fused_csc_sampling_graph.cc 88.5 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file fused_csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
#include <graphbolt/cuda_sampling_ops.h>
8
#include <graphbolt/fused_csc_sampling_graph.h>
9
#include <graphbolt/serialize.h>
10
11
#include <torch/torch.h>

12
13
#include <algorithm>
#include <array>
14
15
#include <cmath>
#include <limits>
16
#include <numeric>
17
#include <tuple>
18
#include <type_traits>
19
#include <vector>
20

21
#include "./expand_indptr.h"
22
#include "./macro.h"
23
#include "./random.h"
24
#include "./shared_memory_helper.h"
25
#include "./utils.h"
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
namespace {
torch::optional<torch::Dict<std::string, torch::Tensor>> TensorizeDict(
    const torch::optional<torch::Dict<std::string, int64_t>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, torch::Tensor> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), torch::tensor(pair.value(), torch::kInt64));
  }
  return result;
}

torch::optional<torch::Dict<std::string, int64_t>> DetensorizeDict(
    const torch::optional<torch::Dict<std::string, torch::Tensor>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, int64_t> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), pair.value().item<int64_t>());
  }
  return result;
}
}  // namespace

53
54
55
namespace graphbolt {
namespace sampling {

56
57
static const int kPickleVersion = 6199;

58
FusedCSCSamplingGraph::FusedCSCSamplingGraph(
59
    const torch::Tensor& indptr, const torch::Tensor& indices,
60
    const torch::optional<torch::Tensor>& node_type_offset,
61
    const torch::optional<torch::Tensor>& type_per_edge,
62
63
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
64
    const torch::optional<NodeAttrMap>& node_attributes,
65
    const torch::optional<EdgeAttrMap>& edge_attributes)
66
    : indptr_(indptr),
67
      indices_(indices),
68
      node_type_offset_(node_type_offset),
69
      type_per_edge_(type_per_edge),
70
71
      node_type_to_id_(node_type_to_id),
      edge_type_to_id_(edge_type_to_id),
72
      node_attributes_(node_attributes),
73
      edge_attributes_(edge_attributes) {
74
75
76
77
78
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

79
c10::intrusive_ptr<FusedCSCSamplingGraph> FusedCSCSamplingGraph::Create(
80
    const torch::Tensor& indptr, const torch::Tensor& indices,
81
    const torch::optional<torch::Tensor>& node_type_offset,
82
    const torch::optional<torch::Tensor>& type_per_edge,
83
84
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
85
    const torch::optional<NodeAttrMap>& node_attributes,
86
    const torch::optional<EdgeAttrMap>& edge_attributes) {
87
88
89
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
90
91
92
93
    TORCH_CHECK(node_type_to_id.has_value());
    TORCH_CHECK(
        offset.size(0) ==
        static_cast<int64_t>(node_type_to_id.value().size() + 1));
94
95
96
97
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
98
    TORCH_CHECK(edge_type_to_id.has_value());
99
  }
100
101
  if (node_attributes.has_value()) {
    for (const auto& pair : node_attributes.value()) {
102
103
104
105
106
107
      TORCH_CHECK(
          pair.value().size(0) == indptr.size(0) - 1,
          "Expected node_attribute.size(0) and num_nodes to be equal, "
          "but node_attribute.size(0) was ",
          pair.value().size(0), ", and num_nodes was ", indptr.size(0) - 1,
          ".");
108
109
    }
  }
110
111
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
112
113
114
115
116
      TORCH_CHECK(
          pair.value().size(0) == indices.size(0),
          "Expected edge_attribute.size(0) and num_edges to be equal, "
          "but edge_attribute.size(0) was ",
          pair.value().size(0), ", and num_edges was ", indices.size(0), ".");
117
118
    }
  }
119
  return c10::make_intrusive<FusedCSCSamplingGraph>(
120
      indptr, indices, node_type_offset, type_per_edge, node_type_to_id,
121
      edge_type_to_id, node_attributes, edge_attributes);
122
123
}

124
void FusedCSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
125
  const int64_t magic_num =
126
      read_from_archive<int64_t>(archive, "FusedCSCSamplingGraph/magic_num");
127
128
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
129
130
      "Magic numbers mismatch when loading FusedCSCSamplingGraph.");
  indptr_ =
131
132
133
134
135
136
137
      read_from_archive<torch::Tensor>(archive, "FusedCSCSamplingGraph/indptr");
  indices_ = read_from_archive<torch::Tensor>(
      archive, "FusedCSCSamplingGraph/indices");
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_offset")) {
    node_type_offset_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/node_type_offset");
138
  }
139
140
141
142
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_type_per_edge")) {
    type_per_edge_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/type_per_edge");
143
  }
144

145
146
147
148
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_to_id")) {
    node_type_to_id_ = read_from_archive<NodeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/node_type_to_id");
149
150
  }

151
152
153
154
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_type_to_id")) {
    edge_type_to_id_ = read_from_archive<EdgeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/edge_type_to_id");
155
156
  }

157
158
159
160
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_attributes")) {
    node_attributes_ = read_from_archive<NodeAttrMap>(
        archive, "FusedCSCSamplingGraph/node_attributes");
161
  }
162
163
164
165
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_attributes")) {
    edge_attributes_ = read_from_archive<EdgeAttrMap>(
        archive, "FusedCSCSamplingGraph/edge_attributes");
166
  }
167
168
}

169
170
171
172
173
174
void FusedCSCSamplingGraph::Save(
    torch::serialize::OutputArchive& archive) const {
  archive.write(
      "FusedCSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
  archive.write("FusedCSCSamplingGraph/indptr", indptr_);
  archive.write("FusedCSCSamplingGraph/indices", indices_);
175
  archive.write(
176
177
      "FusedCSCSamplingGraph/has_node_type_offset",
      node_type_offset_.has_value());
178
179
  if (node_type_offset_) {
    archive.write(
180
        "FusedCSCSamplingGraph/node_type_offset", node_type_offset_.value());
181
182
  }
  archive.write(
183
      "FusedCSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
184
  if (type_per_edge_) {
185
186
    archive.write(
        "FusedCSCSamplingGraph/type_per_edge", type_per_edge_.value());
187
  }
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  archive.write(
      "FusedCSCSamplingGraph/has_node_type_to_id",
      node_type_to_id_.has_value());
  if (node_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/node_type_to_id", node_type_to_id_.value());
  }
  archive.write(
      "FusedCSCSamplingGraph/has_edge_type_to_id",
      edge_type_to_id_.has_value());
  if (edge_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/edge_type_to_id", edge_type_to_id_.value());
  }
202
203
204
205
206
207
208
  archive.write(
      "FusedCSCSamplingGraph/has_node_attributes",
      node_attributes_.has_value());
  if (node_attributes_) {
    archive.write(
        "FusedCSCSamplingGraph/node_attributes", node_attributes_.value());
  }
209
  archive.write(
210
211
      "FusedCSCSamplingGraph/has_edge_attributes",
      edge_attributes_.has_value());
212
  if (edge_attributes_) {
213
214
    archive.write(
        "FusedCSCSamplingGraph/edge_attributes", edge_attributes_.value());
215
  }
216
217
}

