsImpl(
465
466
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
467
  const int64_t num_nodes = nodes.size(0);
468
  const auto indptr_options = indptr_.options();
469
  torch::Tensor num_picked_neighbors_per_node =
470
      torch::empty({num_nodes + 1}, indptr_options);
471

472
473
474
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
475
476
477
478
479
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;

480
  AT_DISPATCH_INTEGRAL_TYPES(
481
482
483
484
485
486
487
488
489
490
      indptr_.scalar_type(), "SampleNeighborsImplWrappedWithIndptr", ([&] {
        using indptr_t = scalar_t;
        AT_DISPATCH_INTEGRAL_TYPES(
            nodes.scalar_type(), "SampleNeighborsImplWrappedWithNodes", ([&] {
              using nodes_t = scalar_t;
              const auto indptr_data = indptr_.data_ptr<indptr_t>();
              auto num_picked_neighbors_data_ptr =
                  num_picked_neighbors_per_node.data_ptr<indptr_t>();
              num_picked_neighbors_data_ptr[0] = 0;
              const auto nodes_data_ptr = nodes.data_ptr<nodes_t>();
491

492
493
494
495
496
497
498
499
500
501
502
503
              // Step 1. Calculate pick number of each node.
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      TORCH_CHECK(
                          nid >= 0 && nid < NumNodes(),
                          "The seed nodes' IDs should fall within the range of "
                          "the "
                          "graph's node IDs.");
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
504

505
506
507
                      num_picked_neighbors_data_ptr[i + 1] =
                          num_neighbors == 0
                              ? 0
508
                              : num_pick_fn(i, offset, num_neighbors);
509
510
                    }
                  });
511

512
513
514
515
              // Step 2. Calculate prefix sum to get total length and offsets of
              // each node. It's also the indptr of the generated subgraph.
              subgraph_indptr = num_picked_neighbors_per_node.cumsum(
                  0, indptr_.scalar_type());
516

517
518
519
520
521
522
523
524
525
526
              // Step 3. Allocate the tensor for picked neighbors.
              const auto total_length =
                  subgraph_indptr.data_ptr<indptr_t>()[num_nodes];
              picked_eids = torch::empty({total_length}, indptr_options);
              subgraph_indices =
                  torch::empty({total_length}, indices_.options());
              if (type_per_edge_.has_value()) {
                subgraph_type_per_edge = torch::empty(
                    {total_length}, type_per_edge_.value().options());
              }
527

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
              // Step 4. Pick neighbors for each node.
              auto picked_eids_data_ptr = picked_eids.data_ptr<indptr_t>();
              auto subgraph_indptr_data_ptr =
                  subgraph_indptr.data_ptr<indptr_t>();
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
                      const auto picked_number =
                          num_picked_neighbors_data_ptr[i + 1];
                      const auto picked_offset = subgraph_indptr_data_ptr[i];
                      if (picked_number > 0) {
                        auto actual_picked_count = pick_fn(
543
                            i, offset, num_neighbors,
544
545
546
547
548
549
                            picked_eids_data_ptr + picked_offset);
                        TORCH_CHECK(
                            actual_picked_count == picked_number,
                            "Actual picked count doesn't match the calculated "
                            "pick "
                            "number.");
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
                        // Step 5. Calculate other attributes and return the
                        // subgraph.
                        AT_DISPATCH_INTEGRAL_TYPES(
                            subgraph_indices.scalar_type(),
                            "IndexSelectSubgraphIndices", ([&] {
                              auto subgraph_indices_data_ptr =
                                  subgraph_indices.data_ptr<scalar_t>();
                              auto indices_data_ptr =
                                  indices_.data_ptr<scalar_t>();
                              for (auto i = picked_offset;
                                   i < picked_offset + picked_number; ++i) {
                                subgraph_indices_data_ptr[i] =
                                    indices_data_ptr[picked_eids_data_ptr[i]];
                              }
                            }));
                        if (type_per_edge_.has_value()) {
                          AT_DISPATCH_INTEGRAL_TYPES(
                              subgraph_type_per_edge.value().scalar_type(),
                              "IndexSelectTypePerEdge", ([&] {
                                auto subgraph_type_per_edge_data_ptr =
                                    subgraph_type_per_edge.value()
                                        .data_ptr<scalar_t>();
                                auto type_per_edge_data_ptr =
                                    type_per_edge_.value().data_ptr<scalar_t>();
                                for (auto i = picked_offset;
                                     i < picked_offset + picked_number; ++i) {
                                  subgraph_type_per_edge_data_ptr[i] =
                                      type_per_edge_data_ptr
                                          [picked_eids_data_ptr[i]];
                                }
                              }));
582
                        }
583
584
585
586
                      }
                    }
                  });
            }));
587
      }));
588

