deepseek_v2.py 96.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import logging
20
import os
21
from enum import IntEnum, auto
Liangsheng Yin's avatar
Liangsheng Yin committed
22
23
24
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
25
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
26
from torch import nn
27
from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
28
from transformers import PretrainedConfig
29
30

from sglang.srt.distributed import (
Liangsheng Yin's avatar
Liangsheng Yin committed
31
    get_tensor_model_parallel_world_size,
32
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
33
34
    tensor_model_parallel_all_reduce,
)
35
from sglang.srt.layers.activation import SiluAndMul
36
37
38
39
40
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
44
    get_local_attention_dp_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
45
)
46
from sglang.srt.layers.layernorm import RMSNorm
47
48
49
50
51
52
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
53
from sglang.srt.layers.logits_processor import LogitsProcessor
fzyzcjy's avatar
fzyzcjy committed
54
from sglang.srt.layers.moe.ep_moe.layer import DeepEPMoE, get_moe_impl_class
Lianmin Zheng's avatar
Lianmin Zheng committed
55
from sglang.srt.layers.moe.ep_moe.token_dispatcher import DeepEPDispatcher
56
from sglang.srt.layers.moe.topk import select_experts
57
from sglang.srt.layers.quantization import deep_gemm_wrapper
58
from sglang.srt.layers.quantization.base_config import QuantizationConfig
59
from sglang.srt.layers.quantization.fp8_kernel import (
60
    is_fp8_fnuz,
61
    per_tensor_quant_mla_fp8,
62
    per_token_group_quant_mla_deep_gemm_masked_fp8,
63
)
HandH1998's avatar
HandH1998 committed
64
from sglang.srt.layers.quantization.fp8_utils import (
65
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
66
    block_quant_to_tensor_quant,
67
    channel_quant_to_tensor_quant,
68
    normalize_e4m3fn_to_e4m3fnuz,
69
    requant_weight_ue8m0_inplace,
HandH1998's avatar
HandH1998 committed
70
)
71
72
73
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
74
from sglang.srt.layers.radix_attention import RadixAttention
75
from sglang.srt.layers.rotary_embedding import get_rope, get_rope_wrapper
76
77
78
79
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
80
81
82
83
from sglang.srt.managers.expert_distribution import (
    get_global_expert_distribution_recorder,
)
from sglang.srt.managers.expert_location import ModelConfigForExpertLocation
84
from sglang.srt.managers.expert_location_dispatch import ExpertLocationDispatchInfo
85
from sglang.srt.managers.schedule_batch import global_server_args_dict
86
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
87
from sglang.srt.model_loader.weight_utils import default_weight_loader
88
89
90
91
from sglang.srt.two_batch_overlap import (
    MaybeTboDeepEPDispatcher,
    model_forward_maybe_tbo,
)
92
93
94
from sglang.srt.utils import (
    BumpAllocator,
    DeepEPMode,
95
    LazyValue,
96
    PackWeightMethod,
97
    add_prefix,
98
    bind_or_assign,
99
    cpu_has_amx_support,
100
101
    get_bool_env_var,
    get_int_env_var,
102
    is_cpu,
103
104
    is_cuda,
    is_hip,
105
    is_non_idle_and_non_empty,
106
    log_info_on_rank0,
107
)
108

109
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
110
_is_cuda = is_cuda()
111
_is_fp8_fnuz = is_fp8_fnuz()
112
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
113
114
_is_cpu_amx_available = cpu_has_amx_support()
_is_cpu = is_cpu()
115

Yineng Zhang's avatar
Yineng Zhang committed
116
if _is_cuda:
117
    from sgl_kernel import awq_dequantize, bmm_fp8, merge_state_v2
118
119
elif _is_cpu and _is_cpu_amx_available:
    pass
Yineng Zhang's avatar
Yineng Zhang committed
120
else:
Lianmin Zheng's avatar
Lianmin Zheng committed
121
    from vllm._custom_ops import awq_dequantize
Liangsheng Yin's avatar
Liangsheng Yin committed
122

123
124
125
126
127
if _is_hip:
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )

128

129
130
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
131

132
133
134
135
136
137
138
139
140
141
142
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()

143
144
145
    # Use MLA but with fused RoPE
    MLA_FUSED_ROPE = auto()

