fused_csc_sampling_graph.cc 53.4 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file fused_csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
#include <graphbolt/fused_csc_sampling_graph.h>
8
#include <graphbolt/serialize.h>
9
10
#include <torch/torch.h>

11
12
#include <algorithm>
#include <array>
13
14
#include <cmath>
#include <limits>
15
#include <numeric>
16
17
#include <tuple>
#include <vector>
18

19
#include "./random.h"
20
#include "./shared_memory_helper.h"
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
namespace {
torch::optional<torch::Dict<std::string, torch::Tensor>> TensorizeDict(
    const torch::optional<torch::Dict<std::string, int64_t>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, torch::Tensor> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), torch::tensor(pair.value(), torch::kInt64));
  }
  return result;
}

torch::optional<torch::Dict<std::string, int64_t>> DetensorizeDict(
    const torch::optional<torch::Dict<std::string, torch::Tensor>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, int64_t> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), pair.value().item<int64_t>());
  }
  return result;
}
}  // namespace

48
49
50
namespace graphbolt {
namespace sampling {

51
52
static const int kPickleVersion = 6199;

53
FusedCSCSamplingGraph::FusedCSCSamplingGraph(
54
    const torch::Tensor& indptr, const torch::Tensor& indices,
55
    const torch::optional<torch::Tensor>& node_type_offset,
56
    const torch::optional<torch::Tensor>& type_per_edge,
57
58
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
59
    const torch::optional<NodeAttrMap>& node_attributes,
60
    const torch::optional<EdgeAttrMap>& edge_attributes)
61
    : indptr_(indptr),
62
      indices_(indices),
63
      node_type_offset_(node_type_offset),
64
      type_per_edge_(type_per_edge),
65
66
      node_type_to_id_(node_type_to_id),
      edge_type_to_id_(edge_type_to_id),
67
      node_attributes_(node_attributes),
68
      edge_attributes_(edge_attributes) {
69
70
71
72
73
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

74
c10::intrusive_ptr<FusedCSCSamplingGraph> FusedCSCSamplingGraph::Create(
75
    const torch::Tensor& indptr, const torch::Tensor& indices,
76
    const torch::optional<torch::Tensor>& node_type_offset,
77
    const torch::optional<torch::Tensor>& type_per_edge,
78
79
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
80
    const torch::optional<NodeAttrMap>& node_attributes,
81
    const torch::optional<EdgeAttrMap>& edge_attributes) {
82
83
84
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
85
86
87
88
    TORCH_CHECK(node_type_to_id.has_value());
    TORCH_CHECK(
        offset.size(0) ==
        static_cast<int64_t>(node_type_to_id.value().size() + 1));
89
90
91
92
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
93
    TORCH_CHECK(edge_type_to_id.has_value());
94
  }
95
96
97
98
99
  if (node_attributes.has_value()) {
    for (const auto& pair : node_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indptr.size(0) - 1);
    }
  }
100
101
102
103
104
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
105
  return c10::make_intrusive<FusedCSCSamplingGraph>(
106
      indptr, indices, node_type_offset, type_per_edge, node_type_to_id,
107
      edge_type_to_id, node_attributes, edge_attributes);
108
109
}

110
void FusedCSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
111
  const int64_t magic_num =
112
      read_from_archive<int64_t>(archive, "FusedCSCSamplingGraph/magic_num");
113
114
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
115
116
      "Magic numbers mismatch when loading FusedCSCSamplingGraph.");
  indptr_ =
117
118
119
120
121
122
123
      read_from_archive<torch::Tensor>(archive, "FusedCSCSamplingGraph/indptr");
  indices_ = read_from_archive<torch::Tensor>(
      archive, "FusedCSCSamplingGraph/indices");
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_offset")) {
    node_type_offset_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/node_type_offset");
124
  }
125
126
127
128
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_type_per_edge")) {
    type_per_edge_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/type_per_edge");
129
  }
130

131
132
133
134
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_to_id")) {
    node_type_to_id_ = read_from_archive<NodeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/node_type_to_id");
135
136
  }

137
138
139
140
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_type_to_id")) {
    edge_type_to_id_ = read_from_archive<EdgeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/edge_type_to_id");
141
142
  }

