deepseek_v2.py 137 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
fzyzcjy's avatar
fzyzcjy committed
18
from __future__ import annotations
19

20
import concurrent.futures
21
import logging
22
import os
23
from enum import IntEnum, auto
24
from typing import Any, Dict, Iterable, Optional, Tuple, Union
Liangsheng Yin's avatar
Liangsheng Yin committed
25
26

import torch
Ke Bao's avatar
Ke Bao committed
27
import torch.nn.functional as F
28
import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
29
30
from torch import nn
from transformers import PretrainedConfig
31

fzyzcjy's avatar
fzyzcjy committed
32
33
34
35
36
37
from sglang.srt.configs.model_config import (
    get_nsa_index_head_dim,
    get_nsa_index_n_heads,
    get_nsa_index_topk,
    is_deepseek_nsa,
)
38
from sglang.srt.distributed import (
39
    get_moe_expert_parallel_world_size,
40
    get_pp_group,
Liangsheng Yin's avatar
Liangsheng Yin committed
41
    get_tensor_model_parallel_world_size,
42
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
43
44
    tensor_model_parallel_all_reduce,
)
45
46
47
from sglang.srt.distributed.device_communicators.pynccl_allocator import (
    use_symmetric_memory,
)
48
from sglang.srt.environ import envs
fzyzcjy's avatar
fzyzcjy committed
49
50
51
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
from sglang.srt.eplb.expert_location import ModelConfigForExpertLocation
from sglang.srt.eplb.expert_location_dispatch import ExpertLocationDispatchInfo
52
from sglang.srt.layers import deep_gemm_wrapper
53
from sglang.srt.layers.activation import SiluAndMul
54
from sglang.srt.layers.amx_utils import PackWeightMethod
55
56
57
58
from sglang.srt.layers.attention.npu_ops.mla_preprocess import (
    NPUFusedMLAPreprocess,
    is_mla_preprocess_enabled,
)
fzyzcjy's avatar
fzyzcjy committed
59
from sglang.srt.layers.attention.nsa.nsa_indexer import Indexer
60
61
62
63
64
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
65
66
67
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
68
    is_dp_attention_enabled,
Lianmin Zheng's avatar
Lianmin Zheng committed
69
)
70
from sglang.srt.layers.layernorm import RMSNorm
71
72
73
74
75
76
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
77
from sglang.srt.layers.logits_processor import LogitsProcessor
78
79
80
from sglang.srt.layers.moe import (
    get_moe_a2a_backend,
    should_use_flashinfer_cutlass_moe_fp4_allgather,
81
    should_use_flashinfer_trtllm_moe,
82
)
83
from sglang.srt.layers.moe.ep_moe.layer import DeepEPMoE, get_moe_impl_class
84
85
from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoE
from sglang.srt.layers.moe.topk import TopK, TopKOutputFormat
86
from sglang.srt.layers.quantization import CompressedTensorsConfig
87
from sglang.srt.layers.quantization.base_config import QuantizationConfig
88
89
90
91
from sglang.srt.layers.quantization.compressed_tensors.compressed_tensors_moe import (
    CompressedTensorsWNA16AMXEPMoEMethod,
)
from sglang.srt.layers.quantization.fp8 import Fp8Config
92
from sglang.srt.layers.quantization.fp8_kernel import (
93
    is_fp8_fnuz,
94
    per_tensor_quant_mla_fp8,
95
    per_token_group_quant_mla_deep_gemm_masked_fp8,
96
)
HandH1998's avatar
HandH1998 committed
97
from sglang.srt.layers.quantization.fp8_utils import (
98
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
99
    block_quant_to_tensor_quant,
100
    channel_quant_to_tensor_quant,
101
    normalize_e4m3fn_to_e4m3fnuz,
102
    quant_weight_ue8m0,
103
    requant_weight_ue8m0_inplace,
104
    transform_scale_ue8m0_inplace,
HandH1998's avatar
HandH1998 committed
105
)
106
107
108
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
109
from sglang.srt.layers.radix_attention import RadixAttention
110
111
from sglang.srt.layers.rotary_embedding import get_rope_wrapper
from sglang.srt.layers.utils import PPMissingLayer, get_layer_id
112
113
114
115
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
116
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
117
from sglang.srt.model_loader.weight_utils import default_weight_loader
118
from sglang.srt.server_args import get_global_server_args
119
from sglang.srt.single_batch_overlap import SboFlags
120
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
121
from sglang.srt.two_batch_overlap import model_forward_maybe_tbo
122
123
from sglang.srt.utils import (
    BumpAllocator,
124
    LazyValue,
125
    add_prefix,
126
    bind_or_assign,
127
    cpu_has_amx_support,
128
    get_bool_env_var,
129
    get_device_sm,
130
    get_int_env_var,
131
    is_cpu,
132
    is_cuda,
133
    is_flashinfer_available,
134
    is_gfx95_supported,
135
    is_hip,
136
    is_non_idle_and_non_empty,
137
    is_npu,
138
    is_nvidia_cublas_cu12_version_ge_12_9,
139
    is_sm100_supported,
140
    log_info_on_rank0,
141
    make_layers,
142
    use_intel_amx_backend,
143
)
144

145
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
146
_is_cuda = is_cuda()
147
_is_npu = is_npu()
148
_is_fp8_fnuz = is_fp8_fnuz()
149
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
150
151
_is_cpu_amx_available = cpu_has_amx_support()
_is_cpu = is_cpu()
152
_device_sm = get_device_sm()
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
_is_gfx95_supported = is_gfx95_supported()

_use_aiter_gfx95 = _use_aiter and _is_gfx95_supported

if _use_aiter_gfx95:
    from sglang.srt.layers.quantization.quark.utils import quark_post_load_weights
    from sglang.srt.layers.quantization.rocm_mxfp4_utils import (
        batched_gemm_afp4wfp4_pre_quant,
        fused_flatten_mxfp4_quant,
        fused_rms_mxfp4_quant,
    )
    from sglang.srt.layers.rocm_linear_utils import (
        aiter_dsv3_router_gemm,
        fused_qk_rope_cat,
        get_dsv3_gemm_output_zero_allocator_size,
    )
169

Yineng Zhang's avatar
Yineng Zhang committed
170
if _is_cuda:
171
172
173
    from sgl_kernel import (
        awq_dequantize,
        bmm_fp8,
174
        concat_mla_k,
175
176
177
178
        dsv3_fused_a_gemm,
        dsv3_router_gemm,
        merge_state_v2,
    )
179
180
elif _is_cpu and _is_cpu_amx_available:
    pass
181
elif _is_hip:
fzyzcjy's avatar
fzyzcjy committed
182
183
184
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )
185
186
187
    from sglang.srt.layers.quantization.awq_triton import (
        awq_dequantize_triton as awq_dequantize,
    )
lizhigong's avatar
lizhigong committed
188
    from sgl_kernel import merge_state_v2
fzyzcjy's avatar
fzyzcjy committed
189
elif _is_npu:
190
191
192
    import custom_ops  # noqa: F401
    import sgl_kernel_npu  # noqa: F401
    import torch_npu  # noqa: F401
193
194
195
196

    from sglang.srt.layers.quantization.awq_triton import (
        awq_dequantize_decomposition as awq_dequantize,
    )
Yineng Zhang's avatar
Yineng Zhang committed
197
else:
198
    pass
Liangsheng Yin's avatar
Liangsheng Yin committed
199

200
201
_is_flashinfer_available = is_flashinfer_available()
_is_sm100_supported = is_cuda() and is_sm100_supported()
202
_is_cublas_ge_129 = is_nvidia_cublas_cu12_version_ge_12_9()
203

204
205
logger = logging.getLogger(__name__)

206
207
208
209
210
211
212
213
214

def enable_nextn_moe_bf16_cast_to_fp8(quant_config):
    return (
        quant_config is not None
        and quant_config.get_name() == "modelopt_fp4"
        and get_moe_a2a_backend().is_deepep()
    )


215
216
FORWARD_ABSORB_CORE_ATTENTION_BACKENDS = [
    "fa3",
fzyzcjy's avatar
fzyzcjy committed
217
    "nsa",
218
219
220
221
222
223
224
225
226
227
228
229
    "flashinfer",
    "cutlass_mla",
    "trtllm_mla",
    "ascend",
]


def add_forward_absorb_core_attention_backend(backend_name):
    if backend_name not in FORWARD_ABSORB_CORE_ATTENTION_BACKENDS:
        FORWARD_ABSORB_CORE_ATTENTION_BACKENDS.append(backend_name)
        logger.info(f"Added {backend_name} to FORWARD_ABSORB_CORE_ATTENTION_BACKENDS.")

Liangsheng Yin's avatar
Liangsheng Yin committed
230

231
232
233
234
235
236
237
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

fzyzcjy's avatar
fzyzcjy committed
238
239
240
    # Use Deepseek V3.2 sparse multi-latent attention
    NPU_MLA_SPARSE = auto()

241
242
243
244
    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()

245
246
247
    # Use MLA but with fused RoPE
    MLA_FUSED_ROPE = auto()

248
249
250
    # Use MLA with fused RoPE kernel for CPU
    MLA_FUSED_ROPE_CPU = auto()

251

252
253
254
255
256
257
258
259
260
261
262
263
264
def _dispatch_mla_subtype(attn, forward_batch):
    if _is_hip:
        if attn.rocm_fused_decode_mla and forward_batch.forward_mode.is_decode():
            return AttnForwardMethod.MLA_FUSED_ROPE
        else:
            return AttnForwardMethod.MLA
    else:
        if hasattr(attn, "fused_qkv_a_proj_with_mqa") and use_intel_amx_backend(attn):
            return AttnForwardMethod.MLA_FUSED_ROPE_CPU
        else:
            return AttnForwardMethod.MLA


fzyzcjy's avatar
fzyzcjy committed
265
class AttentionBackendRegistry:
266
267
268
269
270
271
272
273
274
275
276
    _handlers = {}

    @classmethod
    def register(cls, backend_name, handler_func):
        cls._handlers[backend_name] = handler_func

    @classmethod
    def get_handler(cls, backend_name):
        return cls._handlers.get(backend_name, cls._handlers.get("triton"))


fzyzcjy's avatar
fzyzcjy committed
277
def handle_attention_ascend(attn, forward_batch):
278
279
280
281
282
    if (
        forward_batch.forward_mode.is_extend()
        and not forward_batch.forward_mode.is_target_verify()
        and not forward_batch.forward_mode.is_draft_extend()
    ):
fzyzcjy's avatar
fzyzcjy committed
283
284
285
286
        if hasattr(attn, "indexer"):
            return AttnForwardMethod.NPU_MLA_SPARSE
        else:
            return AttnForwardMethod.MHA
287
    else:
fzyzcjy's avatar
fzyzcjy committed
288
289
290
291
        if hasattr(attn, "indexer"):
            return AttnForwardMethod.NPU_MLA_SPARSE
        else:
            return AttnForwardMethod.MLA
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309


def _get_sum_extend_prefix_lens(forward_batch):
    return (
        sum(forward_batch.extend_prefix_lens_cpu)
        if forward_batch.extend_prefix_lens_cpu is not None
        else 0
    )


def _is_extend_without_speculative(forward_batch):
    return (
        forward_batch.forward_mode.is_extend()
        and not forward_batch.forward_mode.is_target_verify()
        and not forward_batch.forward_mode.is_draft_extend()
    )


fzyzcjy's avatar
fzyzcjy committed
310
311
312
def _handle_attention_backend(
    attn: DeepseekV2AttentionMLA, forward_batch, backend_name
):
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    sum_extend_prefix_lens = _get_sum_extend_prefix_lens(forward_batch)
    disable_ragged = (
        backend_name in ["flashinfer", "flashmla"]
    ) and attn.flashinfer_mla_disable_ragged

    if (
        not disable_ragged
        and _is_extend_without_speculative(forward_batch)
        and (
            (
                sum_extend_prefix_lens >= attn.chunked_prefix_cache_threshold
                and not attn.disable_chunked_prefix_cache
            )
            or sum_extend_prefix_lens == 0
        )
    ):
        return AttnForwardMethod.MHA_CHUNKED_KV
    else:
        return _dispatch_mla_subtype(attn, forward_batch)


fzyzcjy's avatar
fzyzcjy committed
334
335
def handle_attention_flashinfer(attn, forward_batch):
    return _handle_attention_backend(attn, forward_batch, "flashinfer")
336
337


fzyzcjy's avatar
fzyzcjy committed
338
339
def handle_attention_fa3(attn, forward_batch):
    return _handle_attention_backend(attn, forward_batch, "fa3")
340
341


fzyzcjy's avatar
fzyzcjy committed
342
343
def handle_attention_flashmla(attn, forward_batch):
    return _handle_attention_backend(attn, forward_batch, "flashmla")
344
345


linhai1's avatar
linhai1 committed
346
347
348
349
def handle_attention_dcu_mla(attn, forward_batch):
    return _handle_attention_backend(attn, forward_batch, "dcu_mla")


fzyzcjy's avatar
fzyzcjy committed
350
351
def handle_attention_cutlass_mla(attn, forward_batch):
    return _handle_attention_backend(attn, forward_batch, "cutlass_mla")
352
353


fzyzcjy's avatar
fzyzcjy committed
354
def handle_attention_fa4(attn, forward_batch):
355
356
357
358
    # TODO(cicirori): use FA4 MHA for DeepSeekV3 for now
    return AttnForwardMethod.MHA_CHUNKED_KV


fzyzcjy's avatar
fzyzcjy committed
359
def handle_attention_trtllm_mla(attn, forward_batch):
360
361
362
363
364
365
366
367
368
    sum_extend_prefix_lens = _get_sum_extend_prefix_lens(forward_batch)
    if _is_extend_without_speculative(forward_batch) and (
        not attn.disable_chunked_prefix_cache or sum_extend_prefix_lens == 0
    ):
        return AttnForwardMethod.MHA_CHUNKED_KV
    else:
        return _dispatch_mla_subtype(attn, forward_batch)


fzyzcjy's avatar
fzyzcjy committed
369
def handle_attention_aiter(attn, forward_batch):
370
371
372
373
374
375
376
377
378
379
380
381
    if _is_extend_without_speculative(forward_batch):
        if is_dp_attention_enabled():
            if sum(forward_batch.extend_prefix_lens_cpu) == 0:
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
        else:
            return AttnForwardMethod.MHA
    else:
        return AttnForwardMethod.MLA


fzyzcjy's avatar
fzyzcjy committed
382
383
384
385
def handle_attention_nsa(attn, forward_batch):
    return AttnForwardMethod.MLA


fzyzcjy's avatar
fzyzcjy committed
386
def handle_attention_triton(attn, forward_batch):
387
388
389
390
391
392
393
394
395
    if (
        _is_extend_without_speculative(forward_batch)
        and sum(forward_batch.extend_prefix_lens_cpu) == 0
    ):
        return AttnForwardMethod.MHA
    else:
        return _dispatch_mla_subtype(attn, forward_batch)


