fused_csc_sampling_graph.cc 65.6 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file fused_csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
#include <graphbolt/cuda_sampling_ops.h>
8
#include <graphbolt/fused_csc_sampling_graph.h>
9
#include <graphbolt/serialize.h>
10
11
#include <torch/torch.h>

12
13
#include <algorithm>
#include <array>
14
15
#include <cmath>
#include <limits>
16
#include <numeric>
17
18
#include <tuple>
#include <vector>
19

20
#include "./macro.h"
21
#include "./random.h"
22
#include "./shared_memory_helper.h"
23
#include "./utils.h"
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
namespace {
torch::optional<torch::Dict<std::string, torch::Tensor>> TensorizeDict(
    const torch::optional<torch::Dict<std::string, int64_t>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, torch::Tensor> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), torch::tensor(pair.value(), torch::kInt64));
  }
  return result;
}

torch::optional<torch::Dict<std::string, int64_t>> DetensorizeDict(
    const torch::optional<torch::Dict<std::string, torch::Tensor>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, int64_t> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), pair.value().item<int64_t>());
  }
  return result;
}
}  // namespace

51
52
53
namespace graphbolt {
namespace sampling {

54
55
static const int kPickleVersion = 6199;

56
FusedCSCSamplingGraph::FusedCSCSamplingGraph(
57
    const torch::Tensor& indptr, const torch::Tensor& indices,
58
    const torch::optional<torch::Tensor>& node_type_offset,
59
    const torch::optional<torch::Tensor>& type_per_edge,
60
61
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
62
    const torch::optional<NodeAttrMap>& node_attributes,
63
    const torch::optional<EdgeAttrMap>& edge_attributes)
64
    : indptr_(indptr),
65
      indices_(indices),
66
      node_type_offset_(node_type_offset),
67
      type_per_edge_(type_per_edge),
68
69
      node_type_to_id_(node_type_to_id),
      edge_type_to_id_(edge_type_to_id),
70
      node_attributes_(node_attributes),
71
      edge_attributes_(edge_attributes) {
72
73
74
75
76
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

77
c10::intrusive_ptr<FusedCSCSamplingGraph> FusedCSCSamplingGraph::Create(
78
    const torch::Tensor& indptr, const torch::Tensor& indices,
79
    const torch::optional<torch::Tensor>& node_type_offset,
80
    const torch::optional<torch::Tensor>& type_per_edge,
81
82
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
83
    const torch::optional<NodeAttrMap>& node_attributes,
84
    const torch::optional<EdgeAttrMap>& edge_attributes) {
85
86
87
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
88
89
90
91
    TORCH_CHECK(node_type_to_id.has_value());
    TORCH_CHECK(
        offset.size(0) ==
        static_cast<int64_t>(node_type_to_id.value().size() + 1));
92
93
94
95
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
96
    TORCH_CHECK(edge_type_to_id.has_value());
97
  }
98
99
100
101
102
  if (node_attributes.has_value()) {
    for (const auto& pair : node_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indptr.size(0) - 1);
    }
  }
103
104
105
106
107
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
108
  return c10::make_intrusive<FusedCSCSamplingGraph>(
109
      indptr, indices, node_type_offset, type_per_edge, node_type_to_id,
110
      edge_type_to_id, node_attributes, edge_attributes);
111
112
}

113
void FusedCSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
114
  const int64_t magic_num =
115
      read_from_archive<int64_t>(archive, "FusedCSCSamplingGraph/magic_num");
116
117
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
118
119
      "Magic numbers mismatch when loading FusedCSCSamplingGraph.");
  indptr_ =
120
121
122
123
124
125
126
      read_from_archive<torch::Tensor>(archive, "FusedCSCSamplingGraph/indptr");
  indices_ = read_from_archive<torch::Tensor>(
      archive, "FusedCSCSamplingGraph/indices");
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_offset")) {
    node_type_offset_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/node_type_offset");
127
  }
128
129
130
131
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_type_per_edge")) {
    type_per_edge_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/type_per_edge");
132
  }
133

134
135
136
137
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_to_id")) {
    node_type_to_id_ = read_from_archive<NodeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/node_type_to_id");
138
139
  }

140
141
142
143
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_type_to_id")) {
    edge_type_to_id_ = read_from_archive<EdgeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/edge_type_to_id");
144
145
  }

146
147
148
149
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_attributes")) {
    node_attributes_ = read_from_archive<NodeAttrMap>(
        archive, "FusedCSCSamplingGraph/node_attributes");
150
  }
151
152
153
154
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_attributes")) {
    edge_attributes_ = read_from_archive<EdgeAttrMap>(
        archive, "FusedCSCSamplingGraph/edge_attributes");
155
  }
156
157
}