143
144
145
146
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_attributes")) {
    node_attributes_ = read_from_archive<NodeAttrMap>(
        archive, "FusedCSCSamplingGraph/node_attributes");
147
  }
148
149
150
151
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_attributes")) {
    edge_attributes_ = read_from_archive<EdgeAttrMap>(
        archive, "FusedCSCSamplingGraph/edge_attributes");
152
  }
153
154
}

155
156
157
158
159
160
void FusedCSCSamplingGraph::Save(
    torch::serialize::OutputArchive& archive) const {
  archive.write(
      "FusedCSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
  archive.write("FusedCSCSamplingGraph/indptr", indptr_);
  archive.write("FusedCSCSamplingGraph/indices", indices_);
161
  archive.write(
162
163
      "FusedCSCSamplingGraph/has_node_type_offset",
      node_type_offset_.has_value());
164
165
  if (node_type_offset_) {
    archive.write(
166
        "FusedCSCSamplingGraph/node_type_offset", node_type_offset_.value());
167
168
  }
  archive.write(
169
      "FusedCSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
170
  if (type_per_edge_) {
171
172
    archive.write(
        "FusedCSCSamplingGraph/type_per_edge", type_per_edge_.value());
173
  }
174
175
176
177
178
179
180
181
182
183
184
185
186
187
  archive.write(
      "FusedCSCSamplingGraph/has_node_type_to_id",
      node_type_to_id_.has_value());
  if (node_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/node_type_to_id", node_type_to_id_.value());
  }
  archive.write(
      "FusedCSCSamplingGraph/has_edge_type_to_id",
      edge_type_to_id_.has_value());
  if (edge_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/edge_type_to_id", edge_type_to_id_.value());
  }
188
189
190
191
192
193
194
  archive.write(
      "FusedCSCSamplingGraph/has_node_attributes",
      node_attributes_.has_value());
  if (node_attributes_) {
    archive.write(
        "FusedCSCSamplingGraph/node_attributes", node_attributes_.value());
  }
195
  archive.write(
196
197
      "FusedCSCSamplingGraph/has_edge_attributes",
      edge_attributes_.has_value());
198
  if (edge_attributes_) {
199
200
    archive.write(
        "FusedCSCSamplingGraph/edge_attributes", edge_attributes_.value());
201
  }
202
203
}

204
void FusedCSCSamplingGraph::SetState(
205
206
207
208
209
210
211
212
213
    const torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>&
        state) {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  const auto& independent_tensors = state.at("independent_tensors");
  TORCH_CHECK(
      independent_tensors.at("version_number")
          .equal(torch::tensor({kPickleVersion})),
214
      "Version number mismatches when loading pickled FusedCSCSamplingGraph.")
215
216
217
218
219
220
221
222
223
  indptr_ = independent_tensors.at("indptr");
  indices_ = independent_tensors.at("indices");
  if (independent_tensors.find("node_type_offset") !=
      independent_tensors.end()) {
    node_type_offset_ = independent_tensors.at("node_type_offset");
  }
  if (independent_tensors.find("type_per_edge") != independent_tensors.end()) {
    type_per_edge_ = independent_tensors.at("type_per_edge");
  }
224
225
226
227
228
229
  if (state.find("node_type_to_id") != state.end()) {
    node_type_to_id_ = DetensorizeDict(state.at("node_type_to_id"));
  }
  if (state.find("edge_type_to_id") != state.end()) {
    edge_type_to_id_ = DetensorizeDict(state.at("edge_type_to_id"));
  }
230
231
232
  if (state.find("node_attributes") != state.end()) {
    node_attributes_ = state.at("node_attributes");
  }
233
234
235
236
237
238
  if (state.find("edge_attributes") != state.end()) {
    edge_attributes_ = state.at("edge_attributes");
  }
}

torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>
239
FusedCSCSamplingGraph::GetState() const {
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>> state;
  torch::Dict<std::string, torch::Tensor> independent_tensors;
  // Serialization version number. It indicates the serialization method of the
  // whole state.
  independent_tensors.insert("version_number", torch::tensor({kPickleVersion}));
  independent_tensors.insert("indptr", indptr_);
  independent_tensors.insert("indices", indices_);
  if (node_type_offset_.has_value()) {
    independent_tensors.insert("node_type_offset", node_type_offset_.value());
  }
  if (type_per_edge_.has_value()) {
    independent_tensors.insert("type_per_edge", type_per_edge_.value());
  }
  state.insert("independent_tensors", independent_tensors);
257
258
259
260
261
262
  if (node_type_to_id_.has_value()) {
    state.insert("node_type_to_id", TensorizeDict(node_type_to_id_).value());
  }
  if (edge_type_to_id_.has_value()) {
    state.insert("edge_type_to_id", TensorizeDict(edge_type_to_id_).value());
  }
263
264
265
  if (node_attributes_.has_value()) {
    state.insert("node_attributes", node_attributes_.value());
  }
266
267
268
269
270
271
  if (edge_attributes_.has_value()) {
    state.insert("edge_attributes", edge_attributes_.value());
  }
  return state;
}