218
void FusedCSCSamplingGraph::SetState(
219
220
221
222
223
224
225
226
227
    const torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>&
        state) {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  const auto& independent_tensors = state.at("independent_tensors");
  TORCH_CHECK(
      independent_tensors.at("version_number")
          .equal(torch::tensor({kPickleVersion})),
228
      "Version number mismatches when loading pickled FusedCSCSamplingGraph.")
229
230
231
232
233
234
235
236
237
  indptr_ = independent_tensors.at("indptr");
  indices_ = independent_tensors.at("indices");
  if (independent_tensors.find("node_type_offset") !=
      independent_tensors.end()) {
    node_type_offset_ = independent_tensors.at("node_type_offset");
  }
  if (independent_tensors.find("type_per_edge") != independent_tensors.end()) {
    type_per_edge_ = independent_tensors.at("type_per_edge");
  }
238
239
240
241
242
243
  if (state.find("node_type_to_id") != state.end()) {
    node_type_to_id_ = DetensorizeDict(state.at("node_type_to_id"));
  }
  if (state.find("edge_type_to_id") != state.end()) {
    edge_type_to_id_ = DetensorizeDict(state.at("edge_type_to_id"));
  }
244
245
246
  if (state.find("node_attributes") != state.end()) {
    node_attributes_ = state.at("node_attributes");
  }
247
248
249
250
251
252
  if (state.find("edge_attributes") != state.end()) {
    edge_attributes_ = state.at("edge_attributes");
  }
}

torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>
253
FusedCSCSamplingGraph::GetState() const {
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>> state;
  torch::Dict<std::string, torch::Tensor> independent_tensors;
  // Serialization version number. It indicates the serialization method of the
  // whole state.
  independent_tensors.insert("version_number", torch::tensor({kPickleVersion}));
  independent_tensors.insert("indptr", indptr_);
  independent_tensors.insert("indices", indices_);
  if (node_type_offset_.has_value()) {
    independent_tensors.insert("node_type_offset", node_type_offset_.value());
  }
  if (type_per_edge_.has_value()) {
    independent_tensors.insert("type_per_edge", type_per_edge_.value());
  }
  state.insert("independent_tensors", independent_tensors);
271
272
273
274
275
276
  if (node_type_to_id_.has_value()) {
    state.insert("node_type_to_id", TensorizeDict(node_type_to_id_).value());
  }
  if (edge_type_to_id_.has_value()) {
    state.insert("edge_type_to_id", TensorizeDict(edge_type_to_id_).value());
  }
277
278
279
  if (node_attributes_.has_value()) {
    state.insert("node_attributes", node_attributes_.value());
  }
280
281
282
283
284
285
  if (edge_attributes_.has_value()) {
    state.insert("edge_attributes", edge_attributes_.value());
  }
  return state;
}

286
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
287
    const torch::Tensor& nodes) const {
288
  if (utils::is_on_gpu(nodes) && utils::is_accessible_from_gpu(indptr_) &&
289
290
291
292
293
294
295
      utils::is_accessible_from_gpu(indices_) &&
      (!type_per_edge_.has_value() ||
       utils::is_accessible_from_gpu(type_per_edge_.value()))) {
    GRAPHBOLT_DISPATCH_CUDA_ONLY_DEVICE(c10::DeviceType::CUDA, "InSubgraph", {
      return ops::InSubgraph(indptr_, indices_, nodes, type_per_edge_);
    });
  }
296
297
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
298
299
  const auto num_seeds = nodes.size(0);
  torch::Tensor indptr = torch::zeros({num_seeds + 1}, indptr_.dtype());
300
  std::vector<torch::Tensor> indices_arr(num_seeds);
301
302
  torch::Tensor original_column_node_ids =
      torch::zeros({num_seeds}, indptr_.dtype());
303
304
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
305

306
  AT_DISPATCH_INDEX_TYPES(
307
308
309
310
      indptr_.scalar_type(), "InSubgraph", ([&] {
        torch::parallel_for(
            0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
              for (size_t i = start; i < end; ++i) {
311
312
313
                const auto node_id = nodes[i].item<index_t>();
                const auto start_idx = indptr_[node_id].item<index_t>();
                const auto end_idx = indptr_[node_id + 1].item<index_t>();
314
315
316
317
318
319
320
321
322
323
324
325
                indptr[i + 1] = end_idx - start_idx;
                original_column_node_ids[i] = node_id;
                indices_arr[i] = indices_.slice(0, start_idx, end_idx);
                edge_ids_arr[i] = torch::arange(start_idx, end_idx);
                if (type_per_edge_) {
                  type_per_edge_arr[i] =
                      type_per_edge_.value().slice(0, start_idx, end_idx);
                }
              }
            });
      }));

326
  return c10::make_intrusive<FusedSampledSubgraph>(
327
      indptr.cumsum(0), torch::cat(indices_arr), original_column_node_ids,
328
329
330
331
332
333
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
350
351
352
353
354
 * @return A lambda function (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors) -> torch::Tensor, which takes seed offset (the offset of the
 * seed to sample), offset (the starting edge ID of the given node) and
 * num_neighbors (number of neighbors) as params and returns the pick number of
 * the given node.
355
356
357
358
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
359
360
    const torch::optional<torch::Tensor>& probs_or_mask,
    bool with_seed_offsets) {
361
362
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
363
364
365
366
  return [&fanouts, replace, &probs_or_mask, &type_per_edge, with_seed_offsets](
             int64_t offset, int64_t num_neighbors, auto num_picked_ptr,
             int64_t seed_index,
             const std::vector<int64_t>& etype_id_to_num_picked_offset) {
367
    if (fanouts.size() > 1) {
368
369
370
371
      NumPickByEtype(
          with_seed_offsets, fanouts, replace, type_per_edge.value(),
          probs_or_mask, offset, num_neighbors, num_picked_ptr, seed_index,
          etype_id_to_num_picked_offset);
372
    } else {
373
374
375
      NumPick(
          fanouts[0], replace, probs_or_mask, offset, num_neighbors,
          num_picked_ptr + seed_index);
376
377
378
379
    }
  };
}

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
auto GetTemporalNumPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&seed_timestamp, &csc_indices, &fanouts, replace, &probs_or_mask,
          &type_per_edge, &node_timestamp, &edge_timestamp](
             int64_t seed_offset, int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return TemporalNumPickByEtype(
          seed_timestamp, csc_indices, fanouts, replace, type_per_edge.value(),
          probs_or_mask, node_timestamp, edge_timestamp, seed_offset, offset,
          num_neighbors);
    } else {
      return TemporalNumPick(
          seed_timestamp, csc_indices, fanouts[0], replace, probs_or_mask,
          node_timestamp, edge_timestamp, seed_offset, offset, num_neighbors);
    }
  };
}

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
422
423
424
425
426
 * @return A lambda function: (int64_t seed_offset, int64_t offset, int64_t
 * num_neighbors, PickedType* picked_data_ptr) -> torch::Tensor, which takes
 * seed_offset (the offset of the seed to sample), offset (the starting edge ID
 * of the given node) and num_neighbors (number of neighbors) as params and puts
 * the picked neighbors at the address specified by picked_data_ptr.
427
 */
428
template <SamplerType S>
429
430
431
432
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
433
434
435
436
437
438
439
    const torch::optional<torch::Tensor>& probs_or_mask, bool with_seed_offsets,
    SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args,
          with_seed_offsets](
             int64_t offset, int64_t num_neighbors, auto picked_data_ptr,
             int64_t seed_offset, auto subgraph_indptr_ptr,
             const std::vector<int64_t>& etype_id_to_num_picked_offset) {
440
441
442
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
443
444
    if (fanouts.size() > 1) {
      return PickByEtype(
445
446
447
          with_seed_offsets, offset, num_neighbors, fanouts, replace, options,
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr,
          seed_offset, subgraph_indptr_ptr, etype_id_to_num_picked_offset);
448
    } else {
449
      int64_t num_sampled = Pick(
450
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
451
          args, picked_data_ptr + subgraph_indptr_ptr[seed_offset]);
452
453
454
455
      if (type_per_edge) {
        std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
      }
      return num_sampled;
456
457
458
459
    }
  };
}

460
template <SamplerType S>
461
462
463
464
465
466
467
auto GetTemporalPickFn(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args) {
  return
      [&seed_timestamp, &csc_indices, &fanouts, replace, &options,
       &type_per_edge, &probs_or_mask, &node_timestamp, &edge_timestamp, args](
          int64_t seed_offset, int64_t offset, int64_t num_neighbors,
          auto picked_data_ptr) {
        // If fanouts.size() > 1, perform sampling for each edge type of each
        // node; otherwise just sample once for each node with no regard of edge
        // types.
        if (fanouts.size() > 1) {
          return TemporalPickByEtype(
              seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
              fanouts, replace, options, type_per_edge.value(), probs_or_mask,
              node_timestamp, edge_timestamp, args, picked_data_ptr);
        } else {
          int64_t num_sampled = TemporalPick(
              seed_timestamp, csc_indices, seed_offset, offset, num_neighbors,
              fanouts[0], replace, options, probs_or_mask, node_timestamp,
              edge_timestamp, args, picked_data_ptr);
          if (type_per_edge.has_value()) {
            std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
          }
          return num_sampled;
        }
      };
493
494
}