158
159
160
161
162
163
void FusedCSCSamplingGraph::Save(
    torch::serialize::OutputArchive& archive) const {
  archive.write(
      "FusedCSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
  archive.write("FusedCSCSamplingGraph/indptr", indptr_);
  archive.write("FusedCSCSamplingGraph/indices", indices_);
164
  archive.write(
165
166
      "FusedCSCSamplingGraph/has_node_type_offset",
      node_type_offset_.has_value());
167
168
  if (node_type_offset_) {
    archive.write(
169
        "FusedCSCSamplingGraph/node_type_offset", node_type_offset_.value());
170
171
  }
  archive.write(
172
      "FusedCSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
173
  if (type_per_edge_) {
174
175
    archive.write(
        "FusedCSCSamplingGraph/type_per_edge", type_per_edge_.value());
176
  }
177
178
179
180
181
182
183
184
185
186
187
188
189
190
  archive.write(
      "FusedCSCSamplingGraph/has_node_type_to_id",
      node_type_to_id_.has_value());
  if (node_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/node_type_to_id", node_type_to_id_.value());
  }
  archive.write(
      "FusedCSCSamplingGraph/has_edge_type_to_id",
      edge_type_to_id_.has_value());
  if (edge_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/edge_type_to_id", edge_type_to_id_.value());
  }
191
192
193
194
195
196
197
  archive.write(
      "FusedCSCSamplingGraph/has_node_attributes",
      node_attributes_.has_value());
  if (node_attributes_) {
    archive.write(
        "FusedCSCSamplingGraph/node_attributes", node_attributes_.value());
  }
198
  archive.write(
199
200
      "FusedCSCSamplingGraph/has_edge_attributes",
      edge_attributes_.has_value());
201
  if (edge_attributes_) {
202
203
    archive.write(
        "FusedCSCSamplingGraph/edge_attributes", edge_attributes_.value());
204
  }
205
206
}

207
void FusedCSCSamplingGraph::SetState(
208
209
210
211
212
213
214
215
216
    const torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>&
        state) {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  const auto& independent_tensors = state.at("independent_tensors");
  TORCH_CHECK(
      independent_tensors.at("version_number")
          .equal(torch::tensor({kPickleVersion})),
217
      "Version number mismatches when loading pickled FusedCSCSamplingGraph.")
218
219
220
221
222
223
224
225
226
  indptr_ = independent_tensors.at("indptr");
  indices_ = independent_tensors.at("indices");
  if (independent_tensors.find("node_type_offset") !=
      independent_tensors.end()) {
    node_type_offset_ = independent_tensors.at("node_type_offset");
  }
  if (independent_tensors.find("type_per_edge") != independent_tensors.end()) {
    type_per_edge_ = independent_tensors.at("type_per_edge");
  }
227
228
229
230
231
232
  if (state.find("node_type_to_id") != state.end()) {
    node_type_to_id_ = DetensorizeDict(state.at("node_type_to_id"));
  }
  if (state.find("edge_type_to_id") != state.end()) {
    edge_type_to_id_ = DetensorizeDict(state.at("edge_type_to_id"));
  }
233
234
235
  if (state.find("node_attributes") != state.end()) {
    node_attributes_ = state.at("node_attributes");
  }
236
237
238
239
240
241
  if (state.find("edge_attributes") != state.end()) {
    edge_attributes_ = state.at("edge_attributes");
  }
}

torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>
242
FusedCSCSamplingGraph::GetState() const {
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>> state;
  torch::Dict<std::string, torch::Tensor> independent_tensors;
  // Serialization version number. It indicates the serialization method of the
  // whole state.
  independent_tensors.insert("version_number", torch::tensor({kPickleVersion}));
  independent_tensors.insert("indptr", indptr_);
  independent_tensors.insert("indices", indices_);
  if (node_type_offset_.has_value()) {
    independent_tensors.insert("node_type_offset", node_type_offset_.value());
  }
  if (type_per_edge_.has_value()) {
    independent_tensors.insert("type_per_edge", type_per_edge_.value());
  }
  state.insert("independent_tensors", independent_tensors);
260
261
262
263
264
265
  if (node_type_to_id_.has_value()) {
    state.insert("node_type_to_id", TensorizeDict(node_type_to_id_).value());
  }
  if (edge_type_to_id_.has_value()) {
    state.insert("edge_type_to_id", TensorizeDict(edge_type_to_id_).value());
  }
266
267
268
  if (node_attributes_.has_value()) {
    state.insert("node_attributes", node_attributes_.value());
  }
269
270
271
272
273
274
  if (edge_attributes_.has_value()) {
    state.insert("edge_attributes", edge_attributes_.value());
  }
  return state;
}