272
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
273
274
275
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
276
277
  const auto num_seeds = nodes.size(0);
  torch::Tensor indptr = torch::zeros({num_seeds + 1}, indptr_.dtype());
278
  std::vector<torch::Tensor> indices_arr(num_seeds);
279
280
  torch::Tensor original_column_node_ids =
      torch::zeros({num_seeds}, indptr_.dtype());
281
282
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

  AT_DISPATCH_INTEGRAL_TYPES(
      indptr_.scalar_type(), "InSubgraph", ([&] {
        torch::parallel_for(
            0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
              for (size_t i = start; i < end; ++i) {
                const auto node_id = nodes[i].item<scalar_t>();
                const auto start_idx = indptr_[node_id].item<scalar_t>();
                const auto end_idx = indptr_[node_id + 1].item<scalar_t>();
                indptr[i + 1] = end_idx - start_idx;
                original_column_node_ids[i] = node_id;
                indices_arr[i] = indices_.slice(0, start_idx, end_idx);
                edge_ids_arr[i] = torch::arange(start_idx, end_idx);
                if (type_per_edge_) {
                  type_per_edge_arr[i] =
                      type_per_edge_.value().slice(0, start_idx, end_idx);
                }
              }
            });
      }));

304
  return c10::make_intrusive<FusedSampledSubgraph>(
305
      indptr.cumsum(0), torch::cat(indices_arr), original_column_node_ids,
306
307
308
309
310
311
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
328
329
330
331
332
 * @return A lambda function (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors) -> torch::Tensor, which takes seed offset (the offset of the
 * seed to sample), offset (the starting edge ID of the given node) and
 * num_neighbors (number of neighbors) as params and returns the pick number of
 * the given node.
333
334
335
336
337
338
339
340
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&fanouts, replace, &probs_or_mask, &type_per_edge](
341
             int64_t seed_offset, int64_t offset, int64_t num_neighbors) {
342
343
344
345
346
347
348
349
350
351
    if (fanouts.size() > 1) {
      return NumPickByEtype(
          fanouts, replace, type_per_edge.value(), probs_or_mask, offset,
          num_neighbors);
    } else {
      return NumPick(fanouts[0], replace, probs_or_mask, offset, num_neighbors);
    }
  };
}

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
369
370
371
372
373
 * @return A lambda function: (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors, PickedType* picked_data_ptr) -> torch::Tensor, which takes
 * seed_offset (the offset of the seed to sample), offset (the starting edge ID
 * of the given node) and num_neighbors (number of neighbors) as params and puts
 * the picked neighbors at the address specified by picked_data_ptr.
374
 */
375
template <SamplerType S>
376
377
378
379
380
381
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
382
383
             int64_t seed_offset, int64_t offset, int64_t num_neighbors,
             auto picked_data_ptr) {
384
385
386
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
387
388
389
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
390
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr);
391
    } else {
392
      int64_t num_sampled = Pick(
393
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
394
          args, picked_data_ptr);
395
396
397
398
      if (type_per_edge) {
        std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
      }
      return num_sampled;
399
400
401
402
    }
  };
}

403
template <typename NumPickFn, typename PickFn>
404
405
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::SampleNeighborsImpl(
406
407
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
408
  const int64_t num_nodes = nodes.size(0);
409
  const auto indptr_options = indptr_.options();
410
  torch::Tensor num_picked_neighbors_per_node =
411
      torch::empty({num_nodes + 1}, indptr_options);
412

413
414
415
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
416
417
418
419
420
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;