589
590
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
591

592
  return c10::make_intrusive<FusedSampledSubgraph>(
593
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
594
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
595
596
}

597
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::SampleNeighbors(
598
599
600
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
601
602
  auto probs_or_mask = this->EdgeAttribute(probs_name);
  if (probs_name.has_value()) {
603
604
605
606
607
608
609
610
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
611

612
613
614
615
616
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
617
        nodes, return_eids,
618
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
619
620
621
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
622
623
624
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
625
        nodes, return_eids,
626
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
627
628
629
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
630
631
632
  }
}

633
634
635
636
637
638
639
640
641
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::TemporalSampleNeighbors(
    const torch::Tensor& input_nodes,
    const torch::Tensor& input_nodes_timestamp,
    const std::vector<int64_t>& fanouts, bool replace, bool return_eids,
    torch::optional<std::string> probs_name,
    torch::optional<std::string> node_timestamp_attr_name,
    torch::optional<std::string> edge_timestamp_attr_name) const {
  // 1. Get probs_or_mask.
642
643
644
645
646
647
648
649
650
651
  auto probs_or_mask = this->EdgeAttribute(probs_name);
  if (probs_name.has_value()) {
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
652
  // 2. Get the timestamp attribute for nodes of the graph
653
  auto node_timestamp = this->NodeAttribute(node_timestamp_attr_name);
654
  // 3. Get the timestamp attribute for edges of the graph
655
656
657
658
659
660
661
662
663
664
665
  auto edge_timestamp = this->EdgeAttribute(edge_timestamp_attr_name);
  // 4. Call SampleNeighborsImpl
  return SampleNeighborsImpl(
      input_nodes, return_eids,
      GetTemporalNumPickFn(
          input_nodes_timestamp, this->indices_, fanouts, replace,
          type_per_edge_, probs_or_mask, node_timestamp, edge_timestamp),
      GetTemporalPickFn(
          input_nodes_timestamp, this->indices_, fanouts, replace,
          indptr_.options(), type_per_edge_, probs_or_mask, node_timestamp,
          edge_timestamp));
666
667
}

668
std::tuple<torch::Tensor, torch::Tensor>
669
FusedCSCSamplingGraph::SampleNegativeEdgesUniform(
670
671
672
673
674
675
676
677
678
679
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

680
681
static c10::intrusive_ptr<FusedCSCSamplingGraph>
BuildGraphFromSharedMemoryHelper(SharedMemoryHelper&& helper) {
682
683
684
685
686
  helper.InitializeRead();
  auto indptr = helper.ReadTorchTensor();
  auto indices = helper.ReadTorchTensor();
  auto node_type_offset = helper.ReadTorchTensor();
  auto type_per_edge = helper.ReadTorchTensor();
687
688
  auto node_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
  auto edge_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
689
  auto node_attributes = helper.ReadTorchTensorDict();
690
  auto edge_attributes = helper.ReadTorchTensorDict();
691
  auto graph = c10::make_intrusive<FusedCSCSamplingGraph>(
692
      indptr.value(), indices.value(), node_type_offset, type_per_edge,
693
      node_type_to_id, edge_type_to_id, node_attributes, edge_attributes);
694
695
696
  auto shared_memory = helper.ReleaseSharedMemory();
  graph->HoldSharedMemoryObject(
      std::move(shared_memory.first), std::move(shared_memory.second));
697
698
699
  return graph;
}

700
701
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::CopyToSharedMemory(
702
    const std::string& shared_memory_name) {
703
  SharedMemoryHelper helper(shared_memory_name);
704
705
706
707
  helper.WriteTorchTensor(indptr_);
  helper.WriteTorchTensor(indices_);
  helper.WriteTorchTensor(node_type_offset_);
  helper.WriteTorchTensor(type_per_edge_);
708
709
  helper.WriteTorchTensorDict(TensorizeDict(node_type_to_id_));
  helper.WriteTorchTensorDict(TensorizeDict(edge_type_to_id_));
710
  helper.WriteTorchTensorDict(node_attributes_);
711
712
713
  helper.WriteTorchTensorDict(edge_attributes_);
  helper.Flush();
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
714
715
}