146
147
148
    # Use MLA with fused RoPE kernel for CPU
    MLA_FUSED_ROPE_CPU = auto()

149

Liangsheng Yin's avatar
Liangsheng Yin committed
150
151
152
153
154
155
156
157
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
158
        prefix: str = "",
159
160
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
161
162
    ) -> None:
        super().__init__()
163
164
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
165
        self.gate_up_proj = MergedColumnParallelLinear(
166
167
168
169
170
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
171
172
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
173
174
175
176
177
178
179
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
180
            prefix=add_prefix("down_proj", prefix),
181
182
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
183
184
185
186
187
188
189
190
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

191
192
193
194
    def forward(self, x, forward_batch=None):
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

Liangsheng Yin's avatar
Liangsheng Yin committed
195
196
197
198
199
200
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


Ke Bao's avatar
Ke Bao committed
201
class MoEGate(nn.Module):
202
203
204
205
206
    def __init__(
        self,
        config,
        prefix: str = "",
    ):
Ke Bao's avatar
Ke Bao committed
207
208
209
210
211
212
213
214
215
216
        super().__init__()
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None
217
218
        if _is_cpu and _is_cpu_amx_available:
            self.quant_method = PackWeightMethod(weight_names=["weight"])
Ke Bao's avatar
Ke Bao committed
219
220

    def forward(self, hidden_states):
221
222
223
224
225
226
227
228
        if getattr(self, "use_intel_amx_backend", False):
            return torch.ops.sgl_kernel.weight_packed_linear(
                hidden_states,
                self.weight,
                None,  # bias
                True,  # is_vnni
            )

Ke Bao's avatar
Ke Bao committed
229
230
231
232
        logits = F.linear(hidden_states, self.weight, None)
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
233
234
235
236
237
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
238
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
239
        quant_config: Optional[QuantizationConfig] = None,
240
        prefix: str = "",
241
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
242
243
244
245
246
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
247
248
249
250
251
        self.num_fused_shared_experts = (
            0
            if global_server_args_dict["disable_shared_experts_fusion"]
            else config.n_shared_experts
        )
252
        self.config = config
fzyzcjy's avatar
fzyzcjy committed
253
        self.layer_id = layer_id
254
        self.alt_stream = alt_stream
255

Liangsheng Yin's avatar
Liangsheng Yin committed
256
257
258
259
260
261
262
263
264
265
266
267
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

268
        self.gate = MoEGate(config=config, prefix=add_prefix("gate", prefix))
Ke Bao's avatar
Ke Bao committed
269

270
        self.experts = get_moe_impl_class()(
271
            num_experts=config.n_routed_experts
272
            + self.num_fused_shared_experts
273
            + global_server_args_dict["ep_num_redundant_experts"],
274
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
275
276
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
277
            layer_id=self.layer_id,
278
279
280
281
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
282
            num_fused_shared_experts=self.num_fused_shared_experts,
283
284
            topk_group=config.topk_group,
            correction_bias=self.gate.e_score_correction_bias,
285
            routed_scaling_factor=self.routed_scaling_factor,
286
287
288
289
290
291
            prefix=add_prefix("experts", prefix),
            **(
                dict(deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]])
                if global_server_args_dict["enable_deepep_moe"]
                else {}
            ),
292
293
294
295
296
297
298
299
300
            # Additional args for FusedMoE
            **(
                dict(
                    enable_flashinfer_moe=True,
                    enable_ep_moe=global_server_args_dict["enable_ep_moe"],
                )
                if global_server_args_dict["enable_flashinfer_moe"]
                else {}
            ),
301
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
302

303
304
305
        self.shared_experts_is_int8 = False
        self.shared_experts_is_fp8 = False
        self.shared_experts_weight_block_size = None
306
        if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
307
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
308
            # disable tp for shared experts when enable deepep moe
309
310
311
312
313
314
315
316
317
318
319
320
321
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
                    if global_server_args_dict["enable_deepep_moe"]
                    else {}
                ),
            )
322
323
324
325
326
327
328
329
330
331
332
333
334
335
            self.shared_experts_is_int8 = (
                self.shared_experts.gate_up_proj.weight.dtype == torch.int8
            )
            self.shared_experts_is_fp8 = (
                self.shared_experts.gate_up_proj.weight.dtype == torch.float8_e4m3fn
            )
            if self.shared_experts_is_fp8:
                assert (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                    == self.shared_experts.down_proj.quant_method.quant_config.weight_block_size
                )
                self.shared_experts_weight_block_size = (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                )
336