275
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
276
    const torch::Tensor& nodes) const {
277
  if (utils::is_on_gpu(nodes) && utils::is_accessible_from_gpu(indptr_) &&
278
279
280
281
282
283
284
      utils::is_accessible_from_gpu(indices_) &&
      (!type_per_edge_.has_value() ||
       utils::is_accessible_from_gpu(type_per_edge_.value()))) {
    GRAPHBOLT_DISPATCH_CUDA_ONLY_DEVICE(c10::DeviceType::CUDA, "InSubgraph", {
      return ops::InSubgraph(indptr_, indices_, nodes, type_per_edge_);
    });
  }
285
286
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
287
288
  const auto num_seeds = nodes.size(0);
  torch::Tensor indptr = torch::zeros({num_seeds + 1}, indptr_.dtype());
289
  std::vector<torch::Tensor> indices_arr(num_seeds);
290
291
  torch::Tensor original_column_node_ids =
      torch::zeros({num_seeds}, indptr_.dtype());
292
293
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
294

295
  AT_DISPATCH_INDEX_TYPES(
296
297
298
299
      indptr_.scalar_type(), "InSubgraph", ([&] {
        torch::parallel_for(
            0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
              for (size_t i = start; i < end; ++i) {
300
301
302
                const auto node_id = nodes[i].item<index_t>();
                const auto start_idx = indptr_[node_id].item<index_t>();
                const auto end_idx = indptr_[node_id + 1].item<index_t>();
303
304
305
306
307
308
309
310
311
312
313
314
                indptr[i + 1] = end_idx - start_idx;
                original_column_node_ids[i] = node_id;
                indices_arr[i] = indices_.slice(0, start_idx, end_idx);
                edge_ids_arr[i] = torch::arange(start_idx, end_idx);
                if (type_per_edge_) {
                  type_per_edge_arr[i] =
                      type_per_edge_.value().slice(0, start_idx, end_idx);
                }
              }
            });
      }));

315
  return c10::make_intrusive<FusedSampledSubgraph>(
316
      indptr.cumsum(0), torch::cat(indices_arr), original_column_node_ids,
317
318
319
320
321
322
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
339
340
341
342
343
 * @return A lambda function (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors) -> torch::Tensor, which takes seed offset (the offset of the
 * seed to sample), offset (the starting edge ID of the given node) and
 * num_neighbors (number of neighbors) as params and returns the pick number of
 * the given node.
344
345
346
347
348
349
350
351
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&fanouts, replace, &probs_or_mask, &type_per_edge](
352
             int64_t seed_offset, int64_t offset, int64_t num_neighbors) {
353
354
355
356
357
358
359
360
361
362
    if (fanouts.size() > 1) {
      return NumPickByEtype(
          fanouts, replace, type_per_edge.value(), probs_or_mask, offset,
          num_neighbors);
    } else {
      return NumPick(fanouts[0], replace, probs_or_mask, offset, num_neighbors);
    }
  };
}

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
auto GetTemporalNumPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&seed_timestamp, &csc_indices, &fanouts, replace, &probs_or_mask,
          &type_per_edge, &node_timestamp, &edge_timestamp](
             int64_t seed_offset, int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return TemporalNumPickByEtype(
          seed_timestamp, csc_indices, fanouts, replace, type_per_edge.value(),
          probs_or_mask, node_timestamp, edge_timestamp, seed_offset, offset,
          num_neighbors);
    } else {
      return TemporalNumPick(
          seed_timestamp, csc_indices, fanouts[0], replace, probs_or_mask,
          node_timestamp, edge_timestamp, seed_offset, offset, num_neighbors);
    }
  };
}

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
405
406
407
408
409
 * @return A lambda function: (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors, PickedType* picked_data_ptr) -> torch::Tensor, which takes
 * seed_offset (the offset of the seed to sample), offset (the starting edge ID
 * of the given node) and num_neighbors (number of neighbors) as params and puts
 * the picked neighbors at the address specified by picked_data_ptr.
410
 */
411
template <SamplerType S>
412
413
414
415
416
417
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
418
419
             int64_t seed_offset, int64_t offset, int64_t num_neighbors,
             auto picked_data_ptr) {
420
421
422
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
423
424
425
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
426
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr);
427
    } else {
428
      int64_t num_sampled = Pick(
429
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
430
          args, picked_data_ptr);
431
432
433
434
      if (type_per_edge) {
        std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
      }
      return num_sampled;
435
436
437
438
    }
  };
}

439
template <SamplerType S>
440
441
442
443
444
445
446
auto GetTemporalPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args) {
  return
      [&seed_timestamp, &csc_indices, &fanouts, replace, &options,
       &type_per_edge, &probs_or_mask, &node_timestamp, &edge_timestamp, args](
          int64_t seed_offset, int64_t offset, int64_t num_neighbors,
          auto picked_data_ptr) {
        // If fanouts.size() > 1, perform sampling for each edge type of each
        // node; otherwise just sample once for each node with no regard of edge
        // types.
        if (fanouts.size() > 1) {
          return TemporalPickByEtype(
              seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
              fanouts, replace, options, type_per_edge.value(), probs_or_mask,
              node_timestamp, edge_timestamp, args, picked_data_ptr);
        } else {
          int64_t num_sampled = TemporalPick(
              seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
              fanouts[0], replace, options, probs_or_mask, node_timestamp,
              edge_timestamp, args, picked_data_ptr);
          if (type_per_edge.has_value()) {
            std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
          }
          return num_sampled;
        }
      };
472
473
}