Liangsheng Yin's avatar
Liangsheng Yin committed
396
397
398
399
400
401
402
403
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
404
        prefix: str = "",
405
406
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
407
408
    ) -> None:
        super().__init__()
409
410
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
411
        self.gate_up_proj = MergedColumnParallelLinear(
412
413
414
415
416
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
417
418
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
419
420
421
422
423
424
425
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
426
            prefix=add_prefix("down_proj", prefix),
427
428
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
429
430
431
432
433
434
435
436
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

437
438
439
440
    def forward(
        self,
        x,
        forward_batch=None,
441
        should_allreduce_fusion: bool = False,
442
        use_reduce_scatter: bool = False,
443
        gemm_output_zero_allocator: BumpAllocator = None,
444
    ):
445
446
447
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

448
449
450
451
452
        if (
            gemm_output_zero_allocator is not None
            and x.shape[0] <= 256
            and self.gate_up_proj.weight.dtype == torch.uint8
        ):
453
454
455
456
457
            y = gemm_output_zero_allocator.allocate(
                x.shape[0] * self.gate_up_proj.output_size_per_partition
            ).view(x.shape[0], self.gate_up_proj.output_size_per_partition)
            x = (x, None, y)

Liangsheng Yin's avatar
Liangsheng Yin committed
458
459
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
460
        x, _ = self.down_proj(
461
            x, skip_all_reduce=should_allreduce_fusion or use_reduce_scatter
462
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
463
464
465
        return x


Ke Bao's avatar
Ke Bao committed
466
class MoEGate(nn.Module):
467
468
469
    def __init__(
        self,
        config,
470
        quant_config,
471
        prefix: str = "",
472
        is_nextn: bool = False,
473
    ):
Ke Bao's avatar
Ke Bao committed
474
        super().__init__()
475
        self.is_nextn = is_nextn
Ke Bao's avatar
Ke Bao committed
476
477
478
479
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
480
481
482
483
484
485
486
            correction_bias_dtype = (
                torch.bfloat16
                if quant_config is not None
                and quant_config.get_name() == "modelopt_fp4"
                and should_use_flashinfer_trtllm_moe()
                else torch.float32
            )
Ke Bao's avatar
Ke Bao committed
487
            self.e_score_correction_bias = nn.Parameter(
488
                torch.empty((config.n_routed_experts), dtype=correction_bias_dtype)
Ke Bao's avatar
Ke Bao committed
489
490
491
            )
        else:
            self.e_score_correction_bias = None
492
493
        if _is_cpu and _is_cpu_amx_available:
            self.quant_method = PackWeightMethod(weight_names=["weight"])
Ke Bao's avatar
Ke Bao committed
494

495
    def forward(self, hidden_states, gemm_output_zero_allocator: BumpAllocator = None):
496
        if use_intel_amx_backend(self):
497
498
499
500
501
502
503
            return torch.ops.sgl_kernel.weight_packed_linear(
                hidden_states,
                self.weight,
                None,  # bias
                True,  # is_vnni
            )

504
        # NOTE: For some unknown reason, router_gemm seems degrade accept length.
505
        if (
506
            _is_cuda
507
            and hidden_states.shape[0] <= 16
508
            and hidden_states.shape[1] == 7168
509
            and (self.weight.shape[0] == 256 or self.weight.shape[0] == 384)
510
511
            and _device_sm >= 90
        ):
512
            # router gemm output float32
513
514
515
            logits = dsv3_router_gemm(
                hidden_states, self.weight, out_dtype=torch.float32
            )
516
517
518
519
        elif _use_aiter_gfx95 and hidden_states.shape[0] <= 256:
            logits = aiter_dsv3_router_gemm(
                hidden_states, self.weight, gemm_output_zero_allocator
            )
520
521
522
        else:
            logits = F.linear(hidden_states, self.weight, None)

Ke Bao's avatar
Ke Bao committed
523
524
525
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
526
527
528
529
530
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
531
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
532
        quant_config: Optional[QuantizationConfig] = None,
533
        prefix: str = "",
534
        alt_stream: Optional[torch.cuda.Stream] = None,
535
        is_nextn: bool = False,
Liangsheng Yin's avatar
Liangsheng Yin committed
536
537
538
539
540
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
541
542
        self.num_fused_shared_experts = (
            0
543
            if get_global_server_args().disable_shared_experts_fusion
544
545
            else config.n_shared_experts
        )
546
        self.config = config
fzyzcjy's avatar
fzyzcjy committed
547
        self.layer_id = layer_id
548
        self.alt_stream = alt_stream
549
        self.is_nextn = is_nextn
550

Liangsheng Yin's avatar
Liangsheng Yin committed
551
552
553
554
555
556
557
558
559
560
561
562
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

563
        self.gate = MoEGate(
564
565
566
567
            config=config,
            quant_config=quant_config,
            prefix=add_prefix("gate", prefix),
            is_nextn=is_nextn,
568
        )
Ke Bao's avatar
Ke Bao committed
569

570
        self.experts = get_moe_impl_class(quant_config)(
571
            num_experts=config.n_routed_experts
572
            + self.num_fused_shared_experts
573
            + get_global_server_args().ep_num_redundant_experts,
Cheng Wan's avatar
Cheng Wan committed
574
            num_fused_shared_experts=self.num_fused_shared_experts,
575
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
576
577
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
578
            layer_id=self.layer_id,
579
            quant_config=quant_config,
580
            routed_scaling_factor=self.routed_scaling_factor,
581
582
            prefix=add_prefix("experts", prefix),
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
583

584
585
586
587
588
589
590
        self.topk = TopK(
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
            renormalize=config.norm_topk_prob,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            num_fused_shared_experts=self.num_fused_shared_experts,
            topk_group=config.topk_group,
591
592
            correction_bias=self.gate.e_score_correction_bias,
            quant_config=quant_config,
593
            routed_scaling_factor=self.routed_scaling_factor,
fzyzcjy's avatar
fzyzcjy committed
594
            apply_routed_scaling_factor_on_output=self.experts.should_fuse_routed_scaling_factor_in_topk,
595
596
597
            # Some Fp4 MoE backends require the output format to be bypassed but the MTP layers are unquantized
            # and requires the output format to be standard. We use quant_config to determine the output format.
            output_format=TopKOutputFormat.STANDARD if quant_config is None else None,
598
599
        )

600
601
602
        self.shared_experts_is_int8 = False
        self.shared_experts_is_fp8 = False
        self.shared_experts_weight_block_size = None
603
        if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
604
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
605
            # disable tp for shared experts when enable deepep moe, or with fp4 allgather
606
607
608
609
610
611
612
613
614
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
615
                    if get_moe_a2a_backend().is_deepep()
616
                    or get_moe_a2a_backend().is_mooncake()
617
                    or should_use_flashinfer_cutlass_moe_fp4_allgather()
618
619
620
                    else {}
                ),
            )
AniZpZ's avatar
AniZpZ committed
621
622
623
624
            is_packed_weight = hasattr(
                self.shared_experts.gate_up_proj.quant_method, "quant_config"
            ) and self.shared_experts.gate_up_proj.quant_method.quant_config.get_name() in {
                "awq",
625
                "awq_marlin",
AniZpZ's avatar
AniZpZ committed
626
627
                "moe_wna16",
            }
628
            self.shared_experts_is_int8 = (
629
630
                not is_packed_weight
                and self.shared_experts.gate_up_proj.weight.dtype == torch.int8
631
632
            )
            self.shared_experts_is_fp8 = (
633
634
                not is_packed_weight
                and self.shared_experts.gate_up_proj.weight.dtype == torch.float8_e4m3fn
635
636
637
638
639
640
641
642
643
            )
            if self.shared_experts_is_fp8:
                assert (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                    == self.shared_experts.down_proj.quant_method.quant_config.weight_block_size
                )
                self.shared_experts_weight_block_size = (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                )
644

645
646
        self.top_k = config.num_experts_per_tok

647
        if get_moe_a2a_backend().is_deepep() or get_moe_a2a_backend().is_mooncake():
648
            # TODO: we will support tp < ep in the future
649
            self.ep_size = get_moe_expert_parallel_world_size()
650
651
            self.num_experts = (
                config.n_routed_experts
652
                + get_global_server_args().ep_num_redundant_experts
653
            )
654
655
656
657
658
659
660
661
662
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

663
664
665
        self._enable_a2a_moe = (
            get_moe_a2a_backend().is_deepep() or get_moe_a2a_backend().is_mooncake()
        )
666
        self._fuse_shared_experts_inside_sbo = SboFlags.fuse_shared_experts_inside_sbo()
667

668
669
670
671
672
673
674
    def get_moe_weights(self):
        return [
            x.data
            for name, x in self.experts.named_parameters()
            if name not in ["correction_bias"]
        ]

675
    def forward(
676
677
678
        self,
        hidden_states: torch.Tensor,
        forward_batch: Optional[ForwardBatch] = None,
679
        should_allreduce_fusion: bool = False,
680
        use_reduce_scatter: bool = False,
681
        gemm_output_zero_allocator: BumpAllocator = None,
682
    ) -> torch.Tensor:
683
        if not self._enable_a2a_moe:
684
685
686
687
            DUAL_STREAM_TOKEN_THRESHOLD = 1024
            if (
                self.alt_stream is not None
                and self.num_fused_shared_experts == 0
688
                and hidden_states.shape[0] > 0
689
690
                and hidden_states.shape[0] <= DUAL_STREAM_TOKEN_THRESHOLD
            ):
691
                return self.forward_normal_dual_stream(
692
693
694
                    hidden_states,
                    should_allreduce_fusion,
                    use_reduce_scatter,
695
                    gemm_output_zero_allocator,
696
                )
697
            else:
698
                return self.forward_normal(
699
700
701
                    hidden_states,
                    should_allreduce_fusion,
                    use_reduce_scatter,
702
                    gemm_output_zero_allocator,
703
                )
704
705
706
        else:
            return self.forward_deepep(hidden_states, forward_batch)

707
    def forward_normal_dual_stream(
708
709
        self,
        hidden_states: torch.Tensor,
710
        should_allreduce_fusion: bool = False,
711
        use_reduce_scatter: bool = False,
712
        gemm_output_zero_allocator: BumpAllocator = None,
713
    ) -> torch.Tensor:
714

715
716
        current_stream = torch.cuda.current_stream()
        self.alt_stream.wait_stream(current_stream)
717
718
719
        shared_output = self._forward_shared_experts(
            hidden_states, gemm_output_zero_allocator
        )
720

721
        with torch.cuda.stream(self.alt_stream):
722
            # router_logits: (num_tokens, n_experts)
723
            router_logits = self.gate(hidden_states, gemm_output_zero_allocator)
Cheng Wan's avatar
Cheng Wan committed
724
            topk_output = self.topk(hidden_states, router_logits)
725
726
727
728
            if isinstance(
                self.experts.quant_method, CompressedTensorsWNA16AMXEPMoEMethod
            ):
                topk_output.topk_weights.mul_(self.routed_scaling_factor)
Cheng Wan's avatar
Cheng Wan committed
729
            final_hidden_states = self.experts(hidden_states, topk_output)
730
731
            if not _is_cuda:
                final_hidden_states *= self.routed_scaling_factor
Cheng Wan's avatar
Cheng Wan committed
732

733
        current_stream.wait_stream(self.alt_stream)
734
735
        with use_symmetric_memory(parallel_state.get_tp_group()) as sm:
            final_hidden_states_out = torch.empty_like(final_hidden_states)
Cheng Wan's avatar
Cheng Wan committed
736