337
338
        self.top_k = config.num_experts_per_tok

339
        if global_server_args_dict["enable_deepep_moe"]:
340
341
            # TODO: we will support tp < ep in the future
            self.ep_size = get_tensor_model_parallel_world_size()
342
343
344
345
            self.num_experts = (
                config.n_routed_experts
                + global_server_args_dict["ep_num_redundant_experts"]
            )
346
347
348
349
350
351
352
353
354
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

355
            self.deepep_dispatcher = MaybeTboDeepEPDispatcher(
356
357
358
                group=parallel_state.get_tp_group().device_group,
                router_topk=self.top_k,
                permute_fusion=True,
359
                num_experts=self.num_experts,
360
                num_local_experts=config.n_routed_experts // self.tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
361
                hidden_size=config.hidden_size,
362
                params_dtype=config.torch_dtype,
363
                deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]],
364
                async_finish=True,
365
                return_recv_hook=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
366
367
            )

368
        self._enable_deepep_moe = global_server_args_dict["enable_deepep_moe"]
369

370
371
372
373
374
375
376
    def get_moe_weights(self):
        return [
            x.data
            for name, x in self.experts.named_parameters()
            if name not in ["correction_bias"]
        ]

377
378
379
380
    def forward(
        self, hidden_states: torch.Tensor, forward_batch: Optional[ForwardBatch] = None
    ) -> torch.Tensor:
        if not self._enable_deepep_moe:
381
382
383
384
385
386
387
388
389
            DUAL_STREAM_TOKEN_THRESHOLD = 1024
            if (
                self.alt_stream is not None
                and self.num_fused_shared_experts == 0
                and hidden_states.shape[0] <= DUAL_STREAM_TOKEN_THRESHOLD
            ):
                return self.forward_normal_dual_stream(hidden_states)
            else:
                return self.forward_normal(hidden_states)
390
391
392
        else:
            return self.forward_deepep(hidden_states, forward_batch)

393
    def forward_normal_dual_stream(self, hidden_states: torch.Tensor) -> torch.Tensor:
394
395
396
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)

397
398
399
        current_stream = torch.cuda.current_stream()
        self.alt_stream.wait_stream(current_stream)
        shared_output = self._forward_shared_experts(hidden_states)
400

401
402
403
404
405
406
407
408
409
410
411
412
        with torch.cuda.stream(self.alt_stream):
            final_hidden_states = self.experts(
                hidden_states=hidden_states, router_logits=router_logits
            )
            if not _is_cuda:
                final_hidden_states *= self.routed_scaling_factor
        current_stream.wait_stream(self.alt_stream)
        final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

413
    def forward_normal(self, hidden_states: torch.Tensor) -> torch.Tensor:
414
415
416
417
418
        if hasattr(self, "shared_experts") and getattr(
            self.shared_experts.gate_up_proj, "use_intel_amx_backend", False
        ):
            return self.forward_cpu(hidden_states)

419
420
421
422
423
424
        shared_output = self._forward_shared_experts(hidden_states)
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
        final_hidden_states = self.experts(
            hidden_states=hidden_states, router_logits=router_logits
        )
425
426
        if not _is_cuda and not _use_aiter:
            # fused in biased_grouped_topk so we can skip here
427
            final_hidden_states *= self.routed_scaling_factor
428
429
430
431
432
433
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    def forward_cpu(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
        fused_experts_out = self.experts(
            hidden_states=hidden_states, router_logits=router_logits
        )