474
template <typename NumPickFn, typename PickFn>
475
476
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::SampleNeighborsImpl(
477
478
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
479
  const int64_t num_nodes = nodes.size(0);
480
  const auto indptr_options = indptr_.options();
481
  torch::Tensor num_picked_neighbors_per_node =
482
      torch::empty({num_nodes + 1}, indptr_options);
483

484
485
486
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
487
488
489
490
491
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;

492
  AT_DISPATCH_INDEX_TYPES(
493
      indptr_.scalar_type(), "SampleNeighborsImplWrappedWithIndptr", ([&] {
494
495
        using indptr_t = index_t;
        AT_DISPATCH_INDEX_TYPES(
496
            nodes.scalar_type(), "SampleNeighborsImplWrappedWithNodes", ([&] {
497
              using nodes_t = index_t;
498
499
500
501
502
              const auto indptr_data = indptr_.data_ptr<indptr_t>();
              auto num_picked_neighbors_data_ptr =
                  num_picked_neighbors_per_node.data_ptr<indptr_t>();
              num_picked_neighbors_data_ptr[0] = 0;
              const auto nodes_data_ptr = nodes.data_ptr<nodes_t>();
503

504
505
506
507
508
509
510
511
512
513
514
515
              // Step 1. Calculate pick number of each node.
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      TORCH_CHECK(
                          nid >= 0 && nid < NumNodes(),
                          "The seed nodes' IDs should fall within the range of "
                          "the "
                          "graph's node IDs.");
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
516

517
518
519
                      num_picked_neighbors_data_ptr[i + 1] =
                          num_neighbors == 0
                              ? 0
520
                              : num_pick_fn(i, offset, num_neighbors);
521
522
                    }
                  });
523

524
525
526
527
              // Step 2. Calculate prefix sum to get total length and offsets of
              // each node. It's also the indptr of the generated subgraph.
              subgraph_indptr = num_picked_neighbors_per_node.cumsum(
                  0, indptr_.scalar_type());
528

529
530
531
532
533
534
535
536
537
538
              // Step 3. Allocate the tensor for picked neighbors.
              const auto total_length =
                  subgraph_indptr.data_ptr<indptr_t>()[num_nodes];
              picked_eids = torch::empty({total_length}, indptr_options);
              subgraph_indices =
                  torch::empty({total_length}, indices_.options());
              if (type_per_edge_.has_value()) {
                subgraph_type_per_edge = torch::empty(
                    {total_length}, type_per_edge_.value().options());
              }
539

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
              // Step 4. Pick neighbors for each node.
              auto picked_eids_data_ptr = picked_eids.data_ptr<indptr_t>();
              auto subgraph_indptr_data_ptr =
                  subgraph_indptr.data_ptr<indptr_t>();
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
                      const auto picked_number =
                          num_picked_neighbors_data_ptr[i + 1];
                      const auto picked_offset = subgraph_indptr_data_ptr[i];
                      if (picked_number > 0) {
                        auto actual_picked_count = pick_fn(
555
                            i, offset, num_neighbors,
556
557
558
559
560
561
                            picked_eids_data_ptr + picked_offset);
                        TORCH_CHECK(
                            actual_picked_count == picked_number,
                            "Actual picked count doesn't match the calculated "
                            "pick "
                            "number.");
562

563
564
                        // Step 5. Calculate other attributes and return the
                        // subgraph.
565
                        AT_DISPATCH_INDEX_TYPES(
566
567
568
                            subgraph_indices.scalar_type(),
                            "IndexSelectSubgraphIndices", ([&] {
                              auto subgraph_indices_data_ptr =
569
                                  subgraph_indices.data_ptr<index_t>();
570
                              auto indices_data_ptr =
571
                                  indices_.data_ptr<index_t>();
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
                              for (auto i = picked_offset;
                                   i < picked_offset + picked_number; ++i) {
                                subgraph_indices_data_ptr[i] =
                                    indices_data_ptr[picked_eids_data_ptr[i]];
                              }
                            }));
                        if (type_per_edge_.has_value()) {
                          AT_DISPATCH_INTEGRAL_TYPES(
                              subgraph_type_per_edge.value().scalar_type(),
                              "IndexSelectTypePerEdge", ([&] {
                                auto subgraph_type_per_edge_data_ptr =
                                    subgraph_type_per_edge.value()
                                        .data_ptr<scalar_t>();
                                auto type_per_edge_data_ptr =
                                    type_per_edge_.value().data_ptr<scalar_t>();
                                for (auto i = picked_offset;
                                     i < picked_offset + picked_number; ++i) {
                                  subgraph_type_per_edge_data_ptr[i] =
                                      type_per_edge_data_ptr
                                          [picked_eids_data_ptr[i]];
                                }
                              }));
594
                        }
595
596
597
598
                      }
                    }
                  });
            }));
599
      }));
600