737
738
739
        torch.add(final_hidden_states, shared_output, out=final_hidden_states_out)
        final_hidden_states = final_hidden_states_out
        sm.tag(final_hidden_states)
740
741
742
743
744
745
        if (
            self.tp_size > 1
            and not should_allreduce_fusion
            and not use_reduce_scatter
            and not should_use_flashinfer_cutlass_moe_fp4_allgather()
        ):
746
747
748
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

749
    def forward_normal(
750
751
        self,
        hidden_states: torch.Tensor,
752
        should_allreduce_fusion: bool = False,
753
        use_reduce_scatter: bool = False,
754
        gemm_output_zero_allocator: BumpAllocator = None,
755
    ) -> torch.Tensor:
756
757
        if hasattr(self, "shared_experts") and use_intel_amx_backend(
            self.shared_experts.gate_up_proj
758
        ):
759
            return self.forward_cpu(hidden_states, should_allreduce_fusion)
760

761
        if hidden_states.shape[0] > 0:
762
763
764
765
            if not self._fuse_shared_experts_inside_sbo:
                shared_output = self._forward_shared_experts(
                    hidden_states, gemm_output_zero_allocator
                )
766
            # router_logits: (num_tokens, n_experts)
767
            router_logits = self.gate(hidden_states, gemm_output_zero_allocator)
768
769
770
771
            topk_output = self.topk(hidden_states, router_logits)
        else:
            shared_output = None
            topk_output = self.topk.empty_topk_output(hidden_states.device)
772

773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
        if self._fuse_shared_experts_inside_sbo:
            shared_output = None

            def _forward_shared_experts_and_put_results():
                nonlocal shared_output
                shared_output = self._forward_shared_experts(
                    hidden_states, gemm_output_zero_allocator
                )

        final_hidden_states = self.experts(
            hidden_states,
            topk_output,
            **(
                dict(
                    forward_shared_experts=_forward_shared_experts_and_put_results,
                    alt_stream=self.alt_stream,
                )
                if self._fuse_shared_experts_inside_sbo
                else {}
            ),
        )
794
795
        if not _is_cuda and not _use_aiter:
            # fused in biased_grouped_topk so we can skip here
796
            final_hidden_states *= self.routed_scaling_factor
797
        if shared_output is not None:
798
799
800
801
802
            with use_symmetric_memory(parallel_state.get_tp_group()) as sm:
                final_hidden_states_out = torch.empty_like(final_hidden_states)
            torch.add(final_hidden_states, shared_output, out=final_hidden_states_out)
            final_hidden_states = final_hidden_states_out
            sm.tag(final_hidden_states)
803
804
805
806
807
808
        if (
            self.tp_size > 1
            and not should_allreduce_fusion
            and not use_reduce_scatter
            and not should_use_flashinfer_cutlass_moe_fp4_allgather()
        ):
809
810
811
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

812
    def forward_cpu(
813
814
815
        self,
        hidden_states: torch.Tensor,
        should_allreduce_fusion: bool = False,
816
    ) -> torch.Tensor:
817
818
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
819
        topk_output = self.topk(hidden_states, router_logits)
820
        fused_experts_out = self.experts(
821
            hidden_states=hidden_states, topk_output=topk_output
822
823
        )

824
825
826
        assert use_intel_amx_backend(
            self.shared_experts.gate_up_proj
        ) == use_intel_amx_backend(self.shared_experts.down_proj)
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
        # [Note] inplace should be False in fused_experts.
        # If inplace is True in fused_experts (self.experts), hidden_states will be changed after fused_experts
        # While hidden_states is still needed in shared_expert.
        final_hidden_states = torch.ops.sgl_kernel.shared_expert_cpu(
            hidden_states,
            self.shared_experts.gate_up_proj.weight,
            self.shared_experts.down_proj.weight,
            fused_experts_out,
            self.routed_scaling_factor,
            True,  # inplace
            self.shared_experts_is_int8,  # use_int8_w8a8
            self.shared_experts_is_fp8,  # use_fp8_w8a16
            (
                self.shared_experts.gate_up_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.gate_up_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w1_scale
            (
                self.shared_experts.down_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.down_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w2_scale
            (
                self.shared_experts_weight_block_size
                if self.shared_experts_is_fp8
                else None
            ),  # block_size
            None,  # a1_scale
            None,  # a2_scale
            True,  # is_vnni
        )
866
        if self.tp_size > 1 and not should_allreduce_fusion:
867
868
869
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

870
871
872
873
    def forward_deepep(
        self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        shared_output = None
Cheng Wan's avatar
Cheng Wan committed
874
        if hidden_states.shape[0] > 0:
875
876
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
877
            if not self._fuse_shared_experts_inside_sbo:
878
                shared_output = self._forward_shared_experts(hidden_states)
879
            topk_output = self.topk(
880
881
                hidden_states,
                router_logits,
882
                num_token_non_padded=forward_batch.num_token_non_padded,
883
884
885
                expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                    layer_id=self.layer_id,
                ),
886
887
            )
        else:
888
            topk_output = self.topk.empty_topk_output(hidden_states.device)
889

890
891
892
893
894
895
896
897
        if self._fuse_shared_experts_inside_sbo:
            shared_output = None

            def _forward_shared_experts_and_put_results():
                nonlocal shared_output
                shared_output = self._forward_shared_experts(hidden_states)

        final_hidden_states = self.experts(
898
            hidden_states=hidden_states,
899
            topk_output=topk_output,
900
901
902
903
            **(
                dict(
                    forward_shared_experts=_forward_shared_experts_and_put_results,
                    alt_stream=self.alt_stream,
904
905
                    # SBO is not yet implemented for NextN
                    disable_sbo=self.is_nextn,
906
907
908
909
                )
                if self._fuse_shared_experts_inside_sbo
                else {}
            ),
910
911
912
        )

        if shared_output is not None:
913
            x = shared_output
fzyzcjy's avatar
fzyzcjy committed
914
            if self.experts.should_fuse_routed_scaling_factor_in_topk:
915
916
917
                x.add_(final_hidden_states)
            else:
                x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
918
919
            final_hidden_states = x
        else:
fzyzcjy's avatar
fzyzcjy committed
920
            if not self.experts.should_fuse_routed_scaling_factor_in_topk:
921
                final_hidden_states *= self.routed_scaling_factor
922
923
924

        return final_hidden_states

925
926
927
    def _forward_shared_experts(
        self, hidden_states, gemm_output_zero_allocator: BumpAllocator = None
    ):
928
        if (hidden_states.shape[0] > 0) and (self.num_fused_shared_experts == 0):
929
930
931
            return self.shared_experts(
                hidden_states, gemm_output_zero_allocator=gemm_output_zero_allocator
            )
932
933
934
        else:
            return None

935
    def op_gate(self, state):
936
        if is_non_idle_and_non_empty(
937
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
938
        ):
939
            # router_logits: (num_tokens, n_experts)
940
            state.router_logits = self.gate(state.hidden_states_mlp_input)
941
        else:
942
            state.router_logits = None
943

944
    def op_shared_experts(self, state):
945
        hidden_states_mlp_input = state.pop("hidden_states_mlp_input")
946
        if (self.num_fused_shared_experts == 0) and is_non_idle_and_non_empty(
947
            state.forward_batch.forward_mode, hidden_states_mlp_input
948
        ):
949
            state.shared_output = self.shared_experts(hidden_states_mlp_input)
950
        else:
951
            state.shared_output = None
952

953
    def op_select_experts(self, state):
954
        router_logits = state.pop("router_logits")
955
956
        hidden_states = state.hidden_states_mlp_input

957
        if router_logits is not None:
958
959
960
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
961
                state.topk_output = self.topk(
962
963
964
965
966
967
968
                    hidden_states=hidden_states,
                    router_logits=router_logits,
                    num_token_non_padded=state.forward_batch.num_token_non_padded,
                    expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                        layer_id=self.layer_id,
                    ),
                )
969
        else:
970
            state.topk_output = self.topk.empty_topk_output(hidden_states.device)
971

972
    def op_dispatch_a(self, state):
973
        if self.ep_size > 1:
974
            self.experts.dispatcher.dispatch_a(
975
                hidden_states=state.hidden_states_mlp_input,
976
                topk_output=state.pop("topk_output"),
977
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
978
            )
979

980
    def op_dispatch_b(self, state):
981
982
983
984
        if self.ep_size > 1:
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
985
                state.dispatch_output = self.experts.dispatcher.dispatch_b(
986
987
                    tbo_subbatch_index=state.get("tbo_subbatch_index"),
                )
988
989

    def op_experts(self, state):
990
        state.hidden_states_experts_output = self.experts.run_moe_core(
991
            dispatch_output=state.dispatch_output,
992
        )
993

994
    def op_combine_a(self, state):
995
        if self.ep_size > 1:
996
            self.experts.dispatcher.combine_a(
997
                hidden_states=state.pop("hidden_states_experts_output"),
998
                topk_ids=state.dispatch_output.topk_ids,
999
                topk_weights=state.dispatch_output.topk_weights,
1000
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
1001
            )
1002
            state.pop("dispatch_output")
1003

1004
    def op_combine_b(self, state):
1005
        if self.ep_size > 1:
1006
1007
            state.hidden_states_after_combine = self.experts.dispatcher.combine_b(
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
1008
            )
1009
1010

    def op_output(self, state):
1011
        final_hidden_states = state.pop("hidden_states_after_combine")
1012
1013
1014
1015
1016
1017
1018

        if (shared_output := state.pop("shared_output")) is not None:
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
Liangsheng Yin's avatar
Liangsheng Yin committed
1019

1020
        state.hidden_states_mlp_output = final_hidden_states
1021

Liangsheng Yin's avatar
Liangsheng Yin committed
1022
1023
1024
1025
1026
1027
1028
1029
1030

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
1047
1048
        reduce_results: bool = True,
        layer_id: int = None,
1049
        prefix: str = "",
1050
        alt_stream: Optional[torch.cuda.Stream] = None,
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
1061
1062
1063
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

1064
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
1065
1066
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
1067
1068
1069
1070
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

fzyzcjy's avatar
fzyzcjy committed
1071
1072
1073
1074
        # NOTE modification to rope_scaling must be done early enough, b/c e.g. Indexer needs it
        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

Lianmin Zheng's avatar
Lianmin Zheng committed
1075
1076
        # For tensor parallel attention
        if self.q_lora_rank is not None:
1077
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
1078
                self.hidden_size,
1079
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
1080
1081
                bias=False,
                quant_config=quant_config,
1082
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
1083
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1084
1085
1086
1087
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
1088
                bias=False,
1089
                quant_config=self._get_q_b_proj_quant_config(quant_config),
Lianmin Zheng's avatar
Lianmin Zheng committed
1090
1091
1092
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
1093
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1094
1095
        else:
            self.q_proj = ColumnParallelLinear(
1096
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
1097
                self.num_heads * self.qk_head_dim,
1098
1099
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
1100
1101
1102
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
1103
            )
1104
1105
1106
1107
1108
1109
1110
1111
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

fzyzcjy's avatar
fzyzcjy committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        self.use_nsa = is_deepseek_nsa(config)
        if self.use_nsa:
            self.indexer = Indexer(
                hidden_size=hidden_size,
                index_n_heads=get_nsa_index_n_heads(config),
                index_head_dim=get_nsa_index_head_dim(config),
                rope_head_dim=qk_rope_head_dim,
                index_topk=get_nsa_index_topk(config),
                q_lora_rank=q_lora_rank,
                max_position_embeddings=max_position_embeddings,
                rope_theta=rope_theta,
                scale_fmt="ue8m0",
                block_size=128,
                rope_scaling=rope_scaling,
                prefix=add_prefix("indexer", prefix),
                quant_config=quant_config,
                layer_id=layer_id,
                alt_stream=alt_stream,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
1152
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
1153

1154
        self.rotary_emb = get_rope_wrapper(
1155
1156
1157
1158
1159
1160
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
1161
            device=get_global_server_args().device,
1162
1163
1164
1165
1166
1167
1168
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
1169
1170
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
1171

1172
        self.attn_mqa = RadixAttention(
1173
1174
1175
1176
1177
1178
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
1179
            quant_config=quant_config,
1180
            prefix=add_prefix("attn_mqa", prefix),
1181
1182
        )

1183
1184
1185
1186
1187
1188
1189
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
1190
            quant_config=quant_config,
1191
            prefix=add_prefix("attn_mha", prefix),
1192
1193
        )

1194
        self.alt_stream = alt_stream
1195
        self.attn_mha.kv_b_proj = None
1196

Ke Bao's avatar
Ke Bao committed
1197
1198
        self.w_kc = None
        self.w_vc = None
1199
        self.w_scale = 1.0
1200

1201
1202
1203
1204
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

1205
1206
1207
1208
1209
1210
        self.flashinfer_mla_disable_ragged = (
            get_global_server_args().flashinfer_mla_disable_ragged
        )
        self.disable_chunked_prefix_cache = (
            get_global_server_args().disable_chunked_prefix_cache
        )
1211
1212
1213
1214

        self.current_attention_backend = (
            None  # Attention backend used by current forward batch
        )
1215
1216
1217
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1218

1219
        # TODO: Design a finer way to determine the threshold
1220
1221
1222
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
1223