421
  AT_DISPATCH_INTEGRAL_TYPES(
422
423
424
425
426
427
428
429
430
431
      indptr_.scalar_type(), "SampleNeighborsImplWrappedWithIndptr", ([&] {
        using indptr_t = scalar_t;
        AT_DISPATCH_INTEGRAL_TYPES(
            nodes.scalar_type(), "SampleNeighborsImplWrappedWithNodes", ([&] {
              using nodes_t = scalar_t;
              const auto indptr_data = indptr_.data_ptr<indptr_t>();
              auto num_picked_neighbors_data_ptr =
                  num_picked_neighbors_per_node.data_ptr<indptr_t>();
              num_picked_neighbors_data_ptr[0] = 0;
              const auto nodes_data_ptr = nodes.data_ptr<nodes_t>();
432

433
434
435
436
437
438
439
440
441
442
443
444
              // Step 1. Calculate pick number of each node.
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      TORCH_CHECK(
                          nid >= 0 && nid < NumNodes(),
                          "The seed nodes' IDs should fall within the range of "
                          "the "
                          "graph's node IDs.");
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
445

446
447
448
                      num_picked_neighbors_data_ptr[i + 1] =
                          num_neighbors == 0
                              ? 0
449
                              : num_pick_fn(i, offset, num_neighbors);
450
451
                    }
                  });
452

453
454
455
456
              // Step 2. Calculate prefix sum to get total length and offsets of
              // each node. It's also the indptr of the generated subgraph.
              subgraph_indptr = num_picked_neighbors_per_node.cumsum(
                  0, indptr_.scalar_type());
457

458
459
460
461
462
463
464
465
466
467
              // Step 3. Allocate the tensor for picked neighbors.
              const auto total_length =
                  subgraph_indptr.data_ptr<indptr_t>()[num_nodes];
              picked_eids = torch::empty({total_length}, indptr_options);
              subgraph_indices =
                  torch::empty({total_length}, indices_.options());
              if (type_per_edge_.has_value()) {
                subgraph_type_per_edge = torch::empty(
                    {total_length}, type_per_edge_.value().options());
              }
468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
              // Step 4. Pick neighbors for each node.
              auto picked_eids_data_ptr = picked_eids.data_ptr<indptr_t>();
              auto subgraph_indptr_data_ptr =
                  subgraph_indptr.data_ptr<indptr_t>();
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
                      const auto picked_number =
                          num_picked_neighbors_data_ptr[i + 1];
                      const auto picked_offset = subgraph_indptr_data_ptr[i];
                      if (picked_number > 0) {
                        auto actual_picked_count = pick_fn(
484
                            i, offset, num_neighbors,
485
486
487
488
489
490
                            picked_eids_data_ptr + picked_offset);
                        TORCH_CHECK(
                            actual_picked_count == picked_number,
                            "Actual picked count doesn't match the calculated "
                            "pick "
                            "number.");
491

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
                        // Step 5. Calculate other attributes and return the
                        // subgraph.
                        AT_DISPATCH_INTEGRAL_TYPES(
                            subgraph_indices.scalar_type(),
                            "IndexSelectSubgraphIndices", ([&] {
                              auto subgraph_indices_data_ptr =
                                  subgraph_indices.data_ptr<scalar_t>();
                              auto indices_data_ptr =
                                  indices_.data_ptr<scalar_t>();
                              for (auto i = picked_offset;
                                   i < picked_offset + picked_number; ++i) {
                                subgraph_indices_data_ptr[i] =
                                    indices_data_ptr[picked_eids_data_ptr[i]];
                              }
                            }));
                        if (type_per_edge_.has_value()) {
                          AT_DISPATCH_INTEGRAL_TYPES(
                              subgraph_type_per_edge.value().scalar_type(),
                              "IndexSelectTypePerEdge", ([&] {
                                auto subgraph_type_per_edge_data_ptr =
                                    subgraph_type_per_edge.value()
                                        .data_ptr<scalar_t>();
                                auto type_per_edge_data_ptr =
                                    type_per_edge_.value().data_ptr<scalar_t>();
                                for (auto i = picked_offset;
                                     i < picked_offset + picked_number; ++i) {
                                  subgraph_type_per_edge_data_ptr[i] =
                                      type_per_edge_data_ptr
                                          [picked_eids_data_ptr[i]];
                                }
                              }));
523
                        }
524
525
526
527
                      }
                    }
                  });
            }));
528
      }));
529

530
531
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
532

533
  return c10::make_intrusive<FusedSampledSubgraph>(
534
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
535
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
536
537
}

538
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::SampleNeighbors(
539
540
541
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
542
543
  auto probs_or_mask = this->EdgeAttribute(probs_name);
  if (probs_name.has_value()) {
544
545
546
547
548
549
550
551
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
552