495
template <typename NumPickFn, typename PickFn>
496
497
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::SampleNeighborsImpl(
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
    const torch::Tensor& seeds,
    torch::optional<std::vector<int64_t>>& seed_offsets,
    const std::vector<int64_t>& fanouts, bool return_eids,
    NumPickFn num_pick_fn, PickFn pick_fn) const {
  const int64_t num_seeds = seeds.size(0);
  const auto indptr_options = indptr_.options();

  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;
  torch::optional<torch::Tensor> edge_offsets = torch::nullopt;

  bool with_seed_offsets = seed_offsets.has_value();
  bool hetero_with_seed_offsets = with_seed_offsets && fanouts.size() > 1;

  // Get the number of edge types. If it's homo or if the size of fanouts is 1
  // (hetero graph but sampled as a homo graph), set num_etypes as 1.
  // In temporal sampling, this will not be used for now since the logic hasn't
  // been adopted for temporal sampling.
  const int64_t num_etypes =
      (edge_type_to_id_.has_value() && hetero_with_seed_offsets)
          ? edge_type_to_id_->size()
          : 1;
  std::vector<int64_t> etype_id_to_src_ntype_id(num_etypes);
  std::vector<int64_t> etype_id_to_dst_ntype_id(num_etypes);
  torch::optional<torch::Tensor> subgraph_indptr_substract = torch::nullopt;
  // The pick numbers are stored in a single tensor by the order of etype. Each
  // etype corresponds to a group of seeds whose ntype are the same as the
  // dst_type. `etype_id_to_num_picked_offset` indicates the beginning offset
  // where each etype's corresponding seeds' pick numbers are stored in the pick
  // number tensor.
  std::vector<int64_t> etype_id_to_num_picked_offset(num_etypes + 1);
  if (hetero_with_seed_offsets) {
    for (auto& etype_and_id : edge_type_to_id_.value()) {
      auto etype = etype_and_id.key();
      auto id = etype_and_id.value();
      auto [src_type, dst_type] = utils::parse_src_dst_ntype_from_etype(etype);
      auto dst_ntype_id = node_type_to_id_->at(dst_type);
      etype_id_to_src_ntype_id[id] = node_type_to_id_->at(src_type);
      etype_id_to_dst_ntype_id[id] = dst_ntype_id;
      etype_id_to_num_picked_offset[id + 1] =
          seed_offsets->at(dst_ntype_id + 1) - seed_offsets->at(dst_ntype_id) +
          1;
    }
    std::partial_sum(
        etype_id_to_num_picked_offset.begin(),
        etype_id_to_num_picked_offset.end(),
        etype_id_to_num_picked_offset.begin());
  } else {
    etype_id_to_dst_ntype_id[0] = 0;
    etype_id_to_num_picked_offset[1] = num_seeds + 1;
  }
  // `num_rows` indicates the length of `num_picked_neighbors_per_node`, which
  // is used for storing pick numbers. In non-temporal hetero sampling, it
  // equals to sum_{etype} #seeds with ntype=dst_type(etype). In homo sampling,
  // it equals to `num_seeds`.
  const int64_t num_rows = etype_id_to_num_picked_offset[num_etypes];
  torch::Tensor num_picked_neighbors_per_node =
      torch::empty({num_rows}, indptr_options);

  AT_DISPATCH_INDEX_TYPES(
      indptr_.scalar_type(), "SampleNeighborsImplWrappedWithIndptr", ([&] {
        using indptr_t = index_t;
        AT_DISPATCH_INDEX_TYPES(
            seeds.scalar_type(), "SampleNeighborsImplWrappedWithSeeds", ([&] {
              using seeds_t = index_t;
              const auto indptr_data = indptr_.data_ptr<indptr_t>();
              const auto num_picked_neighbors_data_ptr =
                  num_picked_neighbors_per_node.data_ptr<indptr_t>();
              num_picked_neighbors_data_ptr[0] = 0;
              const auto seeds_data_ptr = seeds.data_ptr<seeds_t>();

              // Initialize the empty spots in `num_picked_neighbors_per_node`.
              if (hetero_with_seed_offsets) {
                for (auto i = 0; i < num_etypes; ++i) {
                  num_picked_neighbors_data_ptr
                      [etype_id_to_num_picked_offset[i]] = 0;
                }
              }

              // Step 1. Calculate pick number of each node.
              torch::parallel_for(
                  0, num_seeds, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = seeds_data_ptr[i];
                      TORCH_CHECK(
                          nid >= 0 && nid < NumNodes(),
                          "The seed nodes' IDs should fall within the range of "
                          "the graph's node IDs.");
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;

                      const auto seed_type_id =
                          (hetero_with_seed_offsets)
                              ? std::upper_bound(
                                    seed_offsets->begin(), seed_offsets->end(),
                                    i) -
                                    seed_offsets->begin() - 1
                              : 0;
                      // `seed_index` indicates the index of the current
                      // seed within the group of seeds which have the same
                      // node type.
                      const auto seed_index =
                          (hetero_with_seed_offsets)
                              ? i - seed_offsets->at(seed_type_id)
                              : i;
                      num_pick_fn(
                          offset, num_neighbors,
                          num_picked_neighbors_data_ptr + 1, seed_index,
                          etype_id_to_num_picked_offset);
                    }
                  });

              if (hetero_with_seed_offsets) {
                torch::Tensor num_picked_offset_tensor =
                    torch::zeros({num_etypes + 1}, indptr_options);
                torch::Tensor substract_offset =
                    torch::zeros({num_etypes}, indptr_options);
                const auto substract_offset_data_ptr =
                    substract_offset.data_ptr<indptr_t>();
                const auto num_picked_offset_data_ptr =
                    num_picked_offset_tensor.data_ptr<indptr_t>();
                for (auto i = 0; i < num_etypes; ++i) {
                  num_picked_offset_data_ptr[i + 1] =
                      etype_id_to_num_picked_offset[i + 1];
                  // Collect the total pick number for each edge type.
                  if (i + 1 < num_etypes)
                    substract_offset_data_ptr[i + 1] =
                        num_picked_neighbors_data_ptr
                            [etype_id_to_num_picked_offset[i]];
                  num_picked_neighbors_data_ptr
                      [etype_id_to_num_picked_offset[i]] = 0;
                }
                substract_offset =
                    substract_offset.cumsum(0, indptr_.scalar_type());
                subgraph_indptr_substract = ops::ExpandIndptr(
                    num_picked_offset_tensor, indptr_.scalar_type(),
                    substract_offset);
              }

              // Step 2. Calculate prefix sum to get total length and offsets of
              // each node. It's also the indptr of the generated subgraph.
              subgraph_indptr = num_picked_neighbors_per_node.cumsum(
                  0, indptr_.scalar_type());
              auto subgraph_indptr_data_ptr =
                  subgraph_indptr.data_ptr<indptr_t>();

              // When doing non-temporal hetero sampling, we generate an
              // edge_offsets tensor.
              if (hetero_with_seed_offsets) {
                edge_offsets = torch::empty({num_etypes + 1}, indptr_options);
                AT_DISPATCH_INTEGRAL_TYPES(
                    edge_offsets.value().scalar_type(), "CalculateEdgeOffsets",
                    ([&] {
                      auto edge_offsets_data_ptr =
                          edge_offsets.value().data_ptr<scalar_t>();
                      edge_offsets_data_ptr[0] = 0;
                      for (auto i = 0; i < num_etypes; ++i) {
                        edge_offsets_data_ptr[i + 1] = subgraph_indptr_data_ptr
                            [etype_id_to_num_picked_offset[i + 1] - 1];
                      }
                    }));
              }