1224
1225
1226
        # If we have self.fused_qkv_a_proj_with_mqa and we're running on CPU, we will choose the torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight kernel
        # which requires self.w_kc and self.w_vc to be packed.
        # If not, we will use torch.bmm and weight shouldn't be packed in this case
AniZpZ's avatar
AniZpZ committed
1227
1228
        has_fused_proj = hasattr(self, "fused_qkv_a_proj_with_mqa")
        if has_fused_proj and _is_cpu and _is_cpu_amx_available:
1229
1230
1231
1232
            self.quant_method = PackWeightMethod(
                weight_names=["w_kc", "w_vc"], transpose_dims=[[1, 2], [1, 2]]
            )

1233
        is_packed_weight = (
AniZpZ's avatar
AniZpZ committed
1234
1235
1236
            has_fused_proj
            and hasattr(self.fused_qkv_a_proj_with_mqa.quant_method, "quant_config")
            and self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.get_name()
1237
            in {"awq", "awq_marlin", "moe_wna16"}
1238
        )
1239
        self.use_min_latency_fused_a_gemm = (
AniZpZ's avatar
AniZpZ committed
1240
            has_fused_proj
1241
            and not is_packed_weight
1242
1243
1244
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.bfloat16
            and self.fused_qkv_a_proj_with_mqa.weight.shape[0] == 2112
            and self.fused_qkv_a_proj_with_mqa.weight.shape[1] == 7168
1245
            and _is_cuda
1246
            and _device_sm >= 90
1247
1248
        )

1249
        self.qkv_proj_with_rope_is_int8 = (
AniZpZ's avatar
AniZpZ committed
1250
            has_fused_proj
1251
            and not is_packed_weight
1252
1253
1254
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.int8
        )
        self.qkv_proj_with_rope_is_fp8 = (
AniZpZ's avatar
AniZpZ committed
1255
            has_fused_proj
1256
            and not is_packed_weight
1257
1258
1259
1260
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.float8_e4m3fn
        )

        self.weight_block_size = None
1261
1262
1263
1264
1265
1266
        if self.qkv_proj_with_rope_is_fp8 and _is_cpu and _is_cpu_amx_available:
            assert getattr(
                self.fused_qkv_a_proj_with_mqa.quant_method, "block_quant", False
            ) == getattr(self.q_b_proj.quant_method, "block_quant", False)
            use_block_quant = getattr(
                self.fused_qkv_a_proj_with_mqa.quant_method, "block_quant", False
1267
1268
            )

1269
1270
1271
1272
1273
1274
1275
1276
            if use_block_quant:
                assert (
                    self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
                    == self.q_b_proj.quant_method.quant_config.weight_block_size
                )
                self.weight_block_size = (
                    self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
                )
1277
1278
1279
        self.is_mla_preprocess_enabled = is_mla_preprocess_enabled()
        if self.is_mla_preprocess_enabled:
            assert (
fzyzcjy's avatar
fzyzcjy committed
1280
1281
                quant_config is None or quant_config.get_name() == "w8a8_int8"
            ), "MLA Preprocess only works with Unquant or W8A8Int8"
1282
            self.mla_preprocess = None
1283

1284
1285
1286
    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
1287
1288
        # Determine attention backend used by current forward batch
        if forward_batch.forward_mode.is_decode_or_idle():
1289
            attention_backend = get_global_server_args().decode_attention_backend
1290
1291
1292
1293
1294
        elif (
            forward_batch.forward_mode.is_target_verify()
            or forward_batch.forward_mode.is_draft_extend()
        ):
            # Use the specified backend for speculative operations (both verify and draft extend)
1295
1296
            if get_global_server_args().speculative_attention_mode == "decode":
                attention_backend = get_global_server_args().decode_attention_backend
1297
            else:  # default to prefill
1298
                attention_backend = get_global_server_args().prefill_attention_backend
1299
        else:
1300
            attention_backend = get_global_server_args().prefill_attention_backend
1301
1302
        self.current_attention_backend = attention_backend

fzyzcjy's avatar
fzyzcjy committed
1303
        handler = AttentionBackendRegistry.get_handler(attention_backend)
1304
        return handler(self, forward_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1305

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
    def op_prepare(self, state):
        state.attn_intermediate_state = self.forward_prepare(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
        )

    def op_core(self, state):
        state.hidden_states_after_attn = self.forward_core(
            state.pop("attn_intermediate_state")
        )

1319
1320
1321
1322
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1323
        forward_batch: ForwardBatch,
1324
        zero_allocator: BumpAllocator,
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
    ):
        s = self.forward_prepare(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )
        return self.forward_core(s)

    def forward_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
1341
1342
1343
        if self.attn_mha.kv_b_proj is None:
            self.attn_mha.kv_b_proj = self.kv_b_proj

1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
        # when hidden_states is a tuple of tensors, the tuple will include quantized weight and scale tensor
        if isinstance(hidden_states, tuple):
            if hidden_states[0].shape[0] == 0:
                assert (
                    not self.o_proj.reduce_results
                ), "short-circuiting allreduce will lead to hangs"
                return hidden_states[0]
        else:
            if hidden_states.shape[0] == 0:
                assert (
                    not self.o_proj.reduce_results
                ), "short-circuiting allreduce will lead to hangs"
                return hidden_states, None, forward_batch, None
1357

1358
1359
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)
        if attn_forward_method == AttnForwardMethod.MHA:
1360
1361
1362
            inner_state = self.forward_normal_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1363
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
1364
1365
            inner_state = self.forward_normal_chunked_kv_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1366
            )
1367
        elif attn_forward_method == AttnForwardMethod.MLA:
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
            if not self.is_mla_preprocess_enabled:
                inner_state = self.forward_absorb_prepare(
                    positions, hidden_states, forward_batch, zero_allocator
                )
            else:
                # TODO(iforgetmyname): to be separated as a standalone func
                if self.mla_preprocess is None:
                    self.mla_preprocess = NPUFusedMLAPreprocess(
                        self.fused_qkv_a_proj_with_mqa,
                        self.q_a_layernorm,
                        self.kv_a_layernorm,
                        self.q_b_proj,
                        self.w_kc,
                        self.rotary_emb,
                        self.layer_id,
                        self.num_local_heads,
                        self.qk_nope_head_dim,
                        self.qk_rope_head_dim,
                    )
                inner_state = self.mla_preprocess.forward(
                    positions, hidden_states, forward_batch, zero_allocator
                )
1390
                inner_state = (*inner_state, None)  # add a position for topk_indices
fzyzcjy's avatar
fzyzcjy committed
1391
1392
1393
1394
        elif attn_forward_method == AttnForwardMethod.NPU_MLA_SPARSE:
            inner_state = self.forward_npu_sparse_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1395
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
1396
1397
            inner_state = self.forward_absorb_fused_mla_rope_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1398
            )
1399
1400
1401
1402
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            inner_state = self.forward_absorb_fused_mla_rope_cpu_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1403
        else:
1404
            raise NotImplementedError
1405
        return None, attn_forward_method, forward_batch, inner_state
1406

1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
    def forward_core(self, intermediate_state):
        hidden_states, attn_forward_method, forward_batch, inner_state = (
            intermediate_state
        )
        if inner_state is None:
            return hidden_states

        if attn_forward_method == AttnForwardMethod.MHA:
            return self.forward_normal_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA:
            return self.forward_absorb_core(*inner_state)
fzyzcjy's avatar
fzyzcjy committed
1420
1421
        elif attn_forward_method == AttnForwardMethod.NPU_MLA_SPARSE:
            return self.forward_npu_sparse_core(*inner_state)
1422
1423
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
            return self.forward_absorb_fused_mla_rope_core(*inner_state)
1424
1425
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            return self.forward_absorb_fused_mla_rope_cpu_core(*inner_state)
1426
1427
1428
1429
        else:
            raise NotImplementedError

    def forward_normal_prepare(
1430
1431
1432
1433
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1434
1435
        zero_allocator: BumpAllocator,
    ):
1436
        if self.q_lora_rank is not None:
1437
1438
1439
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1440
1441
1442
1443
1444
1445
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1446
1447
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

1448
1449
1450
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
1451
        kv_a = self.kv_a_layernorm(kv_a)
1452
1453
1454
1455
1456
1457
1458
1459
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471

        # Temporary for DeepSeek V3/R1 only, but can generalize if needed
        if (
            _is_cuda
            and (self.num_local_heads == 128)
            and (self.qk_nope_head_dim == 128)
            and (self.qk_rope_head_dim == 64)
        ):
            concat_mla_k(k=k, k_nope=k_nope, k_rope=k_pe)
        else:
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe
1472

1473
1474
1475
        if not _is_npu:
            latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
            latent_cache[:, :, self.kv_lora_rank :] = k_pe
1476

1477
1478
1479
1480
1481
1482
1483
1484
1485
            # Save latent cache
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
            )
        else:
            # To reduce a time-costing split operation
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mha, forward_batch.out_cache_loc, kv_a.unsqueeze(1), k_pe
            )
1486
1487
1488
1489

        return q, k, v, forward_batch

    def forward_normal_core(self, q, k, v, forward_batch):
1490
1491
1492
1493
1494
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

Faraz's avatar
Faraz committed
1495
1496
1497
1498
1499
1500
    def _fuse_rope_for_trtllm_mla(self, forward_batch: ForwardBatch) -> bool:
        """
        Check if we should skip rope and do fused rope+quantize for TRTLLM MLA decode in fp8_e4m3 path.
        """
        return (
            self.current_attention_backend == "trtllm_mla"
1501
1502
1503
1504
            and (
                forward_batch.forward_mode.is_decode_or_idle()
                or forward_batch.forward_mode.is_target_verify()
            )
Faraz's avatar
Faraz committed
1505
1506
1507
            and forward_batch.attn_backend.data_type == torch.float8_e4m3fn
        )

1508
    def forward_absorb_prepare(
1509
1510
1511
1512
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1513
        zero_allocator: BumpAllocator,
1514
    ):
1515
        from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode
1516

fzyzcjy's avatar
fzyzcjy committed
1517
        q_lora = None
1518
        if self.q_lora_rank is not None:
1519
1520
1521
1522
1523
            if (
                (not isinstance(hidden_states, tuple))
                and hidden_states.shape[0] <= 16
                and self.use_min_latency_fused_a_gemm
            ):
1524
1525
1526
1527
1528
1529
                fused_qkv_a_proj_out = dsv3_fused_a_gemm(
                    hidden_states, self.fused_qkv_a_proj_with_mqa.weight.T
                )
            else:
                fused_qkv_a_proj_out = self.fused_qkv_a_proj_with_mqa(hidden_states)[0]
            q, latent_cache = fused_qkv_a_proj_out.split(
1530
1531
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1532
1533
1534
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
1535
            if self.alt_stream is not None and get_is_capture_mode():
1536
1537
1538
1539
1540
1541
1542
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
                if _use_aiter_gfx95 and self.q_b_proj.weight.dtype == torch.uint8:
                    q, k_nope = fused_rms_mxfp4_quant(
                        q,
                        self.q_a_layernorm.weight,
                        self.q_a_layernorm.variance_epsilon,
                        k_nope,
                        self.kv_a_layernorm.weight,
                        self.kv_a_layernorm.variance_epsilon,
                    )
                else:
                    q = self.q_a_layernorm(q)
                    k_nope = self.kv_a_layernorm(k_nope)
1555

fzyzcjy's avatar
fzyzcjy committed
1556
1557
1558
1559
            # q_lora needed by indexer
            if self.use_nsa:
                q_lora = q

1560
            k_nope = k_nope.unsqueeze(1)
1561
1562
1563
1564
1565
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1566
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1567
1568
1569
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

1570
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
1571
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
1572

1573
1574
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
1575
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
1576
1577
1578
1579
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
1580
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1581
1582
1583
1584
1585
1586
1587
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
1588
1589
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
            if _use_aiter_gfx95 and self.w_kc.dtype == torch.uint8:
                x = q_nope.transpose(0, 1)
                q_nope_out = torch.empty(
                    x.shape[0],
                    x.shape[1],
                    self.w_kc.shape[2],
                    device=x.device,
                    dtype=torch.bfloat16,
                )
                batched_gemm_afp4wfp4_pre_quant(
                    x,
                    self.w_kc.transpose(-2, -1),
                    self.w_scale_k.transpose(-2, -1),
                    torch.bfloat16,
                    q_nope_out,
                )
            else:
                q_nope_out = torch.bmm(
                    q_nope.to(torch.bfloat16).transpose(0, 1),
                    self.w_kc.to(torch.bfloat16) * self.w_scale,
                )
1611
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1612
1613
1614
1615
1616
1617
1618
1619
1620
            # fix bmm_fp8 error under cublas12.9 caused by bumpallocator, detail in pr#11612
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
                q_nope.transpose(0, 1),
                (
                    torch.zeros((1,), dtype=torch.float32, device=q_nope.device)
                    if _is_cublas_ge_129
                    else zero_allocator.allocate(1)
                ),
            )
1621
1622
1623
1624
1625
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
1626
1627

        q_nope_out = q_nope_out.transpose(0, 1)
Faraz's avatar
Faraz committed
1628

1629
        if not self._fuse_rope_for_trtllm_mla(forward_batch) and (
fzyzcjy's avatar
fzyzcjy committed
1630
            not _use_aiter or not _is_gfx95_supported or self.use_nsa
1631
        ):
Faraz's avatar
Faraz committed
1632
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
1633

fzyzcjy's avatar
fzyzcjy committed
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
        topk_indices = None
        if q_lora is not None:
            topk_indices = self.indexer(
                x=hidden_states,
                q_lora=q_lora,
                positions=positions,
                forward_batch=forward_batch,
                layer_id=self.layer_id,
            )

        return (
            q_pe,
            k_pe,
            q_nope_out,
            k_nope,
            forward_batch,
            zero_allocator,
            positions,
            topk_indices,
        )
1654
1655

    def forward_absorb_core(
fzyzcjy's avatar
fzyzcjy committed
1656
1657
1658
1659
1660
1661
1662
1663
1664
        self,
        q_pe,
        k_pe,
        q_nope_out,
        k_nope,
        forward_batch,
        zero_allocator,
        positions,
        topk_indices,
1665
    ):
1666
        if self.current_attention_backend in FORWARD_ABSORB_CORE_ATTENTION_BACKENDS:
Faraz's avatar
Faraz committed
1667
1668
1669
1670
1671
1672
            extra_args = {}
            if self._fuse_rope_for_trtllm_mla(forward_batch):
                extra_args = {
                    "cos_sin_cache": self.rotary_emb.cos_sin_cache,
                    "is_neox": self.rotary_emb.is_neox_style,
                }
fzyzcjy's avatar
fzyzcjy committed
1673