        assert getattr(
            self.shared_experts.gate_up_proj, "use_intel_amx_backend", False
        ) == getattr(self.shared_experts.down_proj, "use_intel_amx_backend", False)
        # [Note] inplace should be False in fused_experts.
        # If inplace is True in fused_experts (self.experts), hidden_states will be changed after fused_experts
        # While hidden_states is still needed in shared_expert.
        final_hidden_states = torch.ops.sgl_kernel.shared_expert_cpu(
            hidden_states,
            self.shared_experts.gate_up_proj.weight,
            self.shared_experts.down_proj.weight,
            fused_experts_out,
            self.routed_scaling_factor,
            True,  # inplace
            self.shared_experts_is_int8,  # use_int8_w8a8
            self.shared_experts_is_fp8,  # use_fp8_w8a16
            (
                self.shared_experts.gate_up_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.gate_up_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w1_scale
            (
                self.shared_experts.down_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.down_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w2_scale
            (
                self.shared_experts_weight_block_size
                if self.shared_experts_is_fp8
                else None
            ),  # block_size
            None,  # a1_scale
            None,  # a2_scale
            True,  # is_vnni
        )
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    def forward_deepep(
        self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        forward_mode = forward_batch.forward_mode
        shared_output = None
        if is_non_idle_and_non_empty(forward_mode, hidden_states):
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
            shared_output = self._forward_shared_experts(hidden_states)
            topk_weights, topk_idx = select_experts(
                hidden_states=hidden_states,
                router_logits=router_logits,
                top_k=self.top_k,
                use_grouped_topk=True,
                renormalize=self.renormalize,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
504
                num_fused_shared_experts=self.num_fused_shared_experts,
505
506
507
                correction_bias=self.correction_bias,
                routed_scaling_factor=self.routed_scaling_factor,
                num_token_non_padded=forward_batch.num_token_non_padded,
508
509
510
                expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                    layer_id=self.layer_id,
                ),
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
            )
        else:
            topk_idx = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            topk_weights = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
        if self.ep_size > 1:
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
            (
                hidden_states,
                topk_idx,
                topk_weights,
                reorder_topk_ids,
                num_recv_tokens_per_expert,
                seg_indptr,
                masked_m,
                expected_m,
            ) = self.deepep_dispatcher.dispatch(
                hidden_states=hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )
        final_hidden_states = self.experts(
            hidden_states=hidden_states,
            topk_idx=topk_idx,
            topk_weights=topk_weights,
            reorder_topk_ids=reorder_topk_ids,
            seg_indptr=seg_indptr,
            masked_m=masked_m,
            expected_m=expected_m,
            num_recv_tokens_per_expert=num_recv_tokens_per_expert,
            forward_mode=forward_mode,
        )
        if self.ep_size > 1:
            final_hidden_states = self.deepep_dispatcher.combine(
                hidden_states=final_hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )

        if shared_output is not None:
556
557
558
559
560
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
561
562
563
564

        return final_hidden_states

    def _forward_shared_experts(self, hidden_states):
565
        if self.num_fused_shared_experts == 0:
566
567
568
569
            return self.shared_experts(hidden_states)
        else:
            return None

570
    def op_gate(self, state):
571
        if is_non_idle_and_non_empty(
572
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
573
        ):
574
            # router_logits: (num_tokens, n_experts)
575
            state.router_logits = self.gate(state.hidden_states_mlp_input)
576
        else:
577
            state.router_logits = None
578

579
    def op_shared_experts(self, state):
580
        hidden_states_mlp_input = state.pop("hidden_states_mlp_input")
581
        if (self.num_fused_shared_experts == 0) and is_non_idle_and_non_empty(
582
            state.forward_batch.forward_mode, hidden_states_mlp_input
583
        ):
584
            state.shared_output = self.shared_experts(hidden_states_mlp_input)
585
        else:
586
            state.shared_output = None
587

588
    def op_select_experts(self, state):
589
        router_logits = state.pop("router_logits")
590
591
        hidden_states = state.hidden_states_mlp_input

592
        if router_logits is not None:
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
                state.topk_weights_local, state.topk_idx_local = select_experts(
                    hidden_states=hidden_states,
                    router_logits=router_logits,
                    top_k=self.top_k,
                    use_grouped_topk=True,
                    renormalize=self.renormalize,
                    topk_group=self.topk_group,
                    num_expert_group=self.num_expert_group,
                    num_fused_shared_experts=self.num_fused_shared_experts,
                    correction_bias=self.correction_bias,
                    routed_scaling_factor=self.routed_scaling_factor,
                    num_token_non_padded=state.forward_batch.num_token_non_padded,
                    expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                        layer_id=self.layer_id,
                    ),
                )
612
613
614
615
616
617
618
        else:
            state.topk_idx_local = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            state.topk_weights_local = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
619