553
554
555
556
557
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
558
        nodes, return_eids,
559
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
560
561
562
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
563
564
565
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
566
        nodes, return_eids,
567
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
568
569
570
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
571
572
573
  }
}

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::TemporalSampleNeighbors(
    const torch::Tensor& input_nodes,
    const torch::Tensor& input_nodes_timestamp,
    const std::vector<int64_t>& fanouts, bool replace, bool return_eids,
    torch::optional<std::string> probs_name,
    torch::optional<std::string> node_timestamp_attr_name,
    torch::optional<std::string> edge_timestamp_attr_name) const {
  // TODO(zhenkun):
  // 1. Get probs_or_mask.
  // 2. Get the timestamp attribute for nodes of the graph
  // 3. Get the timestamp attribute for edges of the graph
  // 4. GetTemporalNumPickFn (New implementation)
  // 5. GetTemporalPickFn (New implementation)
  // 6. Call SampleNeighborsImpl (Old implementation)
  return c10::intrusive_ptr<FusedSampledSubgraph>();
}

592
std::tuple<torch::Tensor, torch::Tensor>
593
FusedCSCSamplingGraph::SampleNegativeEdgesUniform(
594
595
596
597
598
599
600
601
602
603
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

604
605
static c10::intrusive_ptr<FusedCSCSamplingGraph>
BuildGraphFromSharedMemoryHelper(SharedMemoryHelper&& helper) {
606
607
608
609
610
  helper.InitializeRead();
  auto indptr = helper.ReadTorchTensor();
  auto indices = helper.ReadTorchTensor();
  auto node_type_offset = helper.ReadTorchTensor();
  auto type_per_edge = helper.ReadTorchTensor();
611
612
  auto node_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
  auto edge_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
613
  auto node_attributes = helper.ReadTorchTensorDict();
614
  auto edge_attributes = helper.ReadTorchTensorDict();
615
  auto graph = c10::make_intrusive<FusedCSCSamplingGraph>(
616
      indptr.value(), indices.value(), node_type_offset, type_per_edge,
617
      node_type_to_id, edge_type_to_id, node_attributes, edge_attributes);
618
619
620
  auto shared_memory = helper.ReleaseSharedMemory();
  graph->HoldSharedMemoryObject(
      std::move(shared_memory.first), std::move(shared_memory.second));
621
622
623
  return graph;
}

624
625
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::CopyToSharedMemory(
626
    const std::string& shared_memory_name) {
627
  SharedMemoryHelper helper(shared_memory_name);
628
629
630
631
  helper.WriteTorchTensor(indptr_);
  helper.WriteTorchTensor(indices_);
  helper.WriteTorchTensor(node_type_offset_);
  helper.WriteTorchTensor(type_per_edge_);
632
633
  helper.WriteTorchTensorDict(TensorizeDict(node_type_to_id_));
  helper.WriteTorchTensorDict(TensorizeDict(edge_type_to_id_));
634
  helper.WriteTorchTensorDict(node_attributes_);
635
636
637
  helper.WriteTorchTensorDict(edge_attributes_);
  helper.Flush();
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
638
639
}

640
641
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::LoadFromSharedMemory(
642
    const std::string& shared_memory_name) {
643
  SharedMemoryHelper helper(shared_memory_name);
644
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
645
646
}

647
void FusedCSCSamplingGraph::HoldSharedMemoryObject(
648
649
650
651
652
    SharedMemoryPtr tensor_metadata_shm, SharedMemoryPtr tensor_data_shm) {
  tensor_metadata_shm_ = std::move(tensor_metadata_shm);
  tensor_data_shm_ = std::move(tensor_data_shm);
}

653
654
655
656
int64_t NumPick(
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
657
658
659
660
661
662
663
664
665
666
667
  int64_t num_valid_neighbors = num_neighbors;
  if (probs_or_mask.has_value()) {
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

int64_t NumPickByEtype(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += NumPick(
              fanouts[etype], replace, probs_or_mask, etype_begin,
              etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

702
703
704
705
706
707
708
709
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
710
711
712
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
713
714
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
715
 * @param replace Boolean indicating whether the sample is performed with or
716
717
718
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
719
720
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
721
 */
722
template <typename PickedType>
723
inline int64_t UniformPick(
724
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
725
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
726
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
727
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
728
    return num_neighbors;
729
  } else if (replace) {
730
731
732
733
734
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
735
    return fanout;
736
  } else {
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
771
      return fanout;
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
792
      return fanout;
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
816
      return picked_set.size();
817
    }
818
819
820
  }
}