1674
            attn_output = self.attn_mqa(
Faraz's avatar
Faraz committed
1675
1676
1677
1678
1679
1680
1681
                q_nope_out,
                k_nope,
                k_nope,
                forward_batch,
                q_rope=q_pe,
                k_rope=k_pe,
                **extra_args,
fzyzcjy's avatar
fzyzcjy committed
1682
                **(dict(topk_indices=topk_indices) if topk_indices is not None else {}),
1683
1684
            )
        else:
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
            if _use_aiter_gfx95:
                cos = self.rotary_emb.cos_cache
                sin = self.rotary_emb.sin_cache
                q, k = fused_qk_rope_cat(
                    q_nope_out,
                    q_pe,
                    k_nope,
                    k_pe,
                    positions,
                    cos,
                    sin,
                    self.rotary_emb.is_neox_style,
                )
            else:
                q = torch.cat([q_nope_out, q_pe], dim=-1)
                k = torch.cat([k_nope, k_pe], dim=-1)

fzyzcjy's avatar
fzyzcjy committed
1702
1703
1704
1705
1706
1707
1708
            attn_output = self.attn_mqa(
                q,
                k,
                k_nope,
                forward_batch,
                **(dict(topk_indices=topk_indices) if topk_indices is not None else {}),
            )
1709
1710
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1711
1712
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
1713
1714
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
1715
1716
1717
1718
1719
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
1720
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1721
1722
1723
1724
1725
1726
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
Ke Bao's avatar
Ke Bao committed
1727
1728
1729
            attn_bmm_output = (
                attn_bmm_output[:, :expected_m, :].transpose(0, 1).flatten(1, 2)
            )
1730
1731
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
            if _use_aiter_gfx95 and self.w_vc.dtype == torch.uint8:
                x = attn_output.transpose(0, 1)
                attn_bmm_output = torch.empty(
                    x.shape[0],
                    x.shape[1],
                    self.w_vc.shape[2],
                    device=x.device,
                    dtype=torch.bfloat16,
                )
                batched_gemm_afp4wfp4_pre_quant(
                    x,
                    self.w_vc.transpose(-2, -1),
                    self.w_scale_v.transpose(-2, -1),
                    torch.bfloat16,
                    attn_bmm_output,
                )
            else:
                attn_bmm_output = torch.bmm(
                    attn_output.to(torch.bfloat16).transpose(0, 1),
                    self.w_vc.to(torch.bfloat16) * self.w_scale,
                )

            if self.o_proj.weight.dtype == torch.uint8:
                attn_bmm_output = attn_bmm_output.transpose(0, 1)
                attn_bmm_output = fused_flatten_mxfp4_quant(attn_bmm_output)
            else:
                attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)

1760
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1761
1762
1763
1764
1765
1766
1767
1768
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
                attn_output.transpose(0, 1),
                (
                    torch.zeros((1,), dtype=torch.float32, device=attn_output.device)
                    if _is_cublas_ge_129
                    else zero_allocator.allocate(1)
                ),
            )
1769
1770
1771
1772
1773
1774
1775
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
Ke Bao's avatar
Ke Bao committed
1776
            attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1777
        else:
Ke Bao's avatar
Ke Bao committed
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
            attn_bmm_output = torch.empty(
                (attn_output.shape[0], self.num_local_heads * self.v_head_dim),
                dtype=attn_output.dtype,
                device=attn_output.device,
            )
            torch.bmm(
                attn_output.transpose(0, 1),
                self.w_vc,
                out=attn_bmm_output.view(
                    -1, self.num_local_heads, self.v_head_dim
                ).transpose(0, 1),
            )
        output, _ = self.o_proj(attn_bmm_output)
1791
1792
1793

        return output

fzyzcjy's avatar
fzyzcjy committed
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
    def forward_npu_sparse_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
        """
        Reuse `self.q_lora_rank is not None` branch from forward_absorb_prepare
        """
        if self.is_mla_preprocess_enabled and forward_batch.forward_mode.is_decode():
            if self.mla_preprocess is None:
                self.mla_preprocess = NPUFusedMLAPreprocess(
                    self.fused_qkv_a_proj_with_mqa,
                    self.q_a_layernorm,
                    self.kv_a_layernorm,
                    self.q_b_proj,
                    self.w_kc,
                    self.rotary_emb,
                    self.layer_id,
                    self.num_local_heads,
                    self.qk_nope_head_dim,
                    self.qk_rope_head_dim,
                )
            (
                q_pe,
                k_pe,
                q_nope_out,
                k_nope,
                forward_batch,
                zero_allocator,
                positions,
            ) = self.mla_preprocess.forward(
                positions, hidden_states, forward_batch, zero_allocator
            )

            fused_qkv_a_proj_out = self.fused_qkv_a_proj_with_mqa(hidden_states)[0]
            q, _ = fused_qkv_a_proj_out.split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
            q_lora = self.q_a_layernorm(q)
        else:
            from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode

            if (
                (not isinstance(hidden_states, tuple))
                and hidden_states.shape[0] <= 16
                and self.use_min_latency_fused_a_gemm
            ):
                fused_qkv_a_proj_out = dsv3_fused_a_gemm(
                    hidden_states, self.fused_qkv_a_proj_with_mqa.weight.T
                )
            else:
                fused_qkv_a_proj_out = self.fused_qkv_a_proj_with_mqa(hidden_states)[0]
            q, latent_cache = fused_qkv_a_proj_out.split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
            if self.alt_stream is not None and get_is_capture_mode():
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                if _use_aiter_gfx95 and self.q_b_proj.weight.dtype == torch.uint8:
                    q, k_nope = fused_rms_mxfp4_quant(
                        q,
                        self.q_a_layernorm.weight,
                        self.q_a_layernorm.variance_epsilon,
                        k_nope,
                        self.kv_a_layernorm.weight,
                        self.kv_a_layernorm.variance_epsilon,
                    )
                else:
                    q = self.q_a_layernorm(q)
                    k_nope = self.kv_a_layernorm(k_nope)

            q_lora = q.clone()  # required for topk_indices
            k_nope = k_nope.unsqueeze(1)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)

            q_nope, q_pe = q.split(
                [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
            )
            k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)

            if self.use_deep_gemm_bmm:
                q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
                    per_token_group_quant_mla_deep_gemm_masked_fp8(
                        q_nope.transpose(0, 1)
                    )
                )
                q_nope_out = q_nope.new_empty(
                    (self.num_local_heads, aligned_m, self.kv_lora_rank)
                )
                deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
                    (q_nope_val, q_nope_scale),
                    (self.w_kc, self.w_scale_k),
                    q_nope_out,
                    masked_m,
                    expected_m,
                )
                q_nope_out = q_nope_out[:, :expected_m, :]
            elif _is_hip:
                # TODO(haishaw): add bmm_fp8 to ROCm
                if _use_aiter_gfx95 and self.w_kc.dtype == torch.uint8:
                    x = q_nope.transpose(0, 1)
                    q_nope_out = torch.empty(
                        x.shape[0],
                        x.shape[1],
                        self.w_kc.shape[2],
                        device=x.device,
                        dtype=torch.bfloat16,
                    )
                    batched_gemm_afp4wfp4_pre_quant(
                        x,
                        self.w_kc.transpose(-2, -1),
                        self.w_scale_k.transpose(-2, -1),
                        torch.bfloat16,
                        q_nope_out,
                    )
                else:
                    q_nope_out = torch.bmm(
                        q_nope.to(torch.bfloat16).transpose(0, 1),
                        self.w_kc.to(torch.bfloat16) * self.w_scale,
                    )
            elif self.w_kc.dtype == torch.float8_e4m3fn:
                q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
                    q_nope.transpose(0, 1),
                    zero_allocator.allocate(1),
                )
                q_nope_out = bmm_fp8(
                    q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
                )
            else:
                q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)

            q_nope_out = q_nope_out.transpose(0, 1)

            if not self._fuse_rope_for_trtllm_mla(forward_batch) and (
                not _use_aiter or not _is_gfx95_supported
            ):
                q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

        # TODO: multi-stream indexer
        topk_indices = self.indexer(
            hidden_states, q_lora, positions, forward_batch, self.layer_id
        )

        return (
            q_pe,
            k_pe,
            q_nope_out,
            k_nope,
            topk_indices,
            forward_batch,
            zero_allocator,
            positions,
        )

    def forward_npu_sparse_core(
        self,
        q_pe,
        k_pe,
        q_nope_out,
        k_nope,
        topk_indices,
        forward_batch,
        zero_allocator,
        positions,
    ):
        attn_output = self.attn_mqa(
            q_nope_out.contiguous(),
            k_nope.contiguous(),
            k_nope.contiguous(),
            forward_batch,
            save_kv_cache=True,  # False if forward_batch.forward_mode.is_extend() else True,
            q_rope=q_pe.contiguous(),
            k_rope=k_pe.contiguous(),
            topk_indices=topk_indices,
        )
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

        attn_bmm_output = torch.empty(
            (attn_output.shape[0], self.num_local_heads, self.v_head_dim),
            dtype=attn_output.dtype,
            device=attn_output.device,
        )

        if not forward_batch.forward_mode.is_decode():
            attn_output = attn_output.transpose(0, 1)
            torch.bmm(
                attn_output,
                self.w_vc,
                out=attn_bmm_output.view(
                    -1, self.num_local_heads, self.v_head_dim
                ).transpose(0, 1),
            )
        else:
            attn_output = attn_output.contiguous()
            torch.ops.npu.batch_matmul_transpose(
                attn_output, self.w_vc, attn_bmm_output
            )

        attn_bmm_output = attn_bmm_output.reshape(
            -1, self.num_local_heads * self.v_head_dim
        )

        output, _ = self.o_proj(attn_bmm_output)
        return output

2009
    def forward_absorb_fused_mla_rope_prepare(
2010
2011
2012
2013
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
2014
        zero_allocator: BumpAllocator,
2015
    ):
2016
2017
2018
2019
2020
2021
2022
2023
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
2024
2025
2026
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
2027
2028
2029
2030
2031
2032
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
2033
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
2034
2035
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

2036
2037
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
2038
2039
2040
2041
2042
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
2043
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
2044
2045
2046
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
        return (
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            enable_rope_fusion,
            k_input,
            forward_batch,
            zero_allocator,
        )

2123
2124
2125
2126
2127
2128
2129
    def forward_absorb_fused_mla_rope_cpu_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
2130
2131
        assert self.q_lora_rank is not None and use_intel_amx_backend(
            self
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
        ), "forward_absorb_fused_mla_rope_cpu_prepare requires q_lora_rank is not None and use_intel_amx_backend"

        q_input, k_input, v_input = (
            torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight(
                hidden_states,
                self.fused_qkv_a_proj_with_mqa.weight,
                self.q_b_proj.weight,
                self.w_kc,
                self.q_a_layernorm.weight,
                self.kv_a_layernorm.weight,
                positions,
                self.rotary_emb.cos_sin_cache,
                self.kv_a_layernorm.variance_epsilon,
                self.qkv_proj_with_rope_is_int8,
                self.qkv_proj_with_rope_is_fp8,
                (
                    self.fused_qkv_a_proj_with_mqa.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.fused_qkv_a_proj_with_mqa.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                (
                    self.q_b_proj.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.q_b_proj.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                True,  # is_vnni
                self.weight_block_size,
                self.q_lora_rank,
                self.kv_lora_rank,
                self.qk_rope_head_dim,
            )
        )
        return (q_input, k_input, v_input, forward_batch, zero_allocator)

2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
    def forward_absorb_fused_mla_rope_core(
        self,
        q_input,
        key_cache_buf,
        val_cache_buf,
        attn_output,
        kv_indptr,
        kv_indices,
        k_pe_output,
        cos_sin_cache,
        positions,
        attn_logits,
        num_kv_split,
        sm_scale,
        enable_rope_fusion,
        k_input,
        forward_batch,
        zero_allocator,
    ):
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