601
602
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
603

604
  return c10::make_intrusive<FusedSampledSubgraph>(
605
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
606
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
607
608
}

609
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::SampleNeighbors(
610
    torch::optional<torch::Tensor> nodes, const std::vector<int64_t>& fanouts,
611
612
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
  auto probs_or_mask = this->EdgeAttribute(probs_name);

  // If nodes does not have a value, then we expect all arguments to be resident
  // on the GPU. If nodes has a value, then we expect them to be accessible from
  // GPU. This is required for the dispatch to work when CUDA is not available.
  if (((!nodes.has_value() && utils::is_on_gpu(indptr_) &&
        utils::is_on_gpu(indices_) &&
        (!probs_or_mask.has_value() ||
         utils::is_on_gpu(probs_or_mask.value())) &&
        (!type_per_edge_.has_value() ||
         utils::is_on_gpu(type_per_edge_.value()))) ||
       (nodes.has_value() && utils::is_on_gpu(nodes.value()) &&
        utils::is_accessible_from_gpu(indptr_) &&
        utils::is_accessible_from_gpu(indices_) &&
        (!probs_or_mask.has_value() ||
         utils::is_accessible_from_gpu(probs_or_mask.value())) &&
        (!type_per_edge_.has_value() ||
         utils::is_accessible_from_gpu(type_per_edge_.value())))) &&
      !replace) {
632
633
634
635
636
637
638
    GRAPHBOLT_DISPATCH_CUDA_ONLY_DEVICE(
        c10::DeviceType::CUDA, "SampleNeighbors", {
          return ops::SampleNeighbors(
              indptr_, indices_, nodes, fanouts, replace, layer, return_eids,
              type_per_edge_, probs_or_mask);
        });
  }
639
  TORCH_CHECK(nodes.has_value(), "Nodes can not be None on the CPU.");
640
641

  if (probs_or_mask.has_value()) {
642
643
644
645
646
647
648
649
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
650

651
652
653
654
655
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
656
        nodes.value(), return_eids,
657
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
658
659
660
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
661
662
663
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
664
        nodes.value(), return_eids,
665
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
666
667
668
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
669
670
671
  }
}

672
673
674
675
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::TemporalSampleNeighbors(
    const torch::Tensor& input_nodes,
    const torch::Tensor& input_nodes_timestamp,
676
677
    const std::vector<int64_t>& fanouts, bool replace, bool layer,
    bool return_eids, torch::optional<std::string> probs_name,
678
679
680
    torch::optional<std::string> node_timestamp_attr_name,
    torch::optional<std::string> edge_timestamp_attr_name) const {
  // 1. Get probs_or_mask.
681
682
683
684
685
686
687
688
689
690
  auto probs_or_mask = this->EdgeAttribute(probs_name);
  if (probs_name.has_value()) {
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
691
  // 2. Get the timestamp attribute for nodes of the graph
692
  auto node_timestamp = this->NodeAttribute(node_timestamp_attr_name);
693
  // 3. Get the timestamp attribute for edges of the graph
694
695
  auto edge_timestamp = this->EdgeAttribute(edge_timestamp_attr_name);
  // 4. Call SampleNeighborsImpl
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
        input_nodes, return_eids,
        GetTemporalNumPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            type_per_edge_, probs_or_mask, node_timestamp, edge_timestamp),
        GetTemporalPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            indptr_.options(), type_per_edge_, probs_or_mask, node_timestamp,
            edge_timestamp, args));
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
        input_nodes, return_eids,
        GetTemporalNumPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            type_per_edge_, probs_or_mask, node_timestamp, edge_timestamp),
        GetTemporalPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            indptr_.options(), type_per_edge_, probs_or_mask, node_timestamp,
            edge_timestamp, args));
  }
721
722
}

723
724
static c10::intrusive_ptr<FusedCSCSamplingGraph>
BuildGraphFromSharedMemoryHelper(SharedMemoryHelper&& helper) {
725
726
727
728
729
  helper.InitializeRead();
  auto indptr = helper.ReadTorchTensor();
  auto indices = helper.ReadTorchTensor();
  auto node_type_offset = helper.ReadTorchTensor();
  auto type_per_edge = helper.ReadTorchTensor();
730
731
  auto node_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
  auto edge_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
732
  auto node_attributes = helper.ReadTorchTensorDict();
733
  auto edge_attributes = helper.ReadTorchTensorDict();
734
  auto graph = c10::make_intrusive<FusedCSCSamplingGraph>(
735
      indptr.value(), indices.value(), node_type_offset, type_per_edge,
736
      node_type_to_id, edge_type_to_id, node_attributes, edge_attributes);
737
738
739
  auto shared_memory = helper.ReleaseSharedMemory();
  graph->HoldSharedMemoryObject(
      std::move(shared_memory.first), std::move(shared_memory.second));
740
741
742
  return graph;
}