              // Step 3. Allocate the tensor for picked neighbors.
              const auto total_length =
                  subgraph_indptr.data_ptr<indptr_t>()[num_rows - 1];
              picked_eids = torch::empty({total_length}, indptr_options);
              subgraph_indices =
                  torch::empty({total_length}, indices_.options());
              if (!hetero_with_seed_offsets && type_per_edge_.has_value()) {
                subgraph_type_per_edge = torch::empty(
                    {total_length}, type_per_edge_.value().options());
              }

              auto picked_eids_data_ptr = picked_eids.data_ptr<indptr_t>();
              torch::parallel_for(
                  0, num_seeds, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = seeds_data_ptr[i];
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
                      auto picked_number = 0;
                      const auto seed_type_id =
                          (hetero_with_seed_offsets)
                              ? std::upper_bound(
                                    seed_offsets->begin(), seed_offsets->end(),
                                    i) -
                                    seed_offsets->begin() - 1
                              : 0;
                      const auto seed_index =
                          (hetero_with_seed_offsets)
                              ? i - seed_offsets->at(seed_type_id)
                              : i;

                      // Step 4. Pick neighbors for each node.
                      picked_number = pick_fn(
                          offset, num_neighbors, picked_eids_data_ptr,
                          seed_index, subgraph_indptr_data_ptr,
                          etype_id_to_num_picked_offset);
                      if (!hetero_with_seed_offsets) {
                        TORCH_CHECK(
                            num_picked_neighbors_data_ptr[i + 1] ==
                                picked_number,
                            "Actual picked count doesn't match the calculated "
                            "pick number.");
                      }

                      // Step 5. Calculate other attributes and return the
                      // subgraph.
                      if (picked_number > 0) {
                        AT_DISPATCH_INDEX_TYPES(
                            subgraph_indices.scalar_type(),
                            "IndexSelectSubgraphIndices", ([&] {
                              auto subgraph_indices_data_ptr =
                                  subgraph_indices.data_ptr<index_t>();
                              auto indices_data_ptr =
                                  indices_.data_ptr<index_t>();
                              for (auto i = 0; i < num_etypes; ++i) {
                                if (etype_id_to_dst_ntype_id[i] != seed_type_id)
                                  continue;
                                const auto indptr_offset =
                                    with_seed_offsets
                                        ? etype_id_to_num_picked_offset[i] +
                                              seed_index
                                        : seed_index;
                                const auto picked_begin =
                                    subgraph_indptr_data_ptr[indptr_offset];
                                const auto picked_end =
                                    subgraph_indptr_data_ptr[indptr_offset + 1];
                                for (auto j = picked_begin; j < picked_end;
                                     ++j) {
                                  subgraph_indices_data_ptr[j] =
                                      indices_data_ptr[picked_eids_data_ptr[j]];
                                  if (hetero_with_seed_offsets &&
                                      node_type_offset_.has_value()) {
                                    // Substract the node type offset from
                                    // subgraph indices. Assuming
                                    // node_type_offset has the same dtype as
                                    // indices.
                                    auto node_type_offset_data =
                                        node_type_offset_.value()
                                            .data_ptr<index_t>();
                                    subgraph_indices_data_ptr[j] -=
                                        node_type_offset_data
                                            [etype_id_to_src_ntype_id[i]];
                                  }
                                }
                              }
                            }));

                        if (!hetero_with_seed_offsets &&
                            type_per_edge_.has_value()) {
                          // When hetero graph is sampled as a homo graph, we
                          // still generate type_per_edge tensor for this
                          // situation.
                          AT_DISPATCH_INTEGRAL_TYPES(
                              subgraph_type_per_edge.value().scalar_type(),
                              "IndexSelectTypePerEdge", ([&] {
                                auto subgraph_type_per_edge_data_ptr =
                                    subgraph_type_per_edge.value()
                                        .data_ptr<scalar_t>();
                                auto type_per_edge_data_ptr =
                                    type_per_edge_.value().data_ptr<scalar_t>();
                                const auto picked_offset =
                                    subgraph_indptr_data_ptr[seed_index];
                                for (auto j = picked_offset;
                                     j < picked_offset + picked_number; ++j)
                                  subgraph_type_per_edge_data_ptr[j] =
                                      type_per_edge_data_ptr
                                          [picked_eids_data_ptr[j]];
                              }));
                        }
                      }
                    }
                  });
            }));
      }));

  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);

  if (subgraph_indptr_substract.has_value()) {
    subgraph_indptr -= subgraph_indptr_substract.value();
  }

  return c10::make_intrusive<FusedSampledSubgraph>(
      subgraph_indptr, subgraph_indices, seeds, torch::nullopt,
      subgraph_reverse_edge_ids, subgraph_type_per_edge, edge_offsets);
}

template <typename NumPickFn, typename PickFn>
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::TemporalSampleNeighborsImpl(
796
797
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
798
  const int64_t num_nodes = nodes.size(0);
799
  const auto indptr_options = indptr_.options();
800
  torch::Tensor num_picked_neighbors_per_node =
801
      torch::empty({num_nodes + 1}, indptr_options);
802

803
804
805
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
806
807
808
809
810
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;

811
  AT_DISPATCH_INDEX_TYPES(
812
      indptr_.scalar_type(), "SampleNeighborsImplWrappedWithIndptr", ([&] {
813
814
        using indptr_t = index_t;
        AT_DISPATCH_INDEX_TYPES(
815
            nodes.scalar_type(), "SampleNeighborsImplWrappedWithNodes", ([&] {
816
              using nodes_t = index_t;
817
818
819
820
821
              const auto indptr_data = indptr_.data_ptr<indptr_t>();
              auto num_picked_neighbors_data_ptr =
                  num_picked_neighbors_per_node.data_ptr<indptr_t>();
              num_picked_neighbors_data_ptr[0] = 0;
              const auto nodes_data_ptr = nodes.data_ptr<nodes_t>();
822

823
824
825
826
827
828
829
830
831
832
833
834
              // Step 1. Calculate pick number of each node.
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      TORCH_CHECK(
                          nid >= 0 && nid < NumNodes(),
                          "The seed nodes' IDs should fall within the range of "
                          "the "
                          "graph's node IDs.");
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
835

836
837
838
                      num_picked_neighbors_data_ptr[i + 1] =
                          num_neighbors == 0
                              ? 0
839
                              : num_pick_fn(i, offset, num_neighbors);
840
841
                    }
                  });
842

843
844
845
846
              // Step 2. Calculate prefix sum to get total length and offsets of
              // each node. It's also the indptr of the generated subgraph.
              subgraph_indptr = num_picked_neighbors_per_node.cumsum(
                  0, indptr_.scalar_type());
847

848
849
850
851
852
853
854
855
856
857
              // Step 3. Allocate the tensor for picked neighbors.
              const auto total_length =
                  subgraph_indptr.data_ptr<indptr_t>()[num_nodes];
              picked_eids = torch::empty({total_length}, indptr_options);
              subgraph_indices =
                  torch::empty({total_length}, indices_.options());
              if (type_per_edge_.has_value()) {
                subgraph_type_per_edge = torch::empty(
                    {total_length}, type_per_edge_.value().options());
              }
858

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
              // Step 4. Pick neighbors for each node.
              auto picked_eids_data_ptr = picked_eids.data_ptr<indptr_t>();
              auto subgraph_indptr_data_ptr =
                  subgraph_indptr.data_ptr<indptr_t>();
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
                      const auto picked_number =
                          num_picked_neighbors_data_ptr[i + 1];
                      const auto picked_offset = subgraph_indptr_data_ptr[i];
                      if (picked_number > 0) {
                        auto actual_picked_count = pick_fn(
874
                            i, offset, num_neighbors,
875
876
877
878
879
880
                            picked_eids_data_ptr + picked_offset);
                        TORCH_CHECK(
                            actual_picked_count == picked_number,
                            "Actual picked count doesn't match the calculated "
                            "pick "
                            "number.");
881