2221
2222
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
2223
2224
2225
2226
2227
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
2228
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
2229
2230
2231
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
2243
2244
2245
2246
        output, _ = self.o_proj(attn_output)

        return output

2247
2248
2249
    def forward_absorb_fused_mla_rope_cpu_core(
        self, q_input, k_input, v_input, forward_batch, zero_allocator
    ):
2250
2251
        assert self.q_lora_rank is not None and use_intel_amx_backend(
            self
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
        ), "forward_absorb_fused_mla_rope_cpu_core requires q_lora_rank is not None and use_intel_amx_backend"

        attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

        # [Note] Align shapes of bmm inputs.
        # Shapes of inputs:
        #   q_nope: [M, B, K]
        #   original self.w_kc: [B, K, N]
        #   current self.w_kc (which has been converted in PackWeightMethod): [B, N, K]

        # Shapes of inputs to sgl_kernel.cpu.bmm:
        #   out: [B, M, N]
        #   mat1: [B, M, K]
        #   mat2: [B, N, K]
        B = self.w_vc.size(0)
        N = self.w_vc.size(1)
        M = attn_output.size(0)
        output = torch.empty([M, int(B * N)], dtype=attn_output.dtype)
        attn_bmm_output = output.view([M, B, N]).transpose_(0, 1)
        torch.ops.sgl_kernel.bmm_cpu(
            attn_bmm_output,
            attn_output.transpose(0, 1),
            self.w_vc,
            True,  # is_vnni
            None,  # scale
        )
        attn_output = output
        output, _ = self.o_proj(attn_output)

        return output

2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
2297
            latent_cache_buf, dtype = forward_batch.token_to_kv_pool.get_key_buffer_DeepSeekV2(
2298
                self.attn_mha.layer_id
2299
            )
2300
2301
2302
            latent_cache = (
                latent_cache_buf[forward_batch.prefix_chunk_kv_indices[i]]
                .contiguous()
2303
                .view(dtype)
2304
2305
                .to(q.dtype)
            )
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse
2335
            del kv, k, v, output, lse, tmp_output, tmp_lse
2336
2337
2338

        return accum_output

2339
    def forward_normal_chunked_kv_prepare(
2340
2341
2342
2343
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
2344
2345
        zero_allocator: BumpAllocator,
    ):
2346
2347
2348
2349
2350
2351
2352
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
2353
2354
        return self.forward_normal_prepare(
            positions, hidden_states, forward_batch, zero_allocator
2355
2356
        )

2357
    def forward_normal_chunked_kv_core(self, q, k, v, forward_batch):
2358
2359
2360
2361
2362
2363
2364
2365
        has_extend_prefix = any(forward_batch.extend_prefix_lens_cpu)
        # Only initialize the info once
        if has_extend_prefix and forward_batch.num_prefix_chunks is None:
            forward_batch.prepare_chunked_prefix_cache_info(q.device)
            if hasattr(forward_batch.attn_backend, "init_mha_chunk_metadata"):
                forward_batch.attn_backend.init_mha_chunk_metadata(forward_batch)

        forward_batch.mha_return_lse = has_extend_prefix
2366
2367
        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
2368
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
2369
2370

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
2371
2372
        if has_extend_prefix:
            attn_output, lse = attn_output
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
    @staticmethod
    def _get_q_b_proj_quant_config(quant_config):
        if get_bool_env_var("SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN"):
            # refer to real DeepSeek V3 quant config
            return Fp8Config(
                is_checkpoint_fp8_serialized=True,
                weight_block_size=[128, 128],
            )
        else:
            return quant_config

2396

Liangsheng Yin's avatar
Liangsheng Yin committed
2397
2398
2399
2400
2401
2402
2403
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
2404
        moe_quant_config: Optional[QuantizationConfig] = None,
2405
        is_nextn: bool = False,
2406
        prefix: str = "",
2407
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2408
2409
2410
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
2411
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
2412
2413
2414
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
2415
2416
2417
        self.speculative_algorithm = SpeculativeAlgorithm.from_string(
            get_global_server_args().speculative_algorithm
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2418
        self.layer_id = layer_id
2419
        self.is_nextn = is_nextn
Baizhou Zhang's avatar
Baizhou Zhang committed
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
2438
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
2439
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2440

2441
2442
2443
2444
2445
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
2446
            num_layers=1 if is_nextn else config.num_hidden_layers,
2447
2448
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
2449
2450
        )

2451
        if self.is_layer_sparse:
2452
2453
            self.mlp = DeepseekV2MoE(
                config=config,
2454
                quant_config=moe_quant_config or quant_config,
2455
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
2456
                layer_id=self.layer_id,
2457
                alt_stream=alt_stream,
2458
                is_nextn=is_nextn,
2459
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
2460
        else:
2461
            if enable_moe_dense_fully_dp():
2462
2463
2464
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
2465
2466
2467
2468
2469
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
2470
                prefix=add_prefix("mlp", prefix),
2471
2472
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
2473
            )
2474

Liangsheng Yin's avatar
Liangsheng Yin committed
2475
2476
2477
2478
2479
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

2480
2481
2482
2483
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
2484
            allow_reduce_scatter=True,
2485
2486
2487
            is_last_layer=(
                is_nextn or (self.layer_id == self.config.num_hidden_layers - 1)
            ),
2488
        )
2489
2490
2491
2492
2493
2494

    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
2495
2496
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
2497
2498
2499
2500
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
2501
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
2502
        residual: Optional[torch.Tensor],
2503
        zero_allocator: BumpAllocator,
2504
        gemm_output_zero_allocator: BumpAllocator = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2505
    ) -> torch.Tensor:
2506
2507
2508
        quant_format = (
            "mxfp4"
            if _is_gfx95_supported
2509
2510
2511
2512
            and getattr(self.self_attn, "fused_qkv_a_proj_with_mqa", None) is not None
            and getattr(self.self_attn.fused_qkv_a_proj_with_mqa, "weight", None)
            is not None
            and self.self_attn.fused_qkv_a_proj_with_mqa.weight.dtype == torch.uint8
2513
2514
2515
            else ""
        )

2516
        hidden_states, residual = self.layer_communicator.prepare_attn(
2517
2518
2519
2520
            hidden_states,
            residual,
            forward_batch,
            quant_format,
2521
2522
        )

2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )

        hidden_states, residual = self.layer_communicator.prepare_mlp(
            hidden_states, residual, forward_batch
        )

2534
        should_allreduce_fusion = (
2535
2536
            self.layer_communicator.should_fuse_mlp_allreduce_with_next_layer(
                forward_batch
2537
            )
2538
2539
        )

2540
2541
2542
2543
        # For DP with padding, reduce scatter can be used instead of all-reduce.
        use_reduce_scatter = self.layer_communicator.should_use_reduce_scatter(
            forward_batch
        )
2544
2545
2546
2547

        if isinstance(self.mlp, DeepseekV2MLP):
            gemm_output_zero_allocator = None

2548
        hidden_states = self.mlp(
2549
2550
2551
2552
2553
            hidden_states,
            forward_batch,
            should_allreduce_fusion,
            use_reduce_scatter,
            gemm_output_zero_allocator,
2554
        )
2555

2556
        if should_allreduce_fusion:
2557
2558
            hidden_states._sglang_needs_allreduce_fusion = True

2559
        if not should_allreduce_fusion:
2560
2561
2562
2563
            hidden_states, residual = self.layer_communicator.postprocess_layer(
                hidden_states, residual, forward_batch
            )

2564
2565
        return hidden_states, residual

2566
2567
2568
2569
2570
2571
2572
2573
    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
2574
        tbo_subbatch_index: Optional[int] = None,
2575
2576
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
2577
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
2578
2579
2580
2581
2582
2583
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
2584
                tbo_subbatch_index=tbo_subbatch_index,
2585
            )
2586
        )
2587

2588
2589
2590
2591
2592
2593
2594
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
2595
        )
2596

2597
2598
2599
2600
2601
2602
2603
2604
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
2605
                hidden_states, state.forward_batch
2606
2607
2608
            )
        else:
            state.hidden_states_mlp_output = hidden_states
2609

2610
    def op_comm_postprocess_layer(self, state):
2611
        hidden_states, residual = self.layer_communicator.postprocess_layer(
2612
2613
2614
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
2615
        )
2616

2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
        output = dict(
            positions=state.positions,
            hidden_states=hidden_states,
            residual=residual,
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
            tbo_subbatch_index=state.tbo_subbatch_index,
        )

        state.clear(
            expect_keys={
                "positions",
                "forward_batch",
                "zero_allocator",
                "tbo_subbatch_index",
            }
        )
        return output
2635

Liangsheng Yin's avatar
Liangsheng Yin committed
2636
2637
2638
2639
2640
2641
2642
2643

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
2644
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
2645
2646
2647
2648
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size
2649
        self.first_k_dense_replace = config.first_k_dense_replace
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
        self.pp_group = get_pp_group()

        if self.pp_group.is_first_rank:
            self.embed_tokens = VocabParallelEmbedding(
                config.vocab_size,
                config.hidden_size,
                enable_tp=not is_dp_attention_enabled(),
            )
        else:
            self.embed_tokens = PPMissingLayer()
Liangsheng Yin's avatar
Liangsheng Yin committed
2660

2661
        self.alt_stream = torch.cuda.Stream() if _is_cuda else None
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
        self.layers, self.start_layer, self.end_layer = make_layers(
            config.num_hidden_layers,
            lambda idx, prefix: DeepseekV2DecoderLayer(
                config=config,
                layer_id=idx,
                quant_config=quant_config,
                prefix=prefix,
                alt_stream=self.alt_stream,
            ),
            pp_rank=self.pp_group.rank_in_group,
            pp_size=self.pp_group.world_size,
            prefix=add_prefix("layers", prefix),
fzyzcjy's avatar
fzyzcjy committed
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
            offloader_kwargs=dict(
                submodule_accessor=lambda layer: (
                    layer.mlp.experts
                    if isinstance(layer.mlp, DeepseekV2MoE)
                    else layer.mlp
                ),
                whitelist_param_names_creator=lambda module: (
                    [
                        "w13_weight",
                        "w2_weight",
fzyzcjy's avatar
fzyzcjy committed
2684
2685
2686
2687
2688
2689
2690
2691
2692
                        # only for nvfp4
                        *(
                            [
                                "w13_blockscale_swizzled",
                                "w2_blockscale_swizzled",
                            ]
                            if hasattr(module, "w13_blockscale_swizzled")
                            else []
                        ),
fzyzcjy's avatar
fzyzcjy committed
2693
2694
2695
2696
2697
                    ]
                    if isinstance(module, FusedMoE)
                    else []
                ),
            ),
Liangsheng Yin's avatar
Liangsheng Yin committed
2698
        )
2699
2700
2701
2702
        if self.pp_group.is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer(return_tuple=True)
Liangsheng Yin's avatar
Liangsheng Yin committed
2703

2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
        self.gemm_output_zero_allocator_size = 0
        if (
            _use_aiter_gfx95
            and config.n_routed_experts == 256
            and self.embed_tokens.embedding_dim == 7168
        ):
            num_moe_layers = sum(
                [
                    1
                    for i in range(len(self.layers))
                    if isinstance(self.layers[i].mlp, DeepseekV2MoE)
                ]
            )

            allocate_size = 0
            for i in range(len(self.layers)):
                if isinstance(self.layers[i].mlp, DeepseekV2MoE):
                    allocate_size = self.layers[
                        i
                    ].mlp.shared_experts.gate_up_proj.output_size_per_partition
                    break

            self.gemm_output_zero_allocator_size = (
                get_dsv3_gemm_output_zero_allocator_size(
                    config.n_routed_experts,
                    num_moe_layers,
                    allocate_size,
                    self.embed_tokens.embedding_dim,
                )
            )

2735
2736
2737
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
2738
2739
2740
2741
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
2742
        forward_batch: ForwardBatch,
2743
        input_embeds: torch.Tensor = None,
2744
2745
2746
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
    ) -> Union[torch.Tensor, PPProxyTensors]:
        total_num_layers = self.end_layer - self.start_layer
2747
        device = input_embeds.device if input_embeds is not None else input_ids.device
2748
        zero_allocator = BumpAllocator(
2749
            buffer_size=total_num_layers * 2 * (2 if forward_batch.can_run_tbo else 1),
2750
            dtype=torch.float32,
2751
            device=device,
2752
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2753

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
        has_gemm_output_zero_allocator = hasattr(
            self, "gemm_output_zero_allocator_size"
        )

        gemm_output_zero_allocator = (
            BumpAllocator(
                buffer_size=self.gemm_output_zero_allocator_size,
                dtype=torch.float32,
                device=device,
            )
            if has_gemm_output_zero_allocator
            and self.gemm_output_zero_allocator_size > 0
            else None
        )

2769
2770
2771
2772
2773
2774
        if self.pp_group.is_first_rank:
            if input_embeds is None:
                hidden_states = self.embed_tokens(input_ids)
            else:
                hidden_states = input_embeds
            residual = None
2775
        else:
2776
2777
2778
            assert pp_proxy_tensors is not None
            hidden_states = pp_proxy_tensors["hidden_states"]
            residual = pp_proxy_tensors["residual"]
2779