743
744
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::CopyToSharedMemory(
745
    const std::string& shared_memory_name) {
746
  SharedMemoryHelper helper(shared_memory_name);
747
748
749
750
  helper.WriteTorchTensor(indptr_);
  helper.WriteTorchTensor(indices_);
  helper.WriteTorchTensor(node_type_offset_);
  helper.WriteTorchTensor(type_per_edge_);
751
752
  helper.WriteTorchTensorDict(TensorizeDict(node_type_to_id_));
  helper.WriteTorchTensorDict(TensorizeDict(edge_type_to_id_));
753
  helper.WriteTorchTensorDict(node_attributes_);
754
755
756
  helper.WriteTorchTensorDict(edge_attributes_);
  helper.Flush();
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
757
758
}

759
760
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::LoadFromSharedMemory(
761
    const std::string& shared_memory_name) {
762
  SharedMemoryHelper helper(shared_memory_name);
763
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
764
765
}

766
void FusedCSCSamplingGraph::HoldSharedMemoryObject(
767
768
769
770
771
    SharedMemoryPtr tensor_metadata_shm, SharedMemoryPtr tensor_data_shm) {
  tensor_metadata_shm_ = std::move(tensor_metadata_shm);
  tensor_data_shm_ = std::move(tensor_data_shm);
}

772
773
774
775
int64_t NumPick(
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
776
777
778
779
780
781
782
783
784
785
786
  int64_t num_valid_neighbors = num_neighbors;
  if (probs_or_mask.has_value()) {
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
787
788
789
790
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

791
792
793
794
795
796
797
798
799
800
801
torch::Tensor TemporalMask(
    int64_t seed_timestamp, torch::Tensor csc_indices,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp,
    std::pair<int64_t, int64_t> edge_range) {
  auto [l, r] = edge_range;
  torch::Tensor mask = torch::ones({r - l}, torch::kBool);
  if (node_timestamp.has_value()) {
    auto neighbor_timestamp =
        node_timestamp.value().index_select(0, csc_indices.slice(0, l, r));
802
    mask &= neighbor_timestamp < seed_timestamp;
803
804
  }
  if (edge_timestamp.has_value()) {
805
    mask &= edge_timestamp.value().slice(0, l, r) < seed_timestamp;
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
  }
  if (probs_or_mask.has_value()) {
    mask &= probs_or_mask.value().slice(0, l, r) != 0;
  }
  return mask;
}

int64_t TemporalNumPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indics, int64_t fanout,
    bool replace, const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indics,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  int64_t num_valid_neighbors = utils::GetValueByIndex<int64_t>(mask.sum(), 0);
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
int64_t NumPickByEtype(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += NumPick(
              fanouts[etype], replace, probs_or_mask, etype_begin,
              etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
int64_t TemporalNumPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalNumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += TemporalNumPick(
              seed_timestamp, csc_indices, fanouts[etype], replace,
              probs_or_mask, node_timestamp, edge_timestamp, seed_offset,
              etype_begin, etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

892
893
894
895
896
897
898
899
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
900
901
902
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
903
904
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
905
 * @param replace Boolean indicating whether the sample is performed with or
906
907
908
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
909
910
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
911
 */
912
template <typename PickedType>
913
inline int64_t UniformPick(
914
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
915
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
916
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
917
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
918
    return num_neighbors;
919
  } else if (replace) {
920
921
922
923
924
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
925
    return fanout;
926
  } else {
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
961
      return fanout;
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
982
      return fanout;
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
1006
      return picked_set.size();
1007
    }
1008
1009
1010
  }
}

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
/** @brief An operator to perform non-uniform sampling. */
static torch::Tensor NonUniformPickOp(
    torch::Tensor probs, int64_t fanout, bool replace) {
  auto positive_probs_indices = probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
  if (num_positive_probs == 0) return torch::empty({0}, torch::kLong);
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
    return positive_probs_indices;
  }
  if (!replace) fanout = std::min(fanout, num_positive_probs);
  if (fanout == 0) return torch::empty({0}, torch::kLong);
  auto ret_tensor = torch::empty({fanout}, torch::kLong);
  auto ret_ptr = ret_tensor.data_ptr<int64_t>();
  AT_DISPATCH_FLOATING_TYPES(
      probs.scalar_type(), "MultinomialSampling", ([&] {
        auto probs_data_ptr = probs.data_ptr<scalar_t>();
        auto positive_probs_indices_ptr =
            positive_probs_indices.data_ptr<int64_t>();