620
    def op_dispatch_a(self, state):
621
        if self.ep_size > 1:
622
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
623
            self.deepep_dispatcher.dispatch_a(
624
                hidden_states=state.hidden_states_mlp_input,
625
626
627
                topk_idx=state.pop("topk_idx_local"),
                topk_weights=state.pop("topk_weights_local"),
                forward_mode=state.forward_batch.forward_mode,
628
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
629
            )
630

631
    def op_dispatch_b(self, state):
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        if self.ep_size > 1:
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
                (
                    state.hidden_states_experts_input,
                    state.topk_idx_dispatched,
                    state.topk_weights_dispatched,
                    state.reorder_topk_ids,
                    state.num_recv_tokens_per_expert,
                    state.seg_indptr,
                    state.masked_m,
                    state.expected_m,
                ) = self.deepep_dispatcher.dispatch_b(
                    tbo_subbatch_index=state.get("tbo_subbatch_index"),
                )
648
649

    def op_experts(self, state):
650
651
652
653
654
655
656
657
658
659
660
        state.hidden_states_experts_output = self.experts(
            hidden_states=state.pop("hidden_states_experts_input"),
            topk_idx=state.topk_idx_dispatched,
            topk_weights=state.topk_weights_dispatched,
            reorder_topk_ids=state.pop("reorder_topk_ids"),
            seg_indptr=state.pop("seg_indptr"),
            masked_m=state.pop("masked_m"),
            expected_m=state.pop("expected_m"),
            num_recv_tokens_per_expert=state.pop("num_recv_tokens_per_expert"),
            forward_mode=state.forward_batch.forward_mode,
        )
661

662
    def op_combine_a(self, state):
663
        if self.ep_size > 1:
664
            self.deepep_dispatcher.combine_a(
665
                hidden_states=state.pop("hidden_states_experts_output"),
666
667
668
                topk_idx=state.pop("topk_idx_dispatched"),
                topk_weights=state.pop("topk_weights_dispatched"),
                forward_mode=state.forward_batch.forward_mode,
669
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
670
            )
671

672
    def op_combine_b(self, state):
673
674
675
676
        if self.ep_size > 1:
            state.hidden_states_after_combine = self.deepep_dispatcher.combine_b(
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
            )
677
678

    def op_output(self, state):
679
        final_hidden_states = state.pop("hidden_states_after_combine")
680
681
682
683
684
685
686

        if (shared_output := state.pop("shared_output")) is not None:
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
Liangsheng Yin's avatar
Liangsheng Yin committed
687

688
        state.hidden_states_mlp_output = final_hidden_states
689

Liangsheng Yin's avatar
Liangsheng Yin committed
690
691
692
693
694
695
696
697
698

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
715
716
        reduce_results: bool = True,
        layer_id: int = None,
717
        prefix: str = "",
718
        alt_stream: Optional[torch.cuda.Stream] = None,
719
720
721
722
723
724
725
726
727
728
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
729
730
731
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

732
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
733
734
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
735
736
737
738
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
739
740
        # For tensor parallel attention
        if self.q_lora_rank is not None:
741
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
742
                self.hidden_size,
743
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
744
745
                bias=False,
                quant_config=quant_config,
746
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
747
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
748
749
750
751
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
752
753
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
754
755
756
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
757
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
758
759
        else:
            self.q_proj = ColumnParallelLinear(
760
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
761
                self.num_heads * self.qk_head_dim,
762
763
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
764
765
766
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
767
            )
768
769
770
771
772
773
774
775
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
796
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
797
798
799
800

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

801
        self.rotary_emb = get_rope_wrapper(
802
803
804
805
806
807
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
808
            device=global_server_args_dict["device"],
809
810
811
812
813
814
815
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
816
817
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
818

819
        self.attn_mqa = RadixAttention(
820
821
822
823
824
825
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
826
            quant_config=quant_config,
827
            prefix=add_prefix("attn_mqa", prefix),
828
829
        )

830
831
832
833
834
835
836
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
837
            quant_config=quant_config,
838
            prefix=add_prefix("attn_mha", prefix),
839
840
        )

841
        self.alt_stream = alt_stream
842
        self.attn_mha.kv_b_proj = None
843

Ke Bao's avatar
Ke Bao committed
844
845
        self.w_kc = None
        self.w_vc = None
846
        self.w_scale = 1.0
847