716
717
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::LoadFromSharedMemory(
718
    const std::string& shared_memory_name) {
719
  SharedMemoryHelper helper(shared_memory_name);
720
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
721
722
}

723
void FusedCSCSamplingGraph::HoldSharedMemoryObject(
724
725
726
727
728
    SharedMemoryPtr tensor_metadata_shm, SharedMemoryPtr tensor_data_shm) {
  tensor_metadata_shm_ = std::move(tensor_metadata_shm);
  tensor_data_shm_ = std::move(tensor_data_shm);
}

729
730
731
732
int64_t NumPick(
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
733
734
735
736
737
738
739
740
741
742
743
  int64_t num_valid_neighbors = num_neighbors;
  if (probs_or_mask.has_value()) {
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
744
745
746
747
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
torch::Tensor TemporalMask(
    int64_t seed_timestamp, torch::Tensor csc_indices,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp,
    std::pair<int64_t, int64_t> edge_range) {
  auto [l, r] = edge_range;
  torch::Tensor mask = torch::ones({r - l}, torch::kBool);
  if (node_timestamp.has_value()) {
    auto neighbor_timestamp =
        node_timestamp.value().index_select(0, csc_indices.slice(0, l, r));
    mask &= neighbor_timestamp <= seed_timestamp;
  }
  if (edge_timestamp.has_value()) {
    mask &= edge_timestamp.value().slice(0, l, r) <= seed_timestamp;
  }
  if (probs_or_mask.has_value()) {
    mask &= probs_or_mask.value().slice(0, l, r) != 0;
  }
  return mask;
}

int64_t TemporalNumPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indics, int64_t fanout,
    bool replace, const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indics,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  int64_t num_valid_neighbors = utils::GetValueByIndex<int64_t>(mask.sum(), 0);
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
int64_t NumPickByEtype(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += NumPick(
              fanouts[etype], replace, probs_or_mask, etype_begin,
              etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
int64_t TemporalNumPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalNumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += TemporalNumPick(
              seed_timestamp, csc_indices, fanouts[etype], replace,
              probs_or_mask, node_timestamp, edge_timestamp, seed_offset,
              etype_begin, etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

849
850
851
852
853
854
855
856
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
857
858
859
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
860
861
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
862
 * @param replace Boolean indicating whether the sample is performed with or
863
864
865
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
866
867
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
868
 */
869
template <typename PickedType>
870
inline int64_t UniformPick(
871
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
872
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
873
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
874
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
875
    return num_neighbors;
876
  } else if (replace) {
877
878
879
880
881
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
882
    return fanout;
883
  } else {
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
918
      return fanout;
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
939
      return fanout;
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
963
      return picked_set.size();
964
    }
965
966
967
  }
}

968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
/** @brief An operator to perform non-uniform sampling. */
static torch::Tensor NonUniformPickOp(
    torch::Tensor probs, int64_t fanout, bool replace) {
  auto positive_probs_indices = probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
  if (num_positive_probs == 0) return torch::empty({0}, torch::kLong);
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
    return positive_probs_indices;
  }
  if (!replace) fanout = std::min(fanout, num_positive_probs);
  if (fanout == 0) return torch::empty({0}, torch::kLong);
  auto ret_tensor = torch::empty({fanout}, torch::kLong);
  auto ret_ptr = ret_tensor.data_ptr<int64_t>();
  AT_DISPATCH_FLOATING_TYPES(
      probs.scalar_type(), "MultinomialSampling", ([&] {
        auto probs_data_ptr = probs.data_ptr<scalar_t>();
        auto positive_probs_indices_ptr =
            positive_probs_indices.data_ptr<int64_t>();