882
883
                        // Step 5. Calculate other attributes and return the
                        // subgraph.
884
                        AT_DISPATCH_INDEX_TYPES(
885
886
887
                            subgraph_indices.scalar_type(),
                            "IndexSelectSubgraphIndices", ([&] {
                              auto subgraph_indices_data_ptr =
888
                                  subgraph_indices.data_ptr<index_t>();
889
                              auto indices_data_ptr =
890
                                  indices_.data_ptr<index_t>();
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
                              for (auto i = picked_offset;
                                   i < picked_offset + picked_number; ++i) {
                                subgraph_indices_data_ptr[i] =
                                    indices_data_ptr[picked_eids_data_ptr[i]];
                              }
                            }));
                        if (type_per_edge_.has_value()) {
                          AT_DISPATCH_INTEGRAL_TYPES(
                              subgraph_type_per_edge.value().scalar_type(),
                              "IndexSelectTypePerEdge", ([&] {
                                auto subgraph_type_per_edge_data_ptr =
                                    subgraph_type_per_edge.value()
                                        .data_ptr<scalar_t>();
                                auto type_per_edge_data_ptr =
                                    type_per_edge_.value().data_ptr<scalar_t>();
                                for (auto i = picked_offset;
                                     i < picked_offset + picked_number; ++i) {
                                  subgraph_type_per_edge_data_ptr[i] =
                                      type_per_edge_data_ptr
                                          [picked_eids_data_ptr[i]];
                                }
                              }));
913
                        }
914
915
916
917
                      }
                    }
                  });
            }));
918
      }));
919

920
921
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
922

923
  return c10::make_intrusive<FusedSampledSubgraph>(
924
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
925
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
926
927
}

928
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::SampleNeighbors(
929
930
931
932
    torch::optional<torch::Tensor> seeds,
    torch::optional<std::vector<int64_t>> seed_offsets,
    const std::vector<int64_t>& fanouts, bool replace, bool layer,
    bool return_eids, torch::optional<std::string> probs_name,
933
934
    torch::optional<torch::Tensor> random_seed,
    double seed2_contribution) const {
935
936
  auto probs_or_mask = this->EdgeAttribute(probs_name);

937
938
  // If seeds does not have a value, then we expect all arguments to be resident
  // on the GPU. If seeds has a value, then we expect them to be accessible from
939
  // GPU. This is required for the dispatch to work when CUDA is not available.
940
  if (((!seeds.has_value() && utils::is_on_gpu(indptr_) &&
941
942
943
944
945
        utils::is_on_gpu(indices_) &&
        (!probs_or_mask.has_value() ||
         utils::is_on_gpu(probs_or_mask.value())) &&
        (!type_per_edge_.has_value() ||
         utils::is_on_gpu(type_per_edge_.value()))) ||
946
       (seeds.has_value() && utils::is_on_gpu(seeds.value()) &&
947
948
949
950
951
952
953
        utils::is_accessible_from_gpu(indptr_) &&
        utils::is_accessible_from_gpu(indices_) &&
        (!probs_or_mask.has_value() ||
         utils::is_accessible_from_gpu(probs_or_mask.value())) &&
        (!type_per_edge_.has_value() ||
         utils::is_accessible_from_gpu(type_per_edge_.value())))) &&
      !replace) {
954
955
956
    GRAPHBOLT_DISPATCH_CUDA_ONLY_DEVICE(
        c10::DeviceType::CUDA, "SampleNeighbors", {
          return ops::SampleNeighbors(
957
              indptr_, indices_, seeds, seed_offsets, fanouts, replace, layer,
958
959
960
              return_eids, type_per_edge_, probs_or_mask, node_type_offset_,
              node_type_to_id_, edge_type_to_id_, random_seed,
              seed2_contribution);
961
962
        });
  }
963
  TORCH_CHECK(seeds.has_value(), "Nodes can not be None on the CPU.");
964
965

  if (probs_or_mask.has_value()) {
966
967
968
969
970
971
972
973
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
974

975
976
  bool with_seed_offsets = seed_offsets.has_value();

977
  if (layer) {
978
979
980
981
982
983
    if (random_seed.has_value() && random_seed->numel() >= 2) {
      SamplerArgs<SamplerType::LABOR_DEPENDENT> args{
          indices_,
          {random_seed.value(), static_cast<float>(seed2_contribution)},
          NumNodes()};
      return SampleNeighborsImpl(
984
985
986
987
          seeds.value(), seed_offsets, fanouts, return_eids,
          GetNumPickFn(
              fanouts, replace, type_per_edge_, probs_or_mask,
              with_seed_offsets),
988
989
          GetPickFn(
              fanouts, replace, indptr_.options(), type_per_edge_,
990
              probs_or_mask, with_seed_offsets, args));
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
    } else {
      auto args = [&] {
        if (random_seed.has_value() && random_seed->numel() == 1) {
          return SamplerArgs<SamplerType::LABOR>{
              indices_, random_seed.value(), NumNodes()};
        } else {
          return SamplerArgs<SamplerType::LABOR>{
              indices_,
              RandomEngine::ThreadLocal()->RandInt(
                  static_cast<int64_t>(0), std::numeric_limits<int64_t>::max()),
              NumNodes()};
        }
      }();
      return SampleNeighborsImpl(
1005
1006
1007
1008
          seeds.value(), seed_offsets, fanouts, return_eids,
          GetNumPickFn(
              fanouts, replace, type_per_edge_, probs_or_mask,
              with_seed_offsets),
1009
1010
          GetPickFn(
              fanouts, replace, indptr_.options(), type_per_edge_,
1011
              probs_or_mask, with_seed_offsets, args));
1012
    }
1013
1014
1015
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
1016
1017
1018
        seeds.value(), seed_offsets, fanouts, return_eids,
        GetNumPickFn(
            fanouts, replace, type_per_edge_, probs_or_mask, with_seed_offsets),
1019
1020
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
1021
            with_seed_offsets, args));
1022
1023
1024
  }
}

1025
1026
1027
1028
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::TemporalSampleNeighbors(
    const torch::Tensor& input_nodes,
    const torch::Tensor& input_nodes_timestamp,
1029
1030
    const std::vector<int64_t>& fanouts, bool replace, bool layer,
    bool return_eids, torch::optional<std::string> probs_name,
1031
1032
1033
    torch::optional<std::string> node_timestamp_attr_name,
    torch::optional<std::string> edge_timestamp_attr_name) const {
  // 1. Get probs_or_mask.
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
  auto probs_or_mask = this->EdgeAttribute(probs_name);
  if (probs_name.has_value()) {
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
1044
  // 2. Get the timestamp attribute for nodes of the graph
1045
  auto node_timestamp = this->NodeAttribute(node_timestamp_attr_name);
1046
  // 3. Get the timestamp attribute for edges of the graph
1047
1048
  auto edge_timestamp = this->EdgeAttribute(edge_timestamp_attr_name);
  // 4. Call SampleNeighborsImpl
1049
1050
1051
1052
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
1053
    return TemporalSampleNeighborsImpl(
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        input_nodes, return_eids,
        GetTemporalNumPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            type_per_edge_, probs_or_mask, node_timestamp, edge_timestamp),
        GetTemporalPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            indptr_.options(), type_per_edge_, probs_or_mask, node_timestamp,
            edge_timestamp, args));
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
1064
    return TemporalSampleNeighborsImpl(
1065
1066
1067
1068
1069
1070
1071
1072
1073
        input_nodes, return_eids,
        GetTemporalNumPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            type_per_edge_, probs_or_mask, node_timestamp, edge_timestamp),
        GetTemporalPickFn(
            input_nodes_timestamp, this->indices_, fanouts, replace,
            indptr_.options(), type_per_edge_, probs_or_mask, node_timestamp,
            edge_timestamp, args));
  }
1074
1075
}