821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
839
840
841
842
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
843
844
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
845
 * @param replace Boolean indicating whether the sample is performed with or
846
847
848
849
850
851
852
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
853
854
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
855
 */
856
template <typename PickedType>
857
inline int64_t NonUniformPick(
858
859
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
860
861
    const torch::optional<torch::Tensor>& probs_or_mask,
    PickedType* picked_data_ptr) {
862
863
864
865
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
  auto positive_probs_indices = local_probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
866
  if (num_positive_probs == 0) return 0;
867
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
868
869
870
871
    std::memcpy(
        picked_data_ptr,
        (positive_probs_indices + offset).data_ptr<PickedType>(),
        num_positive_probs * sizeof(PickedType));
872
    return num_positive_probs;
873
874
  } else {
    if (!replace) fanout = std::min(fanout, num_positive_probs);
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
    if (fanout == 0) return 0;
    AT_DISPATCH_FLOATING_TYPES(
        local_probs.scalar_type(), "MultinomialSampling", ([&] {
          auto local_probs_data_ptr = local_probs.data_ptr<scalar_t>();
          auto positive_probs_indices_ptr =
              positive_probs_indices.data_ptr<PickedType>();

          if (!replace) {
            // The algorithm is from gumbel softmax.
            // s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1).
            // Here we can apply exp to the formula which will not affect result
            // of argmax or topk. Then we have
            // s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
            // We can also simplify the formula above by
            // s = argmax( p / q ) where q ~ Exp(1).
            if (fanout == 1) {
              // Return argmax(p / q).
              scalar_t max_prob = 0;
              PickedType max_prob_index = -1;
              // We only care about the neighbors with non-zero probability.
              for (auto i = 0; i < num_positive_probs; ++i) {
                // Calculate (p / q) for the current neighbor.
                scalar_t current_prob =
                    local_probs_data_ptr[positive_probs_indices_ptr[i]] /
                    RandomEngine::ThreadLocal()->Exponential(1.);
                if (current_prob > max_prob) {
                  max_prob = current_prob;
                  max_prob_index = positive_probs_indices_ptr[i];
                }
              }
              *picked_data_ptr = max_prob_index + offset;
            } else {
              // Return topk(p / q).
              std::vector<std::pair<scalar_t, PickedType>> q(
                  num_positive_probs);
              for (auto i = 0; i < num_positive_probs; ++i) {
                q[i].first =
                    local_probs_data_ptr[positive_probs_indices_ptr[i]] /
                    RandomEngine::ThreadLocal()->Exponential(1.);
                q[i].second = positive_probs_indices_ptr[i];
              }
              if (fanout < num_positive_probs / 64) {
                // Use partial_sort.
                std::partial_sort(
                    q.begin(), q.begin() + fanout, q.end(), std::greater{});
                for (auto i = 0; i < fanout; ++i) {
                  picked_data_ptr[i] = q[i].second + offset;
                }
              } else {
                // Use nth_element.
                std::nth_element(
                    q.begin(), q.begin() + fanout - 1, q.end(), std::greater{});
                for (auto i = 0; i < fanout; ++i) {
                  picked_data_ptr[i] = q[i].second + offset;
                }
              }
            }
          } else {
            // Calculate cumulative sum of probabilities.
            std::vector<scalar_t> prefix_sum_probs(num_positive_probs);
            scalar_t sum_probs = 0;
            for (auto i = 0; i < num_positive_probs; ++i) {
              sum_probs += local_probs_data_ptr[positive_probs_indices_ptr[i]];
              prefix_sum_probs[i] = sum_probs;
            }
            // Normalize.
            if ((sum_probs > 1.00001) || (sum_probs < 0.99999)) {
              for (auto i = 0; i < num_positive_probs; ++i) {
                prefix_sum_probs[i] /= sum_probs;
              }
            }
            for (auto i = 0; i < fanout; ++i) {
              // Sample a probability mass from a uniform distribution.
              double uniform_sample =
                  RandomEngine::ThreadLocal()->Uniform(0., 1.);
              // Use a binary search to find the index.
              int sampled_index = std::lower_bound(
                                      prefix_sum_probs.begin(),
                                      prefix_sum_probs.end(), uniform_sample) -
                                  prefix_sum_probs.begin();
              picked_data_ptr[i] =
                  positive_probs_indices_ptr[sampled_index] + offset;
            }
          }
        }));
960
    return fanout;
961
962
963
  }
}