848
849
850
851
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

Lianmin Zheng's avatar
Lianmin Zheng committed
852
853
854
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
855
856
857
        self.disable_chunked_prefix_cache = global_server_args_dict[
            "disable_chunked_prefix_cache"
        ]
858
        self.attention_backend = global_server_args_dict["attention_backend"]
859
860
861
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
862

863
        # TODO: Design a finer way to determine the threshold
864
865
866
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
867

868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
        # If we have self.fused_qkv_a_proj_with_mqa and we're running on CPU, we will choose the torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight kernel
        # which requires self.w_kc and self.w_vc to be packed.
        # If not, we will use torch.bmm and weight shouldn't be packed in this case
        if (
            hasattr(self, "fused_qkv_a_proj_with_mqa")
            and _is_cpu
            and _is_cpu_amx_available
        ):
            self.quant_method = PackWeightMethod(
                weight_names=["w_kc", "w_vc"], transpose_dims=[[1, 2], [1, 2]]
            )

        self.qkv_proj_with_rope_is_int8 = (
            hasattr(self, "fused_qkv_a_proj_with_mqa")
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.int8
        )
        self.qkv_proj_with_rope_is_fp8 = (
            hasattr(self, "fused_qkv_a_proj_with_mqa")
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.float8_e4m3fn
        )

        self.weight_block_size = None
        if self.qkv_proj_with_rope_is_fp8:
            assert (
                self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
                == self.q_b_proj.quant_method.quant_config.weight_block_size
            )
            self.weight_block_size = (
                self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
            )

899
900
901
    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
902
903
904
905
906
907
908
909
910
911
        def _dispatch_mla_subtype():
            if _is_hip:
                if (
                    self.rocm_fused_decode_mla
                    and forward_batch.forward_mode.is_decode()
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE
                else:
                    return AttnForwardMethod.MLA
            else:
912
913
914
915
916
917
                if hasattr(self, "fused_qkv_a_proj_with_mqa") and getattr(
                    self, "use_intel_amx_backend", False
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE_CPU
                else:
                    return AttnForwardMethod.MLA
918

919
        if self.attention_backend == "flashinfer":
Lianmin Zheng's avatar
Lianmin Zheng committed
920
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
921
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
922
923
924
925
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
926
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
927
928
929
            ):
                return AttnForwardMethod.MHA
            else:
930
                return _dispatch_mla_subtype()
931
        elif self.attention_backend == "fa3":
932
            # Flash Attention: Use MHA with chunked KV cache when prefilling on long sequences.
933
934
            if forward_batch.extend_prefix_lens_cpu is not None:
                sum_extend_prefix_lens = sum(forward_batch.extend_prefix_lens_cpu)
935
936
937
938
939
            if (
                forward_batch.forward_mode.is_extend()
                and not self.disable_chunked_prefix_cache
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
940
941
942
943
                and (
                    sum_extend_prefix_lens >= self.chunked_prefix_cache_threshold
                    or sum_extend_prefix_lens == 0
                )
944
945
946
            ):
                return AttnForwardMethod.MHA_CHUNKED_KV
            else:
947
                return _dispatch_mla_subtype()
948
949
950
951
952
953
954
955
956
        elif self.attention_backend == "aiter":
            if (
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
            ):
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
Lianmin Zheng's avatar
Lianmin Zheng committed
957
958
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
959
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
960
961
962
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
963
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
964
965
966
            ):
                return AttnForwardMethod.MHA
            else:
967
                return _dispatch_mla_subtype()
Lianmin Zheng's avatar
Lianmin Zheng committed
968

969
970
971
972
973
974
975
976
977
978
979
980
981
    def op_prepare(self, state):
        state.attn_intermediate_state = self.forward_prepare(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
        )

    def op_core(self, state):
        state.hidden_states_after_attn = self.forward_core(
            state.pop("attn_intermediate_state")
        )

982
983
984
985
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
986
        forward_batch: ForwardBatch,
987
        zero_allocator: BumpAllocator,
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
    ):
        s = self.forward_prepare(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )
        return self.forward_core(s)

    def forward_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
1004
1005
1006
        if self.attn_mha.kv_b_proj is None:
            self.attn_mha.kv_b_proj = self.kv_b_proj