1076
1077
static c10::intrusive_ptr<FusedCSCSamplingGraph>
BuildGraphFromSharedMemoryHelper(SharedMemoryHelper&& helper) {
1078
1079
1080
1081
1082
  helper.InitializeRead();
  auto indptr = helper.ReadTorchTensor();
  auto indices = helper.ReadTorchTensor();
  auto node_type_offset = helper.ReadTorchTensor();
  auto type_per_edge = helper.ReadTorchTensor();
1083
1084
  auto node_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
  auto edge_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
1085
  auto node_attributes = helper.ReadTorchTensorDict();
1086
  auto edge_attributes = helper.ReadTorchTensorDict();
1087
  auto graph = c10::make_intrusive<FusedCSCSamplingGraph>(
1088
      indptr.value(), indices.value(), node_type_offset, type_per_edge,
1089
      node_type_to_id, edge_type_to_id, node_attributes, edge_attributes);
1090
1091
1092
  auto shared_memory = helper.ReleaseSharedMemory();
  graph->HoldSharedMemoryObject(
      std::move(shared_memory.first), std::move(shared_memory.second));
1093
1094
1095
  return graph;
}

1096
1097
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::CopyToSharedMemory(
1098
    const std::string& shared_memory_name) {
1099
  SharedMemoryHelper helper(shared_memory_name);
1100
1101
1102
1103
  helper.WriteTorchTensor(indptr_);
  helper.WriteTorchTensor(indices_);
  helper.WriteTorchTensor(node_type_offset_);
  helper.WriteTorchTensor(type_per_edge_);
1104
1105
  helper.WriteTorchTensorDict(TensorizeDict(node_type_to_id_));
  helper.WriteTorchTensorDict(TensorizeDict(edge_type_to_id_));
1106
  helper.WriteTorchTensorDict(node_attributes_);
1107
1108
1109
  helper.WriteTorchTensorDict(edge_attributes_);
  helper.Flush();
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
1110
1111
}

1112
1113
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::LoadFromSharedMemory(
1114
    const std::string& shared_memory_name) {
1115
  SharedMemoryHelper helper(shared_memory_name);
1116
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
1117
1118
}

1119
void FusedCSCSamplingGraph::HoldSharedMemoryObject(
1120
1121
1122
1123
1124
    SharedMemoryPtr tensor_metadata_shm, SharedMemoryPtr tensor_data_shm) {
  tensor_metadata_shm_ = std::move(tensor_metadata_shm);
  tensor_data_shm_ = std::move(tensor_data_shm);
}

1125
1126
template <typename PickedNumType>
void NumPick(
1127
1128
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
1129
    int64_t num_neighbors, PickedNumType* picked_num_ptr) {
1130
  int64_t num_valid_neighbors = num_neighbors;
1131
  if (probs_or_mask.has_value() && num_neighbors > 0) {
1132
1133
1134
1135
1136
1137
1138
1139
1140
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
1141
1142
1143
1144
1145
  if (num_valid_neighbors == 0 || fanout == -1) {
    *picked_num_ptr = num_valid_neighbors;
  } else {
    *picked_num_ptr = replace ? fanout : std::min(fanout, num_valid_neighbors);
  }
1146
1147
}

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
torch::Tensor TemporalMask(
    int64_t seed_timestamp, torch::Tensor csc_indices,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp,
    std::pair<int64_t, int64_t> edge_range) {
  auto [l, r] = edge_range;
  torch::Tensor mask = torch::ones({r - l}, torch::kBool);
  if (node_timestamp.has_value()) {
    auto neighbor_timestamp =
        node_timestamp.value().index_select(0, csc_indices.slice(0, l, r));
1159
    mask &= neighbor_timestamp < seed_timestamp;
1160
1161
  }
  if (edge_timestamp.has_value()) {
1162
    mask &= edge_timestamp.value().slice(0, l, r) < seed_timestamp;
1163
1164
1165
1166
1167
1168
1169
  }
  if (probs_or_mask.has_value()) {
    mask &= probs_or_mask.value().slice(0, l, r) != 0;
  }
  return mask;
}

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
/**
 * @brief Fast path for temporal sampling without probability. It is used when
 * the number of neighbors is large. It randomly samples neighbors and checks
 * the timestamp of the neighbors. It is successful if the number of sampled
 * neighbors in kTriedThreshold trials is equal to the fanout.
 */
std::pair<bool, std::vector<int64_t>> FastTemporalPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices, int64_t fanout,
    bool replace, const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  constexpr int64_t kTriedThreshold = 1000;
  auto timestamp = utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset);
  std::vector<int64_t> sampled_edges;
  sampled_edges.reserve(fanout);
  std::set<int64_t> sampled_edge_set;
  int64_t sample_count = 0;
  int64_t tried = 0;
  while (sample_count < fanout && tried < kTriedThreshold) {
    int64_t edge_id =
        RandomEngine::ThreadLocal()->RandInt(offset, offset + num_neighbors);
    ++tried;
    if (!replace && sampled_edge_set.count(edge_id) > 0) {
      continue;
    }
    if (node_timestamp.has_value()) {
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
      bool flag = true;
      AT_DISPATCH_INDEX_TYPES(
          csc_indices.scalar_type(), "CheckNodeTimeStamp", ([&] {
            int64_t neighbor_id =
                utils::GetValueByIndex<index_t>(csc_indices, edge_id);
            if (utils::GetValueByIndex<int64_t>(
                    node_timestamp.value(), neighbor_id) >= timestamp)
              flag = false;
          }));
      if (!flag) continue;
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
    }
    if (edge_timestamp.has_value() &&
        utils::GetValueByIndex<int64_t>(edge_timestamp.value(), edge_id) >=
            timestamp) {
      continue;
    }
    if (!replace) {
      sampled_edge_set.insert(edge_id);
    }
    sampled_edges.push_back(edge_id);
    sample_count++;
  }
  if (sample_count < fanout) {
    return {false, {}};
  }
  return {true, sampled_edges};
}

1224
1225
1226
1227
1228
1229
int64_t TemporalNumPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indics, int64_t fanout,
    bool replace, const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
  constexpr int64_t kFastPathThreshold = 1000;
  if (num_neighbors > kFastPathThreshold && !probs_or_mask.has_value()) {
    // TODO: Currently we use the fast path both in TemporalNumPick and
    // TemporalPick. We may only sample once in TemporalNumPick and use the
    // sampled edges in TemporalPick to avoid sampling twice.
    auto [success, sampled_edges] = FastTemporalPick(
        seed_timestamp, csc_indics, fanout, replace, node_timestamp,
        edge_timestamp, seed_offset, offset, num_neighbors);
    if (success) return sampled_edges.size();
  }
1240
1241
1242
1243
1244
1245
1246
1247
1248
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indics,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  int64_t num_valid_neighbors = utils::GetValueByIndex<int64_t>(mask.sum(), 0);
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

1249
1250
1251
template <typename PickedNumType>
void NumPickByEtype(
    bool with_seed_offsets, const std::vector<int64_t>& fanouts, bool replace,
1252
1253
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
1254
1255
    int64_t num_neighbors, PickedNumType* num_picked_ptr, int64_t seed_index,
    const std::vector<int64_t>& etype_id_to_num_picked_offset) {
1256
1257
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
1258
  PickedNumType total_count = 0;
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
          if (with_seed_offsets) {
            // The pick numbers aren't stored continuously, but separately for
            // each different etype.
            const auto offset =
                etype_id_to_num_picked_offset[etype] + seed_index;
            NumPick(
                fanouts[etype], replace, probs_or_mask, etype_begin,
                etype_end - etype_begin, num_picked_ptr + offset);
            // Use the skipped position of each edge type in the
            // num_picked_tensor to sum up the total pick number for each edge
            // type.
            num_picked_ptr[etype_id_to_num_picked_offset[etype] - 1] +=
                num_picked_ptr[offset];
          } else {
            PickedNumType picked_count = 0;
            NumPick(
                fanouts[etype], replace, probs_or_mask, etype_begin,
                etype_end - etype_begin, &picked_count);
            total_count += picked_count;
          }
1292
1293
1294
          etype_begin = etype_end;
        }
      }));
1295
1296
1297
  if (!with_seed_offsets) {
    num_picked_ptr[seed_index] = total_count;
  }
1298
1299
}