        if (!replace) {
          // The algorithm is from gumbel softmax.
          // s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1).
          // Here we can apply exp to the formula which will not affect result
          // of argmax or topk. Then we have
          // s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
          // We can also simplify the formula above by
          // s = argmax( p / q ) where q ~ Exp(1).
          if (fanout == 1) {
            // Return argmax(p / q).
            scalar_t max_prob = 0;
            int64_t max_prob_index = -1;
            // We only care about the neighbors with non-zero probability.
            for (auto i = 0; i < num_positive_probs; ++i) {
              // Calculate (p / q) for the current neighbor.
              scalar_t current_prob =
                  probs_data_ptr[positive_probs_indices_ptr[i]] /
                  RandomEngine::ThreadLocal()->Exponential(1.);
              if (current_prob > max_prob) {
                max_prob = current_prob;
                max_prob_index = positive_probs_indices_ptr[i];
              }
            }
            ret_ptr[0] = max_prob_index;
          } else {
            // Return topk(p / q).
            std::vector<std::pair<scalar_t, int64_t>> q(num_positive_probs);
            for (auto i = 0; i < num_positive_probs; ++i) {
              q[i].first = probs_data_ptr[positive_probs_indices_ptr[i]] /
                           RandomEngine::ThreadLocal()->Exponential(1.);
              q[i].second = positive_probs_indices_ptr[i];
            }
            if (fanout < num_positive_probs / 64) {
              // Use partial_sort.
              std::partial_sort(
                  q.begin(), q.begin() + fanout, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            } else {
              // Use nth_element.
              std::nth_element(
                  q.begin(), q.begin() + fanout - 1, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            }
          }
        } else {
          // Calculate cumulative sum of probabilities.
          std::vector<scalar_t> prefix_sum_probs(num_positive_probs);
          scalar_t sum_probs = 0;
          for (auto i = 0; i < num_positive_probs; ++i) {
            sum_probs += probs_data_ptr[positive_probs_indices_ptr[i]];
            prefix_sum_probs[i] = sum_probs;
          }
          // Normalize.
          if ((sum_probs > 1.00001) || (sum_probs < 0.99999)) {
            for (auto i = 0; i < num_positive_probs; ++i) {
              prefix_sum_probs[i] /= sum_probs;
            }
          }
          for (auto i = 0; i < fanout; ++i) {
            // Sample a probability mass from a uniform distribution.
            double uniform_sample =
                RandomEngine::ThreadLocal()->Uniform(0., 1.);
            // Use a binary search to find the index.
            int sampled_index = std::lower_bound(
                                    prefix_sum_probs.begin(),
                                    prefix_sum_probs.end(), uniform_sample) -
                                prefix_sum_probs.begin();
            ret_ptr[i] = positive_probs_indices_ptr[sampled_index];
          }
        }
      }));
  return ret_tensor;
}

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1083
1084
1085
1086
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
1087
1088
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
1089
 * @param replace Boolean indicating whether the sample is performed with or
1090
1091
1092
1093
1094
1095
1096
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
1097
1098
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1099
 */
1100
template <typename PickedType>
1101
inline int64_t NonUniformPick(
1102
1103
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
1104
1105
    const torch::optional<torch::Tensor>& probs_or_mask,
    PickedType* picked_data_ptr) {
1106
1107
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
1108
1109
1110
1111
1112
  auto picked_indices = NonUniformPickOp(local_probs, fanout, replace);
  auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
  for (int i = 0; i < picked_indices.numel(); ++i) {
    picked_data_ptr[i] =
        static_cast<PickedType>(picked_indices_ptr[i]) + offset;
1113
  }
1114
  return picked_indices.numel();
1115
1116
}

1117
template <typename PickedType>
1118
int64_t Pick(
1119
1120
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
1121
    const torch::optional<torch::Tensor>& probs_or_mask,
1122
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
1123
  if (probs_or_mask.has_value()) {
1124
    return NonUniformPick(
1125
1126
        offset, num_neighbors, fanout, replace, options, probs_or_mask,
        picked_data_ptr);
1127
  } else {
1128
    return UniformPick(
1129
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1130
1131
1132
  }
}

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
template <typename PickedType>
int64_t TemporalPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors, int64_t fanout,
    bool replace, const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp,
    PickedType* picked_data_ptr) {
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indices,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  torch::Tensor masked_prob;
  if (probs_or_mask.has_value()) {
    masked_prob =
        probs_or_mask.value().slice(0, offset, offset + num_neighbors) * mask;
  } else {
    masked_prob = mask.to(torch::kFloat32);
  }
  auto picked_indices = NonUniformPickOp(masked_prob, fanout, replace);
  auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
  for (int i = 0; i < picked_indices.numel(); ++i) {
    picked_data_ptr[i] =
        static_cast<PickedType>(picked_indices_ptr[i]) + offset;
  }
  return picked_indices.numel();
}