Lianmin Zheng's avatar
Lianmin Zheng committed
1007
1008
1009
1010
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
1011
            return hidden_states, None, forward_batch, None
1012

1013
1014
1015
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)

        if attn_forward_method == AttnForwardMethod.MHA:
1016
1017
1018
            inner_state = self.forward_normal_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1019
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
1020
1021
            inner_state = self.forward_normal_chunked_kv_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1022
            )
1023
        elif attn_forward_method == AttnForwardMethod.MLA:
1024
            inner_state = self.forward_absorb_prepare(
1025
1026
1027
                positions, hidden_states, forward_batch, zero_allocator
            )
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
1028
1029
            inner_state = self.forward_absorb_fused_mla_rope_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1030
            )
1031
1032
1033
1034
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            inner_state = self.forward_absorb_fused_mla_rope_cpu_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1035
        else:
1036
            raise NotImplementedError
1037
        return None, attn_forward_method, forward_batch, inner_state
1038

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
    def forward_core(self, intermediate_state):
        hidden_states, attn_forward_method, forward_batch, inner_state = (
            intermediate_state
        )
        if inner_state is None:
            return hidden_states

        if attn_forward_method == AttnForwardMethod.MHA:
            return self.forward_normal_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA:
            return self.forward_absorb_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
            return self.forward_absorb_fused_mla_rope_core(*inner_state)
1054
1055
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            return self.forward_absorb_fused_mla_rope_cpu_core(*inner_state)
1056
1057
1058
1059
        else:
            raise NotImplementedError

    def forward_normal_prepare(
1060
1061
1062
1063
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1064
1065
        zero_allocator: BumpAllocator,
    ):
1066
        if self.q_lora_rank is not None:
1067
1068
1069
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1070
1071
1072
1073
1074
1075
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1076
1077
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
1100
1101
1102
1103

        return q, k, v, forward_batch

    def forward_normal_core(self, q, k, v, forward_batch):
1104
1105
1106
1107
1108
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1109
    def forward_absorb_prepare(
1110
1111
1112
1113
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1114
        zero_allocator: BumpAllocator,
1115
    ):
1116
1117
        from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode

1118
        if self.q_lora_rank is not None:
1119
1120
1121
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1122
1123
1124
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
1125
            if self.alt_stream is not None and get_is_capture_mode():
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                q = self.q_a_layernorm(q)
                k_nope = self.kv_a_layernorm(k_nope)

            k_nope = k_nope.unsqueeze(1)
1137
1138
1139
1140
1141
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1142
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1143
1144
1145
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

1146
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
1147
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
1148

1149
1150
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
1151
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
1152
1153
1154
1155
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
1156
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1157
1158
1159
1160
1161
1162
1163
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
1164
1165
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1166
1167
1168
1169
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
1170
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1171
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1172
                q_nope.transpose(0, 1),
1173
                zero_allocator.allocate(1),
1174
1175
1176
1177
1178
1179
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
1180
1181

        q_nope_out = q_nope_out.transpose(0, 1)
1182
1183
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

1184
1185
1186
1187
1188
        return q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator

    def forward_absorb_core(
        self, q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator
    ):
1189
1190
1191
1192
1193
        if (
            self.attention_backend == "fa3"
            or self.attention_backend == "flashinfer"
            or self.attention_backend == "cutlass_mla"
        ):
1194
            attn_output = self.attn_mqa(
Ke Bao's avatar
Ke Bao committed
1195
                q_nope_out, k_nope, k_nope, forward_batch, q_rope=q_pe, k_rope=k_pe
1196
1197
1198
            )
        else:
            q = torch.cat([q_nope_out, q_pe], dim=-1)
Ke Bao's avatar
Ke Bao committed
1199
            k = torch.cat([k_nope, k_pe], dim=-1)
1200
            attn_output = self.attn_mqa(q, k, k_nope, forward_batch)
1201
1202
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1203
1204
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
1205
1206
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
1207
1208
1209
1210
1211
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
1212
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1213
1214
1215
1216
1217
1218
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
Ke Bao's avatar
Ke Bao committed
1219
1220
1221
            attn_bmm_output = (
                attn_bmm_output[:, :expected_m, :].transpose(0, 1).flatten(1, 2)
            )
1222
1223
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1224
1225
1226
1227
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
Ke Bao's avatar
Ke Bao committed
1228
            attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1229
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1230
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1231
                attn_output.transpose(0, 1),
1232
                zero_allocator.allocate(1),
1233
1234
1235
1236
1237
1238
1239
1240
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
Ke Bao's avatar
Ke Bao committed
1241
            attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1242
        else:
Ke Bao's avatar
Ke Bao committed
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
            attn_bmm_output = torch.empty(
                (attn_output.shape[0], self.num_local_heads * self.v_head_dim),
                dtype=attn_output.dtype,
                device=attn_output.device,
            )
            torch.bmm(
                attn_output.transpose(0, 1),
                self.w_vc,
                out=attn_bmm_output.view(
                    -1, self.num_local_heads, self.v_head_dim
                ).transpose(0, 1),
            )
        output, _ = self.o_proj(attn_bmm_output)
1256
1257
1258