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
int64_t TemporalNumPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
    const torch::optional<torch::Tensor>& edge_timestamp, int64_t seed_offset,
    int64_t offset, int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalNumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += TemporalNumPick(
              seed_timestamp, csc_indices, fanouts[etype], replace,
              probs_or_mask, node_timestamp, edge_timestamp, seed_offset,
              etype_begin, etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

1334
1335
1336
1337
1338
1339
1340
1341
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1342
1343
1344
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
1345
1346
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
1347
 * @param replace Boolean indicating whether the sample is performed with or
1348
1349
1350
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
1351
1352
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1353
 */
1354
template <typename PickedType>
1355
inline int64_t UniformPick(
1356
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
1357
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
1358
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
1359
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
1360
    return num_neighbors;
1361
  } else if (replace) {
1362
1363
1364
1365
1366
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
1367
    return fanout;
1368
  } else {
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
1403
      return fanout;
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
1424
      return fanout;
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
1448
      return picked_set.size();
1449
    }
1450
1451
1452
  }
}

1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
/** @brief An operator to perform non-uniform sampling. */
static torch::Tensor NonUniformPickOp(
    torch::Tensor probs, int64_t fanout, bool replace) {
  auto positive_probs_indices = probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
  if (num_positive_probs == 0) return torch::empty({0}, torch::kLong);
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
    return positive_probs_indices;
  }
  if (!replace) fanout = std::min(fanout, num_positive_probs);
  if (fanout == 0) return torch::empty({0}, torch::kLong);
  auto ret_tensor = torch::empty({fanout}, torch::kLong);
  auto ret_ptr = ret_tensor.data_ptr<int64_t>();
  AT_DISPATCH_FLOATING_TYPES(
      probs.scalar_type(), "MultinomialSampling", ([&] {
        auto probs_data_ptr = probs.data_ptr<scalar_t>();
        auto positive_probs_indices_ptr =
            positive_probs_indices.data_ptr<int64_t>();

        if (!replace) {
          // The algorithm is from gumbel softmax.
          // s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1).
          // Here we can apply exp to the formula which will not affect result
          // of argmax or topk. Then we have
          // s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
          // We can also simplify the formula above by
          // s = argmax( p / q ) where q ~ Exp(1).
          if (fanout == 1) {
            // Return argmax(p / q).
            scalar_t max_prob = 0;
            int64_t max_prob_index = -1;
            // We only care about the neighbors with non-zero probability.
            for (auto i = 0; i < num_positive_probs; ++i) {
              // Calculate (p / q) for the current neighbor.
              scalar_t current_prob =
                  probs_data_ptr[positive_probs_indices_ptr[i]] /
                  RandomEngine::ThreadLocal()->Exponential(1.);
              if (current_prob > max_prob) {
                max_prob = current_prob;
                max_prob_index = positive_probs_indices_ptr[i];
              }
            }
            ret_ptr[0] = max_prob_index;
          } else {
            // Return topk(p / q).
            std::vector<std::pair<scalar_t, int64_t>> q(num_positive_probs);
            for (auto i = 0; i < num_positive_probs; ++i) {
              q[i].first = probs_data_ptr[positive_probs_indices_ptr[i]] /
                           RandomEngine::ThreadLocal()->Exponential(1.);
              q[i].second = positive_probs_indices_ptr[i];
            }
            if (fanout < num_positive_probs / 64) {
              // Use partial_sort.
              std::partial_sort(
                  q.begin(), q.begin() + fanout, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            } else {
              // Use nth_element.
              std::nth_element(
                  q.begin(), q.begin() + fanout - 1, q.end(), std::greater{});
              for (auto i = 0; i < fanout; ++i) {
                ret_ptr[i] = q[i].second;
              }
            }
          }
        } else {
          // Calculate cumulative sum of probabilities.
          std::vector<scalar_t> prefix_sum_probs(num_positive_probs);
          scalar_t sum_probs = 0;
          for (auto i = 0; i < num_positive_probs; ++i) {
            sum_probs += probs_data_ptr[positive_probs_indices_ptr[i]];
            prefix_sum_probs[i] = sum_probs;
          }
          // Normalize.
          if ((sum_probs > 1.00001) || (sum_probs < 0.99999)) {
            for (auto i = 0; i < num_positive_probs; ++i) {
              prefix_sum_probs[i] /= sum_probs;
            }
          }
          for (auto i = 0; i < fanout; ++i) {
            // Sample a probability mass from a uniform distribution.
            double uniform_sample =
                RandomEngine::ThreadLocal()->Uniform(0., 1.);
            // Use a binary search to find the index.
            int sampled_index = std::lower_bound(
                                    prefix_sum_probs.begin(),
                                    prefix_sum_probs.end(), uniform_sample) -
                                prefix_sum_probs.begin();
            ret_ptr[i] = positive_probs_indices_ptr[sampled_index];
          }
        }
      }));
  return ret_tensor;
}

1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1568
1569
1570
1571
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
1572
1573
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
1574
 * @param replace Boolean indicating whether the sample is performed with or
1575
1576
1577
1578
1579
1580
1581
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
1582
1583
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1584
 */
1585
template <typename PickedType>
1586
inline int64_t NonUniformPick(
1587
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
1588
    const torch::TensorOptions& options, const torch::Tensor& probs_or_mask,
1589
    PickedType* picked_data_ptr) {
1590
  auto local_probs =
1591
1592
1593
      probs_or_mask.size(0) > num_neighbors
          ? probs_or_mask.slice(0, offset, offset + num_neighbors)
          : probs_or_mask;
1594
1595
1596
1597
1598
  auto picked_indices = NonUniformPickOp(local_probs, fanout, replace);
  auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
  for (int i = 0; i < picked_indices.numel(); ++i) {
    picked_data_ptr[i] =
        static_cast<PickedType>(picked_indices_ptr[i]) + offset;
1599
  }
1600
  return picked_indices.numel();
1601
1602
}

1603
template <typename PickedType>
1604
int64_t Pick(
1605
1606
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
1607
    const torch::optional<torch::Tensor>& probs_or_mask,
1608
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
1609
  if (fanout == 0 || num_neighbors == 0) return 0;
1610
  if (probs_or_mask.has_value()) {
1611
    return NonUniformPick(
1612
        offset, num_neighbors, fanout, replace, options, probs_or_mask.value(),
1613
        picked_data_ptr);
1614
  } else {
1615
    return UniformPick(
1616
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1617
1618
1619
  }
}

1620
template <SamplerType S, typename PickedType>
1621
1622
1623
1624
1625
1626
int64_t TemporalPick(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors, int64_t fanout,
    bool replace, const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
1627
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args,
1628
    PickedType* picked_data_ptr) {
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
  constexpr int64_t kFastPathThreshold = 1000;
  if (S == SamplerType::NEIGHBOR && num_neighbors > kFastPathThreshold &&
      !probs_or_mask.has_value()) {
    auto [success, sampled_edges] = FastTemporalPick(
        seed_timestamp, csc_indices, fanout, replace, node_timestamp,
        edge_timestamp, seed_offset, offset, num_neighbors);
    if (success) {
      for (size_t i = 0; i < sampled_edges.size(); ++i) {
        picked_data_ptr[i] = static_cast<PickedType>(sampled_edges[i]);
      }
      return sampled_edges.size();
    }
  }
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
  auto mask = TemporalMask(
      utils::GetValueByIndex<int64_t>(seed_timestamp, seed_offset), csc_indices,
      probs_or_mask, node_timestamp, edge_timestamp,
      {offset, offset + num_neighbors});
  torch::Tensor masked_prob;
  if (probs_or_mask.has_value()) {
    masked_prob =
        probs_or_mask.value().slice(0, offset, offset + num_neighbors) * mask;
  } else {
    masked_prob = mask.to(torch::kFloat32);
  }
1653
1654
1655
1656
1657
1658
1659
1660
1661
  if constexpr (S == SamplerType::NEIGHBOR) {
    auto picked_indices = NonUniformPickOp(masked_prob, fanout, replace);
    auto picked_indices_ptr = picked_indices.data_ptr<int64_t>();
    for (int i = 0; i < picked_indices.numel(); ++i) {
      picked_data_ptr[i] =
          static_cast<PickedType>(picked_indices_ptr[i]) + offset;
    }
    return picked_indices.numel();
  }
1662
  if constexpr (is_labor(S)) {
1663
1664
1665
    return Pick(
        offset, num_neighbors, fanout, replace, options, masked_prob, args,
        picked_data_ptr);
1666
1667
1668
  }
}