1162
template <SamplerType S, typename PickedType>
1163
int64_t PickByEtype(
1164
1165
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
1166
    const torch::Tensor& type_per_edge,
1167
1168
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
1169
1170
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
1171
  int64_t pick_offset = 0;
1172
1173
1174
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
1175
1176
1177
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
1178
          TORCH_CHECK(
1179
              etype >= 0 && etype < (int64_t)fanouts.size(),
1180
              "Etype values exceed the number of fanouts.");
1181
          int64_t fanout = fanouts[etype];
1182
1183
1184
1185
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
1186
1187
          // Do sampling for one etype.
          if (fanout != 0) {
1188
            int64_t picked_count = Pick(
1189
                etype_begin, etype_end - etype_begin, fanout, replace, options,
1190
1191
                probs_or_mask, args, picked_data_ptr + pick_offset);
            pick_offset += picked_count;
1192
1193
1194
1195
          }
          etype_begin = etype_end;
        }
      }));
1196
  return pick_offset;
1197
1198
}

1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
template <typename PickedType>
int64_t TemporalPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options, const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp,
    PickedType* picked_data_ptr) {
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
  int64_t pick_offset = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalPickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          int64_t fanout = fanouts[etype];
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          if (fanout != 0) {
            int64_t picked_count = TemporalPick(
                seed_timestamp, csc_indices, seed_offset, etype_begin,
                etype_end - etype_begin, fanout, replace, options,
                probs_or_mask, node_timestamp, edge_timestamp,
                picked_data_ptr + pick_offset);
            pick_offset += picked_count;
          }
          etype_begin = etype_end;
        }
      }));
  return pick_offset;
}

1241
template <typename PickedType>
1242
int64_t Pick(
1243
1244
1245
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
1246
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
1247
  if (fanout == 0) return 0;
1248
  if (probs_or_mask.has_value()) {
1249
    if (fanout < 0) {
1250
      return NonUniformPick(
1251
1252
1253
          offset, num_neighbors, fanout, replace, options, probs_or_mask,
          picked_data_ptr);
    } else {
1254
      int64_t picked_count;
1255
1256
1257
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
1258
              picked_count = LaborPick<true, true, scalar_t>(
1259
1260
1261
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
1262
              picked_count = LaborPick<true, false, scalar_t>(
1263
1264
1265
1266
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
1267
      return picked_count;
1268
1269
    }
  } else if (fanout < 0) {
1270
    return UniformPick(
1271
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1272
  } else if (replace) {
1273
    return LaborPick<false, true, float>(
1274
        offset, num_neighbors, fanout, options,
1275
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1276
  } else {  // replace = false
1277
    return LaborPick<false, false, float>(
1278
        offset, num_neighbors, fanout, options,
1279
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1297
1298
1299
1300
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
1301
1302
1303
1304
1305
1306
1307
1308
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
1309
1310
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1311
 */
1312
template <
1313
1314
    bool NonUniform, bool Replace, typename ProbsType, typename PickedType,
    int StackSize>
1315
inline int64_t LaborPick(
1316
1317
1318
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
1319
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
1320
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
1321
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
1322
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
1323
    return num_neighbors;
1324
1325
  }
  // Assuming max_degree of a vertex is <= 4 billion.
1326
1327
1328
1329
1330
1331
1332
1333
1334
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
1335
1336
1337
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
  AT_DISPATCH_INTEGRAL_TYPES(
      args.indices.scalar_type(), "LaborPickMain", ([&] {
        const scalar_t* local_indices_data =
            args.indices.data_ptr<scalar_t>() + offset;
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
1364
1365
1366
1367
1368
1369
1370
1371
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
1372
1373
1374
1375
1376
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
              [&](scalar_t t, int64_t j, uint32_t i) {
                auto rnd = labor::jth_sorted_uniform_random(
1377
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
1378
1379
1380
1381
1382
1383
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
1384
1385
1386
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
1387
1388
1389
1390
1391
1392
1393
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
1394
                  remaining_data[i] = -1;
1395
1396
1397
1398
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1399
            const auto t = local_indices_data[i];
1400
1401
1402
1403
1404
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1405
            if (remaining_data[i] == -1) continue;
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
1457
1458
1459
1460
1461
1462
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
1463
  return num_sampled;
1464
1465
}

1466
1467
}  // namespace sampling
}  // namespace graphbolt