2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
        normal_start_layer = self.start_layer
        normal_end_layer = self.end_layer
        if forward_batch.can_run_tbo:
            if (
                self.first_k_dense_replace > normal_start_layer
                and self.first_k_dense_replace < normal_end_layer
            ):
                normal_end_layer = self.first_k_dense_replace
            elif self.first_k_dense_replace < normal_start_layer:
                normal_end_layer = normal_start_layer = 0
2790

2791
        for i in range(normal_start_layer, normal_end_layer):
2792
2793
2794
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
2795
2796
2797
2798
2799
2800
                    positions,
                    hidden_states,
                    forward_batch,
                    residual,
                    zero_allocator,
                    gemm_output_zero_allocator,
2801
                )
2802

2803
        if normal_end_layer != self.end_layer:
2804
            hidden_states, residual = model_forward_maybe_tbo(
2805
                layers=self.layers[normal_end_layer : self.end_layer],
2806
2807
2808
2809
2810
                enable_tbo=True,
                positions=positions,
                forward_batch=forward_batch,
                hidden_states=hidden_states,
                residual=residual,
2811
                input_data_scatter_mode=self.layers[
2812
                    normal_end_layer - 1
2813
                ].layer_scatter_modes.layer_output_mode,
2814
2815
2816
                zero_allocator=zero_allocator,
            )

2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
        if not self.pp_group.is_last_rank:
            return PPProxyTensors(
                {
                    "hidden_states": hidden_states,
                    "residual": residual,
                }
            )
        else:
            if not forward_batch.forward_mode.is_idle():
                if residual is None:
                    hidden_states = self.norm(hidden_states)
                else:
                    hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
2830
2831
2832
2833
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):
2834
2835
    # for quark model load
    packed_modules_mapping = {}
Liangsheng Yin's avatar
Liangsheng Yin committed
2836
2837
2838
2839
2840

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
2841
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
2842
2843
    ) -> None:
        super().__init__()
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855

        # for quark model load
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        self.fuse_qkv_a_proj = (
            hasattr(config, "q_lora_rank") and config.q_lora_rank is not None
        )
        if self.fuse_qkv_a_proj:
            self.packed_modules_mapping["fused_qkv_a_proj_with_mqa"] = [
                "q_a_proj",
                "kv_a_proj_with_mqa",
            ]

2856
        self.pp_group = get_pp_group()
Liangsheng Yin's avatar
Liangsheng Yin committed
2857
        self.config = config
2858
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
2859
        self.quant_config = quant_config
2860
2861
2862
2863
        if envs.SGLANG_KT_MOE_AMX_WEIGHT_PATH.is_set():
            CompressedTensorsConfig.DeepSeekFP8Config = Fp8Config(
                True, "dynamic", None, [128, 128]
            )
2864
        self.determine_num_fused_shared_experts()
2865
2866
2867
2868
2869
2870
2871
2872
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
2873
            use_attn_tp_group=get_global_server_args().enable_dp_lm_head,
2874
2875
2876
        )
        self.logits_processor = LogitsProcessor(config)

2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
        self._routed_experts_weights_of_layer = LazyValue(
            lambda: {
                layer_id: layer.mlp.get_moe_weights()
                for layer_id, layer in enumerate(self.model.layers)
                if isinstance(layer.mlp, DeepseekV2MoE)
            }
        )

    @property
    def routed_experts_weights_of_layer(self):
        return self._routed_experts_weights_of_layer.value

2889
    def determine_num_fused_shared_experts(
2890
2891
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
2892
        self.num_fused_shared_experts = 0
2893
        if get_global_server_args().disable_shared_experts_fusion:
2894
2895
2896
2897
2898
2899
            return

        # Only Deepseek V3/R1 can use shared experts fusion optimization now.
        disable_reason = None
        if (
            not _is_cuda
2900
            or torch.cuda.get_device_capability("cuda") < (8, 0)
2901
2902
2903
2904
            or self.config.architectures[0] != architecture
            or self.config.n_routed_experts != 256
            or self.config.n_shared_experts != 1
        ):
2905
            disable_reason = "Only Deepseek V3/R1 on NV-platform with capability >= 80 can use shared experts fusion optimization."
2906
2907
        elif get_moe_expert_parallel_world_size() > 1:
            disable_reason = "Deepseek V3/R1 can not use shared experts fusion optimization under expert parallelism."
2908
2909
        elif self.quant_config.get_name() == "w4afp8":
            disable_reason = "Deepseek V3/R1 W4AFP8 model uses different quant method for routed experts and shared experts."
2910
2911

        if disable_reason is not None:
2912
            get_global_server_args().disable_shared_experts_fusion = True
Cheng Wan's avatar
Cheng Wan committed
2913
            self.num_fused_shared_experts = 0
2914
2915
2916
2917
2918
2919
2920
            log_info_on_rank0(
                logger,
                f"{disable_reason} Shared experts fusion optimization is disabled.",
            )
            return

        self.num_fused_shared_experts = self.config.n_shared_experts
2921

Mick's avatar
Mick committed
2922
2923
2924
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

2925
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
2926
2927
2928
2929
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
2930
        forward_batch: ForwardBatch,
2931
        input_embeds: torch.Tensor = None,
2932
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2933
    ) -> torch.Tensor:
2934
2935
        hidden_states = self.model(
            input_ids, positions, forward_batch, input_embeds, pp_proxy_tensors
2936
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
2937

2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
        if self.pp_group.is_last_rank:
            return self.logits_processor(
                input_ids, hidden_states, self.lm_head, forward_batch
            )
        else:
            return hidden_states

    @property
    def start_layer(self):
        return self.model.start_layer

    @property
    def end_layer(self):
        return self.model.end_layer

2953
    def post_load_weights(self, is_nextn=False, weight_names=None):
inkcherry's avatar
inkcherry committed
2954
2955

        # Perform post-processing after loading weights
2956
2957
2958
2959
        if is_nextn:
            layer_ids = [self.config.num_hidden_layers]
        else:
            if weight_names is None:
2960
                layer_ids = range(self.model.start_layer, self.model.end_layer)
2961
2962
2963
2964
2965
            else:
                layer_ids = set()
                for name in weight_names:
                    if "kv_b_proj" in name:
                        layer_id = int(name.split(".")[2])
2966
                        if layer_id < self.config.num_hidden_layers:
2967
2968
                            layer_ids.add(layer_id)

2969
2970
2971
2972
2973
2974
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
2975
2976
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
2977
                if _is_cuda or _is_hip or _is_npu:
Baizhou Zhang's avatar
Baizhou Zhang committed
2978
2979
2980
2981
2982
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
2983
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
2996
2997
2998
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False

Baizhou Zhang's avatar
Baizhou Zhang committed
2999
3000
3001
3002
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
3003
3004
3005
3006
3007
3008
3009
                selected_quant_config = getattr(
                    self.quant_config, "DeepSeekFP8Config", self.quant_config
                )
                weight_block_size = getattr(
                    selected_quant_config, "weight_block_size", None
                )
                if weight_block_size is not None:
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
                    assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv

                    if (
                        _is_cuda
                        and weight_block_size[0] == 128
                        and weight_block_size[1] == 128
                    ):
3026
3027
3028
3029
                        if (
                            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
                            and not deep_gemm_wrapper.DEEPGEMM_BLACKWELL
                            and get_bool_env_var("SGL_USE_DEEPGEMM_BMM", "false")
3030
                        ):
3031
3032
                            block_scale = weight_scale
                            use_deep_gemm_bmm = True
3033
                        else:
3034
3035
3036
3037
                            w = block_quant_dequant(
                                weight,
                                weight_scale,
                                weight_block_size,
3038
                                torch.bfloat16,
3039
                            )
3040
3041
3042
3043
3044
                    else:
                        w, scale = block_quant_to_tensor_quant(
                            weight, weight_scale, weight_block_size
                        )
                        self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
3045
                else:
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale

Baizhou Zhang's avatar
Baizhou Zhang committed
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
3075

Baizhou Zhang's avatar
Baizhou Zhang committed
3076
3077
3078
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
3079

3080
3081
3082
3083
3084
            if (
                _use_aiter_gfx95
                and self.quant_config is not None
                and self.quant_config.get_name() == "quark"
            ):
3085
3086
3087
3088
                w_kc, self_attn.w_scale_k, w_vc, self_attn.w_scale_v = (
                    quark_post_load_weights(self_attn, w, "mxfp4")
                )

3089
            if not use_deep_gemm_bmm:
3090
3091
3092
3093
3094
3095
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                )
                self_attn.w_vc = bind_or_assign(
                    self_attn.w_vc, w_vc.contiguous().transpose(1, 2)
                )
3096
3097
3098
3099
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
3100
3101
3102
                    self_attn.w_scale = bind_or_assign(
                        self_attn.w_scale, self_attn.kv_b_proj.weight_scale
                    )
3103
3104
                    if _is_hip:
                        self_attn.w_scale *= 2.0
3105
3106
3107
3108
3109
3110
3111
3112
                # TODO: remove this after adding FP8 support in bmm cpu kernel
                if _is_cpu and _is_cpu_amx_available and w.dtype == torch.float8_e4m3fn:
                    self_attn.w_kc = (
                        self_attn.w_kc.to(torch.bfloat16) * self_attn.w_scale
                    )
                    self_attn.w_vc = (
                        self_attn.w_vc.to(torch.bfloat16) * self_attn.w_scale
                    )
3113
3114
3115
3116
3117
3118
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
                self_attn.w_scale_k = bind_or_assign(
                    self_attn.w_scale_k, ws_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_scale_v = bind_or_assign(
                    self_attn.w_scale_v, ws_vc.contiguous()
                )
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_vc = bind_or_assign(self_attn.w_vc, w_vc.contiguous())
3129
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
3130

3131
3132
3133
        if (
            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
            and deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
3134
3135
            and hasattr(self.quant_config, "weight_block_size")
            and self.quant_config.weight_block_size is not None
3136
        ):
3137
            self._weight_requant_ue8m0(is_nextn)
3138

3139
3140
3141
3142
3143
3144
3145
        # TODO can move weight_requant_ue8m0 and transform_scale_ue8m0 into Fp8LinearMethod.process_weights_after_loading
        if (
            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
            and deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
            and get_bool_env_var("SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN")
        ):
            self._transform_scale_ue8m0(is_nextn)
3146
3147
3148
        if is_nextn and enable_nextn_moe_bf16_cast_to_fp8(self.quant_config):
            self._transform_scale_nextn_moe_ue8m0()

3149
    def _weight_requant_ue8m0(self, is_nextn=False):
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
        weight_block_size = self.quant_config.weight_block_size

        moe_layers = list(
            range(
                self.config.first_k_dense_replace,
                self.config.num_hidden_layers,
                self.config.moe_layer_freq,
            )
        )

3160
        num_hidden_layers = 1 if is_nextn else self.config.num_hidden_layers
3161

3162
3163
3164
3165
3166
        for layer_id in range(num_hidden_layers):
            if is_nextn:
                layer = self.model.decoder
            else:
                layer = self.model.layers[layer_id]
3167

3168
            module_list = [
3169
3170
                layer.self_attn.kv_b_proj,
                layer.self_attn.o_proj,
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
            ]

            if self.config.q_lora_rank is not None:
                module_list.append(layer.self_attn.fused_qkv_a_proj_with_mqa)
                module_list.append(layer.self_attn.q_b_proj)
            else:
                module_list.append(layer.self_attn.kv_a_proj_with_mqa)
                module_list.append(layer.self_attn.q_proj)

            for module in module_list:
3181
3182
3183
3184
                requant_weight_ue8m0_inplace(
                    module.weight, module.weight_scale_inv, weight_block_size
                )

3185
            if layer_id in moe_layers or is_nextn:
3186
3187
3188
3189
3190
3191
3192
3193
3194
                shared_experts = getattr(layer.mlp, "shared_experts", None)
                if shared_experts is not None:
                    for module in [
                        shared_experts.gate_up_proj,
                        shared_experts.down_proj,
                    ]:
                        requant_weight_ue8m0_inplace(
                            module.weight, module.weight_scale_inv, weight_block_size
                        )
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213

                experts = layer.mlp.experts
                if isinstance(experts, DeepEPMoE):
                    for w in [
                        experts.w13_weight_fp8,
                        experts.w2_weight_fp8,
                    ]:
                        requant_weight_ue8m0_inplace(w[0], w[1], weight_block_size)
            else:
                mlp = layer.mlp
                assert isinstance(mlp, DeepseekV2MLP)
                for module in [
                    mlp.gate_up_proj,
                    mlp.down_proj,
                ]:
                    requant_weight_ue8m0_inplace(
                        module.weight, module.weight_scale_inv, weight_block_size
                    )

3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
    # TODO can move weight_requant_ue8m0 and transform_scale_ue8m0 into Fp8LinearMethod.process_weights_after_loading
    def _transform_scale_ue8m0(self, is_nextn=False):
        num_hidden_layers = 1 if is_nextn else self.config.num_hidden_layers

        for layer_id in range(num_hidden_layers):
            if is_nextn:
                layer = self.model.decoder
            else:
                layer = self.model.layers[layer_id]

            module_list = []
            if self.config.q_lora_rank is not None:
                module_list.append(layer.self_attn.q_b_proj)

            for module in module_list:
                transform_scale_ue8m0_inplace(
                    module.weight_scale_inv, mn=module.weight.shape[-2]
                )