1669
template <SamplerType S, typename PickedType>
1670
int64_t PickByEtype(
1671
1672
1673
    bool with_seed_offsets, int64_t offset, int64_t num_neighbors,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options, const torch::Tensor& type_per_edge,
1674
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
1675
1676
1677
    PickedType* picked_data_ptr, int64_t seed_index,
    PickedType* subgraph_indptr_ptr,
    const std::vector<int64_t>& etype_id_to_num_picked_offset) {
1678
1679
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
1680
  int64_t picked_total_count = 0;
1681
1682
1683
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
1684
1685
1686
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
1687
          TORCH_CHECK(
1688
              etype >= 0 && etype < (int64_t)fanouts.size(),
1689
              "Etype values exceed the number of fanouts.");
1690
          int64_t fanout = fanouts[etype];
1691
1692
1693
1694
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
1695
1696
          // Do sampling for one etype. The picked nodes aren't stored
          // continuously, but separately for each different etype.
1697
          if (fanout != 0) {
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
            auto picked_count = 0;
            if (with_seed_offsets) {
              const auto indptr_offset =
                  etype_id_to_num_picked_offset[etype] + seed_index;
              picked_count = Pick(
                  etype_begin, etype_end - etype_begin, fanout, replace,
                  options, probs_or_mask, args,
                  picked_data_ptr + subgraph_indptr_ptr[indptr_offset]);
              TORCH_CHECK(
                  subgraph_indptr_ptr[indptr_offset + 1] -
                          subgraph_indptr_ptr[indptr_offset] ==
                      picked_count,
                  "Actual picked count doesn't match the calculated "
                  "pick number.");
            } else {
              picked_count = Pick(
                  etype_begin, etype_end - etype_begin, fanout, replace,
                  options, probs_or_mask, args,
                  picked_data_ptr + subgraph_indptr_ptr[seed_index] +
                      picked_total_count);
            }
            picked_total_count += picked_count;
1720
1721
1722
1723
          }
          etype_begin = etype_end;
        }
      }));
1724
  return picked_total_count;
1725
1726
}

1727
template <SamplerType S, typename PickedType>
1728
1729
1730
1731
1732
1733
1734
int64_t TemporalPickByEtype(
    torch::Tensor seed_timestamp, torch::Tensor csc_indices,
    int64_t seed_offset, int64_t offset, int64_t num_neighbors,
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options, const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask,
    const torch::optional<torch::Tensor>& node_timestamp,
1735
    const torch::optional<torch::Tensor>& edge_timestamp, SamplerArgs<S> args,
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
    PickedType* picked_data_ptr) {
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
  int64_t pick_offset = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "TemporalPickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          int64_t fanout = fanouts[etype];
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          if (fanout != 0) {
            int64_t picked_count = TemporalPick(
                seed_timestamp, csc_indices, seed_offset, etype_begin,
                etype_end - etype_begin, fanout, replace, options,
1759
                probs_or_mask, node_timestamp, edge_timestamp, args,
1760
1761
1762
1763
1764
1765
1766
1767
1768
                picked_data_ptr + pick_offset);
            pick_offset += picked_count;
          }
          etype_begin = etype_end;
        }
      }));
  return pick_offset;
}

1769
1770
template <SamplerType S, typename PickedType>
std::enable_if_t<is_labor(S), int64_t> Pick(
1771
1772
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
1773
1774
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
1775
  if (fanout == 0 || num_neighbors == 0) return 0;
1776
  if (probs_or_mask.has_value()) {
1777
    if (fanout < 0) {
1778
      return NonUniformPick(
1779
1780
          offset, num_neighbors, fanout, replace, options,
          probs_or_mask.value(), picked_data_ptr);
1781
    } else {
1782
      int64_t picked_count;
1783
1784
1785
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
1786
              picked_count = LaborPick<true, true, scalar_t>(
1787
1788
1789
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
1790
              picked_count = LaborPick<true, false, scalar_t>(
1791
1792
1793
1794
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
1795
      return picked_count;
1796
1797
    }
  } else if (fanout < 0) {
1798
    return UniformPick(
1799
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1800
  } else if (replace) {
1801
    return LaborPick<false, true, float>(
1802
        offset, num_neighbors, fanout, options,
1803
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1804
  } else {  // replace = false
1805
    return LaborPick<false, false, float>(
1806
        offset, num_neighbors, fanout, options,
1807
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1808
1809
1810
1811
1812
1813
1814
1815
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

1816
1817
1818
1819
1820
1821
1822
1823
namespace labor {

template <typename T>
inline T invcdf(T u, int64_t n, T rem) {
  constexpr T one = 1;
  return rem * (one - std::pow(one - u, one / n));
}

1824
template <typename T, typename seed_t>
1825
inline T jth_sorted_uniform_random(
1826
    seed_t seed, int64_t t, int64_t c, int64_t j, T& rem, int64_t n) {
1827
1828
1829
1830
1831
1832
1833
1834
  const T u = seed.uniform(t + j * c);
  // https://mathematica.stackexchange.com/a/256707
  rem -= invcdf(u, n, rem);
  return 1 - rem;
}

};  // namespace labor

1835
1836
1837
1838
1839
1840
1841
1842
1843
/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1844
1845
1846
1847
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
1848
1849
1850
1851
1852
1853
1854
1855
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
1856
1857
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1858
 */
1859
template <
1860
1861
1862
    bool NonUniform, bool Replace, typename ProbsType, SamplerType S,
    typename PickedType, int StackSize>
inline std::enable_if_t<is_labor(S), int64_t> LaborPick(
1863
1864
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
1865
1866
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
1867
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
1868
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
1869
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
1870
    return num_neighbors;
1871
1872
  }
  // Assuming max_degree of a vertex is <= 4 billion.
1873
1874
1875
1876
1877
1878
1879
1880
1881
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
1882
1883
1884
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
1885
1886
1887
  if (NonUniform && probs_or_mask.value().size(0) <= num_neighbors) {
    local_probs_data -= offset;
  }
1888
  AT_DISPATCH_INDEX_TYPES(
1889
      args.indices.scalar_type(), "LaborPickMain", ([&] {
1890
1891
        const auto local_indices_data =
            reinterpret_cast<index_t*>(args.indices.data_ptr()) + offset;
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
1914
1915
1916
1917
1918
1919
1920
1921
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
1922
1923
1924
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
1925
              [&](index_t t, int64_t j, uint32_t i) {
1926
                auto rnd = labor::jth_sorted_uniform_random(
1927
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
1928
1929
1930
1931
1932
1933
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
1934
1935
1936
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
1937
1938
1939
1940
1941
1942
1943
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
1944
                  remaining_data[i] = -1;
1945
1946
1947
1948
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1949
            const auto t = local_indices_data[i];
1950
1951
1952
1953
1954
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1955
            if (remaining_data[i] == -1) continue;
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
1981
            auto rnd = args.random_seed.uniform(t);  // r_t
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
1992
            auto rnd = args.random_seed.uniform(t);  // r_t
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
2005
2006
2007
2008
2009
2010
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
2011
  return num_sampled;
2012
2013
}

2014
2015
}  // namespace sampling
}  // namespace graphbolt