964
template <typename PickedType>
965
int64_t Pick(
966
967
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
968
    const torch::optional<torch::Tensor>& probs_or_mask,
969
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
970
  if (probs_or_mask.has_value()) {
971
    return NonUniformPick(
972
973
        offset, num_neighbors, fanout, replace, options, probs_or_mask,
        picked_data_ptr);
974
  } else {
975
    return UniformPick(
976
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
977
978
979
  }
}

980
template <SamplerType S, typename PickedType>
981
int64_t PickByEtype(
982
983
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
984
    const torch::Tensor& type_per_edge,
985
986
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
987
988
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
989
  int64_t pick_offset = 0;
990
991
992
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
993
994
995
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
996
          TORCH_CHECK(
997
              etype >= 0 && etype < (int64_t)fanouts.size(),
998
              "Etype values exceed the number of fanouts.");
999
          int64_t fanout = fanouts[etype];
1000
1001
1002
1003
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
1004
1005
          // Do sampling for one etype.
          if (fanout != 0) {
1006
            int64_t picked_count = Pick(
1007
                etype_begin, etype_end - etype_begin, fanout, replace, options,
1008
1009
                probs_or_mask, args, picked_data_ptr + pick_offset);
            pick_offset += picked_count;
1010
1011
1012
1013
          }
          etype_begin = etype_end;
        }
      }));
1014
  return pick_offset;
1015
1016
}

1017
template <typename PickedType>
1018
int64_t Pick(
1019
1020
1021
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
1022
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
1023
  if (fanout == 0) return 0;
1024
  if (probs_or_mask.has_value()) {
1025
    if (fanout < 0) {
1026
      return NonUniformPick(
1027
1028
1029
          offset, num_neighbors, fanout, replace, options, probs_or_mask,
          picked_data_ptr);
    } else {
1030
      int64_t picked_count;
1031
1032
1033
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
1034
              picked_count = LaborPick<true, true, scalar_t>(
1035
1036
1037
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
1038
              picked_count = LaborPick<true, false, scalar_t>(
1039
1040
1041
1042
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
1043
      return picked_count;
1044
1045
    }
  } else if (fanout < 0) {
1046
    return UniformPick(
1047
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1048
  } else if (replace) {
1049
    return LaborPick<false, true, float>(
1050
        offset, num_neighbors, fanout, options,
1051
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1052
  } else {  // replace = false
1053
    return LaborPick<false, false, float>(
1054
        offset, num_neighbors, fanout, options,
1055
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1073
1074
1075
1076
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
1077
1078
1079
1080
1081
1082
1083
1084
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
1085
1086
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1087
 */
1088
template <
1089
1090
    bool NonUniform, bool Replace, typename ProbsType, typename PickedType,
    int StackSize>
1091
inline int64_t LaborPick(
1092
1093
1094
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
1095
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
1096
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
1097
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
1098
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
1099
    return num_neighbors;
1100
1101
  }
  // Assuming max_degree of a vertex is <= 4 billion.
1102
1103
1104
1105
1106
1107
1108
1109
1110
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
1111
1112
1113
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
  AT_DISPATCH_INTEGRAL_TYPES(
      args.indices.scalar_type(), "LaborPickMain", ([&] {
        const scalar_t* local_indices_data =
            args.indices.data_ptr<scalar_t>() + offset;
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
1140
1141
1142
1143
1144
1145
1146
1147
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
1148
1149
1150
1151
1152
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
              [&](scalar_t t, int64_t j, uint32_t i) {
                auto rnd = labor::jth_sorted_uniform_random(
1153
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
1154
1155
1156
1157
1158
1159
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
1160
1161
1162
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
1163
1164
1165
1166
1167
1168
1169
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
1170
                  remaining_data[i] = -1;
1171
1172
1173
1174
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1175
            const auto t = local_indices_data[i];
1176
1177
1178
1179
1180
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1181
            if (remaining_data[i] == -1) continue;
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
1233
1234
1235
1236
1237
1238
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
1239
  return num_sampled;
1240
1241
}

1242
1243
}  // namespace sampling
}  // namespace graphbolt