        if (!replace) {
          // The algorithm is from gumbel softmax.
          // s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1).
          // Here we can apply exp to the formula which will not affect result
          // of argmax or topk. Then we have
          // s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
          // We can also simplify the formula above by
          // s = argmax( p / q ) where q ~ Exp(1).
          if (fanout == 1) {
            // Return argmax(p / q).
            scalar_t max_prob = 0;
            int64_t max_prob_index = -1;
            // We only care about the neighbors with non-zero probability.
            for (auto i = 0; i < num_positive_probs; ++i) {
              // Calculate (p / q) for the current neighbor.
              scalar_t current_prob =
                  probs_data_ptr[positive_probs_indices_ptr[i]] /
                  RandomEngine::ThreadLocal()->Exponential(1.);
              if (current_prob > max_prob) {
                max_prob = current_prob;
                max_prob_index = positive_probs_indices_ptr[i];
              }
            }
            ret_ptr[0] = max_prob_index;
          } else {
            // Return topk(p / q).
            std::vector<std::pair<scalar_t, int64_t>> q(num_positive_probs);
            for (auto i = 0; i < num_positive_probs; ++i) {
              q[i].first = probs_data_ptr[positive_probs_indices_ptr[i]] /
                           RandomEngine::ThreadLocal()->Exponential(1.);
              q[i].second = positive_probs_indices_ptr[i];
            }
            if (fanout < num_positive_probs / 64) {
              // Use partial_sort.
              std::partial_sort(
                  q.begin(), q.begin() + fanout, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            } else {
              // Use nth_element.
              std::nth_element(
                  q.begin(), q.begin() + fanout - 1, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            }
          }
        } else {
          // Calculate cumulative sum of probabilities.
          std::vector<scalar_t> prefix_sum_probs(num_positive_probs);
          scalar_t sum_probs = 0;
          for (auto i = 0; i < num_positive_probs; ++i) {
            sum_probs += probs_data_ptr[positive_probs_indices_ptr[i]];
            prefix_sum_probs[i] = sum_probs;
          }
          // Normalize.
          if ((sum_probs > 1.00001) || (sum_probs < 0.99999)) {
            for (auto i = 0; i < num_positive_probs; ++i) {
              prefix_sum_probs[i] /= sum_probs;
            }
          }
          for (auto i = 0; i < fanout; ++i) {
            // Sample a probability mass from a uniform distribution.
            double uniform_sample =
                RandomEngine::ThreadLocal()->Uniform(0., 1.);
            // Use a binary search to find the index.
            int sampled_index = std::lower_bound(
                                    prefix_sum_probs.begin(),
                                    prefix_sum_probs.end(), uniform_sample) -
                                prefix_sum_probs.begin();
            ret_ptr[i] = positive_probs_indices_ptr[sampled_index];
          }
        }
      }));
  return ret_tensor;
}

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1126
1127
1128
1129
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
1130
1131
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
1132
 * @param replace Boolean indicating whether the sample is performed with or
1133
1134
1135
1136
1137
1138
1139
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
1140
1141
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1142
 */
1143
template <typename PickedType>
1144
inline int64_t NonUniformPick(
1145
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
1146
    const torch::TensorOptions& options, const torch::Tensor& probs_or_mask,
1147
    PickedType* picked_data_ptr) {
1148
  auto local_probs =
1149
1150
1151
      probs_or_mask.size(0) > num_neighbors
          ? probs_or_mask.slice(0, offset, offset + num_neighbors)
          : probs_or_mask;
1152
1153
1154
1155
1156
  auto picked_indices = NonUniformPickOp(local_probs, fanout, replace);
  auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
  for (int i = 0; i < picked_indices.numel(); ++i) {
    picked_data_ptr[i] =
        static_cast<PickedType>(picked_indices_ptr[i]) + offset;
1157
  }
1158
  return picked_indices.numel();
1159
1160
}

1161
template <typename PickedType>
1162
int64_t Pick(
1163
1164
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
1165
    const torch::optional<torch::Tensor>& probs_or_mask,
1166
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
1167
  if (probs_or_mask.has_value()) {
1168
    return NonUniformPick(
1169
        offset, num_neighbors, fanout, replace, options, probs_or_mask.value(),
1170
        picked_data_ptr);
1171
  } else {
1172
    return UniformPick(
1173
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1174
1175
1176
  }
}

1177
template <SamplerType S, typename PickedType>
1178
1179
1180
1181
1182
1183
int64_t TemporalPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors, int64_t fanout,
    bool replace, const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
1184
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args,
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
    PickedType* picked_data_ptr) {
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indices,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  torch::Tensor masked_prob;
  if (probs_or_mask.has_value()) {
    masked_prob =
        probs_or_mask.value().slice(0, offset, offset + num_neighbors) * mask;
  } else {
    masked_prob = mask.to(torch::kFloat32);
  }
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
  if constexpr (S == SamplerType::NEIGHBOR) {
    auto picked_indices = NonUniformPickOp(masked_prob, fanout, replace);
    auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
    for (int i = 0; i < picked_indices.numel(); ++i) {
      picked_data_ptr[i] =
          static_cast<PickedType>(picked_indices_ptr[i]) + offset;
    }
    return picked_indices.numel();
  }
  if constexpr (S == SamplerType::LABOR) {
    return Pick(
        offset, num_neighbors, fanout, replace, options, masked_prob, args,
        picked_data_ptr);
1210
1211
1212
  }
}