3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
    # TODO avoid code dup (currently combine from weight_requant_ue8m0 and transform_scale_ue8m0)
    def _transform_scale_nextn_moe_ue8m0(self):
        layer = self.model.decoder

        shared_experts = getattr(layer.mlp, "shared_experts", None)
        if shared_experts is not None:
            for module in [
                shared_experts.gate_up_proj,
                shared_experts.down_proj,
            ]:
                transform_scale_ue8m0_inplace(
                    module.weight_scale_inv, mn=module.weight.shape[-2]
                )

        experts = layer.mlp.experts
        if isinstance(experts, DeepEPMoE):
            for w in [
                experts.w13_weight_fp8,
                experts.w2_weight_fp8,
            ]:
                transform_scale_ue8m0_inplace(w[1], mn=w[0].shape[-2])

3255
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
3256

3257
3258
3259
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
3260
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
3261
3262
3263
3264
3265
3266
3267
3268
3269
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

3270
3271
        if get_bool_env_var("SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN"):
            weights = self._quant_attn_to_fp8_ue8m0(weights, is_nextn=is_nextn)
3272
3273
3274
3275
3276
        if is_nextn and enable_nextn_moe_bf16_cast_to_fp8(self.quant_config):
            weights = self._quant_nextn_moe_to_fp8_ue8m0(
                weights, nextn_layer_id=nextn_layer_id
            )

Liangsheng Yin's avatar
Liangsheng Yin committed
3277
3278
3279
3280
3281
3282
3283
3284
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
3285
        expert_params_mapping = FusedMoE.make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
3286
3287
3288
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
3289
            num_experts=self.config.n_routed_experts + self.num_fused_shared_experts,
Liangsheng Yin's avatar
Liangsheng Yin committed
3290
        )
3291
3292
3293
        # Params for special naming rules in mixed-precision models, for example:
        # model.layers.xx.mlp.experts.xx.w1.input_scale. For details,
        # see https://huggingface.co/Barrrrry/DeepSeek-R1-W4AFP8/blob/main.
3294
        if self.quant_config and self.quant_config.get_name() == "w4afp8":
3295
3296
            expert_params_mapping += FusedMoE.make_expert_input_scale_params_mapping(
                num_experts=self.config.n_routed_experts
3297
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
3298

3299
3300
3301
3302
3303
3304
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

3305
3306
3307
3308
3309
3310
3311
3312
3313
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

3314
3315
        if self.num_fused_shared_experts > 0:
            assert self.num_fused_shared_experts == 1
3316
            log_info_on_rank0(logger, "Shared experts fusion optimization enabled.")
3317

3318
3319
3320
3321
3322
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = []
            params_dict = dict(self.named_parameters())
            weight_names = []
            for name, loaded_weight in weights:
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
                layer_id = get_layer_id(name)
                if (
                    layer_id is not None
                    and hasattr(self.model, "start_layer")
                    and (
                        layer_id < self.model.start_layer
                        or layer_id >= self.model.end_layer
                    )
                ):
                    continue
3333
3334
3335
3336
3337
                if self.num_fused_shared_experts > 0 and "mlp.shared_experts" in name:
                    name = name.replace(
                        "mlp.shared_experts",
                        f"mlp.experts.{self.config.n_routed_experts}",
                    )
3338

3339
                weight_names.append(name)
3340

3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
                if not is_nextn:
                    if hasattr(self.config, "num_nextn_predict_layers"):
                        num_nextn_layers = self.config.num_nextn_predict_layers
                        if num_nextn_layers > 0 and name.startswith("model.layers"):
                            name_list = name.split(".")
                            if (
                                len(name_list) >= 3
                                and int(name_list[2]) >= self.config.num_hidden_layers
                            ):
                                continue
                else:
                    if not name.startswith(nextn_layer_prefix):
                        continue
3354

3355
3356
3357
                    # Use shared head and embed weights from target model
                    if "shared_head.head" in name or "embed_tokens" in name:
                        continue
3358

3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
                    is_decoder = True
                    # For nextn specific weights
                    for weight_name in nextn_spec_weight_names:
                        if weight_name in name:
                            name = name.replace(nextn_layer_prefix, "model")
                            is_decoder = False
                            break
                    # For decoder layer weights
                    if is_decoder:
                        name = name.replace(nextn_layer_prefix, "model.decoder")

                if "rotary_emb.inv_freq" in name:
Liangsheng Yin's avatar
Liangsheng Yin committed
3371
                    continue
3372
3373
                for param_name, weight_name, shard_id in stacked_params_mapping:
                    # Skip non-stacked layers and experts (experts handled below).
Liangsheng Yin's avatar
Liangsheng Yin committed
3374
3375
                    if weight_name not in name:
                        continue
3376
3377
3378
3379
3380
3381
3382
3383
                    # We have mlp.experts[0].gate_proj in the checkpoint.
                    # Since we handle the experts below in expert_params_mapping,
                    # we need to skip here BEFORE we update the name, otherwise
                    # name will be updated to mlp.experts[0].gate_up_proj, which
                    # will then be updated below in expert_params_mapping
                    # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                    if ("mlp.experts." in name) and name not in params_dict:
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
3384
                    name = name.replace(weight_name, param_name)
3385
3386
3387
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
3388
3389
                    param = params_dict[name]
                    weight_loader = param.weight_loader
3390
3391
                    futures.append(
                        executor.submit(weight_loader, param, loaded_weight, shard_id)
Liangsheng Yin's avatar
Liangsheng Yin committed
3392
3393
3394
                    )
                    break
                else:
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
                    for mapping in expert_params_mapping:
                        param_name, weight_name, expert_id, shard_id = mapping
                        if weight_name not in name:
                            continue
                        name = name.replace(weight_name, param_name)
                        param = params_dict[name]
                        weight_loader = param.weight_loader
                        futures.append(
                            executor.submit(
                                weight_loader,
                                param,
                                loaded_weight,
                                name,
                                shard_id=shard_id,
                                expert_id=expert_id,
                            )
3411
                        )
3412
3413
3414
3415
3416
                        break
                    else:
                        # Skip loading extra bias for GPTQ models.
                        if name.endswith(".bias") and name not in params_dict:
                            continue
3417
3418
3419
3420
3421
3422
                        # Skip loading embed_tokens if not first rank in pipeline parallelism
                        if ".embed_tokens." in name and not self.pp_group.is_first_rank:
                            continue
                        # Skip loading norm if not last rank in pipeline parallelism
                        if ".norm." in name and not self.pp_group.is_last_rank:
                            continue
3423
3424
                        if fuse_qkv_a_proj and (
                            "q_a_proj" in name or "kv_a_proj_with_mqa" in name
3425
                        ):
3426
3427
3428
                            cached_a_proj[name] = loaded_weight
                            q_a_proj_name = (
                                name
3429
                                if "q_a_proj" in name
3430
3431
3432
3433
3434
3435
                                else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                            )
                            kv_a_proj_name = (
                                name
                                if "kv_a_proj_with_mqa" in name
                                else name.replace("q_a_proj", "kv_a_proj_with_mqa")
3436
3437
                            )

3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
                            # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                            if (
                                q_a_proj_name in cached_a_proj
                                and kv_a_proj_name in cached_a_proj
                            ):
                                q_a_proj_weight = cached_a_proj[q_a_proj_name]
                                kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
                                cat_dim = 0
                                if self.quant_config is not None and (
                                    self.quant_config.get_name() == "awq"
3448
                                    or self.quant_config.get_name() == "awq_marlin"
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
                                    or self.quant_config.get_name() == "moe_wna16"
                                ):
                                    cat_dim = 1
                                fused_weight = torch.cat(
                                    [q_a_proj_weight, kv_a_proj_weight], dim=cat_dim
                                )
                                param_name = (
                                    name.replace(
                                        "q_a_proj", "fused_qkv_a_proj_with_mqa"
                                    )
                                    if "q_a_proj" in name
                                    else name.replace(
                                        "kv_a_proj_with_mqa",
                                        "fused_qkv_a_proj_with_mqa",
                                    )
                                )
                                param = params_dict[param_name]

                                weight_loader = getattr(
                                    param, "weight_loader", default_weight_loader
                                )
                                futures.append(
                                    executor.submit(weight_loader, param, fused_weight)
                                )
                                cached_a_proj.pop(q_a_proj_name)
                                cached_a_proj.pop(kv_a_proj_name)
                        else:
                            if (
                                "k_scale" in name or "v_scale" in name
                            ) and name not in params_dict:
                                # modelopt attn kv scale is named differently
                                for scale in ["k_scale", "v_scale"]:
                                    if scale in name:
                                        name = name.replace(
                                            f"{scale[0]}_proj", "attn_mqa"
                                        )
                                        break
                            if name not in params_dict:
                                # modelopt ckpt contains not needed weights for MTP module:
                                # model.decoder.self_attn.attn_mqa.v_scale and
                                # model.decoder.self_attn.attn_mqa.k_scale
                                logger.warning(f"{name} not found in params_dict.")
                                continue
                            param = params_dict[name]
3493
3494
3495
                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
3496
3497
3498
3499
3500
3501
3502
                            futures.append(
                                executor.submit(weight_loader, param, loaded_weight)
                            )

            # Wait for all tasks to complete and raise any exceptions.
            for future in concurrent.futures.as_completed(futures):
                future.result()
Liangsheng Yin's avatar
Liangsheng Yin committed
3503

3504
        self.post_load_weights(is_nextn=is_nextn, weight_names=weight_names)
Ke Bao's avatar
Ke Bao committed
3505

3506
3507
3508
3509
3510
3511
    def _quant_attn_to_fp8_ue8m0(self, weights, is_nextn):
        weights_dict = dict(weights)

        # temporarily only support DeepSeek V3/R1
        weight_block_size = [128, 128]

3512
        for layer_id in tqdm.trange(
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
            self.config.num_hidden_layers + int(is_nextn),
            desc="quant attn to fp8 ue8m0",
        ):
            for stem in [
                # may put tensors like `o_proj` here for DeepSeek FP4 ckpt v1
                "q_b_proj",
            ]:
                partial_name = f"model.layers.{layer_id}.self_attn.{stem}"
                original_weight = weights_dict[f"{partial_name}.weight"]
                out_w, out_s = quant_weight_ue8m0(
                    original_weight, weight_block_size=weight_block_size
                )
                weights_dict[f"{partial_name}.weight"] = out_w
                weights_dict[f"{partial_name}.weight_scale_inv"] = out_s

        return list(weights_dict.items())

3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
    # TODO avoid code dup
    def _quant_nextn_moe_to_fp8_ue8m0(self, weights, nextn_layer_id: int):
        weights_dict = dict(weights)

        # temporarily only support DeepSeek V3/R1
        weight_block_size = [128, 128]

        for layer_id in [nextn_layer_id]:
            for expert_sub_name in [
                "shared_experts",
                *[
                    f"experts.{expert_id}"
                    for expert_id in range(self.config.n_routed_experts)
                ],
            ]:
                for stem in [
                    "gate_proj",
                    "up_proj",
                    "down_proj",
                ]:
                    partial_name = (
                        f"model.layers.{layer_id}.mlp.{expert_sub_name}.{stem}"
                    )
                    original_weight = weights_dict[f"{partial_name}.weight"]
                    out_w, out_s = quant_weight_ue8m0(
                        original_weight, weight_block_size=weight_block_size
                    )
                    weights_dict[f"{partial_name}.weight"] = out_w
                    weights_dict[f"{partial_name}.weight_scale_inv"] = out_s

        return list(weights_dict.items())

3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

3573
3574
3575
3576
3577
3578
3579
3580
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
3581

fzyzcjy's avatar
fzyzcjy committed
3582
3583
3584
3585
AttentionBackendRegistry.register("ascend", handle_attention_ascend)
AttentionBackendRegistry.register("flashinfer", handle_attention_flashinfer)
AttentionBackendRegistry.register("fa3", handle_attention_fa3)
AttentionBackendRegistry.register("flashmla", handle_attention_flashmla)
linhai1's avatar
linhai1 committed
3586
AttentionBackendRegistry.register("dcu_mla", handle_attention_dcu_mla)
fzyzcjy's avatar
fzyzcjy committed
3587
3588
3589
3590
AttentionBackendRegistry.register("cutlass_mla", handle_attention_cutlass_mla)
AttentionBackendRegistry.register("fa4", handle_attention_fa4)
AttentionBackendRegistry.register("trtllm_mla", handle_attention_trtllm_mla)
AttentionBackendRegistry.register("aiter", handle_attention_aiter)
fzyzcjy's avatar
fzyzcjy committed
3591
AttentionBackendRegistry.register("nsa", handle_attention_nsa)
fzyzcjy's avatar
fzyzcjy committed
3592
AttentionBackendRegistry.register("triton", handle_attention_triton)
3593
3594


HandH1998's avatar
HandH1998 committed
3595
3596
3597
3598
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


fzyzcjy's avatar
fzyzcjy committed
3599
3600
3601
3602
3603
class DeepseekV32ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM, DeepseekV32ForCausalLM]