1213
template <SamplerType S, typename PickedType>
1214
int64_t PickByEtype(
1215
1216
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
1217
    const torch::Tensor& type_per_edge,
1218
1219
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
1220
1221
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
1222
  int64_t pick_offset = 0;
1223
1224
1225
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
1226
1227
1228
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
1229
          TORCH_CHECK(
1230
              etype >= 0 && etype < (int64_t)fanouts.size(),
1231
              "Etype values exceed the number of fanouts.");
1232
          int64_t fanout = fanouts[etype];
1233
1234
1235
1236
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
1237
1238
          // Do sampling for one etype.
          if (fanout != 0) {
1239
            int64_t picked_count = Pick(
1240
                etype_begin, etype_end - etype_begin, fanout, replace, options,
1241
1242
                probs_or_mask, args, picked_data_ptr + pick_offset);
            pick_offset += picked_count;
1243
1244
1245
1246
          }
          etype_begin = etype_end;
        }
      }));
1247
  return pick_offset;
1248
1249
}

1250
template <SamplerType S, typename PickedType>
1251
1252
1253
1254
1255
1256
1257
int64_t TemporalPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options, const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
1258
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args,
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
    PickedType* picked_data_ptr) {
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
  int64_t pick_offset = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalPickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          int64_t fanout = fanouts[etype];
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          if (fanout != 0) {
            int64_t picked_count = TemporalPick(
                seed_timestamp, csc_indices, seed_offset, etype_begin,
                etype_end - etype_begin, fanout, replace, options,
1282
                probs_or_mask, node_timestamp, edge_timestamp, args,
1283
1284
1285
1286
1287
1288
1289
1290
1291
                picked_data_ptr + pick_offset);
            pick_offset += picked_count;
          }
          etype_begin = etype_end;
        }
      }));
  return pick_offset;
}

1292
template <typename PickedType>
1293
int64_t Pick(
1294
1295
1296
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
1297
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
1298
  if (fanout == 0) return 0;
1299
  if (probs_or_mask.has_value()) {
1300
    if (fanout < 0) {
1301
      return NonUniformPick(
1302
1303
          offset, num_neighbors, fanout, replace, options,
          probs_or_mask.value(), picked_data_ptr);
1304
    } else {
1305
      int64_t picked_count;
1306
1307
1308
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
1309
              picked_count = LaborPick<true, true, scalar_t>(
1310
1311
1312
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
1313
              picked_count = LaborPick<true, false, scalar_t>(
1314
1315
1316
1317
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
1318
      return picked_count;
1319
1320
    }
  } else if (fanout < 0) {
1321
    return UniformPick(
1322
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1323
  } else if (replace) {
1324
    return LaborPick<false, true, float>(
1325
        offset, num_neighbors, fanout, options,
1326
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1327
  } else {  // replace = false
1328
    return LaborPick<false, false, float>(
1329
        offset, num_neighbors, fanout, options,
1330
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1348
1349
1350
1351
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
1352
1353
1354
1355
1356
1357
1358
1359
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
1360
1361
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1362
 */
1363
template <
1364
1365
    bool NonUniform, bool Replace, typename ProbsType, typename PickedType,
    int StackSize>
1366
inline int64_t LaborPick(
1367
1368
1369
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
1370
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
1371
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
1372
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
1373
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
1374
    return num_neighbors;
1375
1376
  }
  // Assuming max_degree of a vertex is <= 4 billion.
1377
1378
1379
1380
1381
1382
1383
1384
1385
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
1386
1387
1388
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
1389
1390
1391
  if (NonUniform && probs_or_mask.value().size(0) <= num_neighbors) {
    local_probs_data -= offset;
  }
1392
  AT_DISPATCH_INDEX_TYPES(
1393
      args.indices.scalar_type(), "LaborPickMain", ([&] {
1394
1395
        const index_t* local_indices_data =
            args.indices.data_ptr<index_t>() + offset;
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
1418
1419
1420
1421
1422
1423
1424
1425
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
1426
1427
1428
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
1429
              [&](index_t t, int64_t j, uint32_t i) {
1430
                auto rnd = labor::jth_sorted_uniform_random(
1431
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
1432
1433
1434
1435
1436
1437
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
1438
1439
1440
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
1441
1442
1443
1444
1445
1446
1447
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
1448
                  remaining_data[i] = -1;
1449
1450
1451
1452
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1453
            const auto t = local_indices_data[i];
1454
1455
1456
1457
1458
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1459
            if (remaining_data[i] == -1) continue;
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
1511
1512
1513
1514
1515
1516
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
1517
  return num_sampled;
1518
1519
}

1520
1521
}  // namespace sampling
}  // namespace graphbolt