        return output

1259
    def forward_absorb_fused_mla_rope_prepare(
1260
1261
1262
1263
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1264
        zero_allocator: BumpAllocator,
1265
    ):
1266
1267
1268
1269
1270
1271
1272
1273
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
1274
1275
1276
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1277
1278
1279
1280
1281
1282
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1283
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1284
1285
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

1286
1287
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1288
1289
1290
1291
1292
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1293
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
1294
1295
1296
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
        return (
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            enable_rope_fusion,
            k_input,
            forward_batch,
            zero_allocator,
        )

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
    def forward_absorb_fused_mla_rope_cpu_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
        assert self.q_lora_rank is not None and getattr(
            self, "use_intel_amx_backend", False
        ), "forward_absorb_fused_mla_rope_cpu_prepare requires q_lora_rank is not None and use_intel_amx_backend"

        q_input, k_input, v_input = (
            torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight(
                hidden_states,
                self.fused_qkv_a_proj_with_mqa.weight,
                self.q_b_proj.weight,
                self.w_kc,
                self.q_a_layernorm.weight,
                self.kv_a_layernorm.weight,
                positions,
                self.rotary_emb.cos_sin_cache,
                self.kv_a_layernorm.variance_epsilon,
                self.qkv_proj_with_rope_is_int8,
                self.qkv_proj_with_rope_is_fp8,
                (
                    self.fused_qkv_a_proj_with_mqa.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.fused_qkv_a_proj_with_mqa.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                (
                    self.q_b_proj.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.q_b_proj.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                True,  # is_vnni
                self.weight_block_size,
                self.q_lora_rank,
                self.kv_lora_rank,
                self.qk_rope_head_dim,
            )
        )
        return (q_input, k_input, v_input, forward_batch, zero_allocator)

1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
    def forward_absorb_fused_mla_rope_core(
        self,
        q_input,
        key_cache_buf,
        val_cache_buf,
        attn_output,
        kv_indptr,
        kv_indices,
        k_pe_output,
        cos_sin_cache,
        positions,
        attn_logits,
        num_kv_split,
        sm_scale,
        enable_rope_fusion,
        k_input,
        forward_batch,
        zero_allocator,
    ):
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1471
1472
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1473
1474
1475
1476
1477
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1478
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
1479
1480
1481
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1493
1494
1495
1496
        output, _ = self.o_proj(attn_output)

        return output

1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
    def forward_absorb_fused_mla_rope_cpu_core(
        self, q_input, k_input, v_input, forward_batch, zero_allocator
    ):
        assert self.q_lora_rank is not None and getattr(
            self, "use_intel_amx_backend", False
        ), "forward_absorb_fused_mla_rope_cpu_core requires q_lora_rank is not None and use_intel_amx_backend"

        attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

        # [Note] Align shapes of bmm inputs.
        # Shapes of inputs:
        #   q_nope: [M, B, K]
        #   original self.w_kc: [B, K, N]
        #   current self.w_kc (which has been converted in PackWeightMethod): [B, N, K]

        # Shapes of inputs to sgl_kernel.cpu.bmm:
        #   out: [B, M, N]
        #   mat1: [B, M, K]
        #   mat2: [B, N, K]
        B = self.w_vc.size(0)
        N = self.w_vc.size(1)
        M = attn_output.size(0)
        output = torch.empty([M, int(B * N)], dtype=attn_output.dtype)
        attn_bmm_output = output.view([M, B, N]).transpose_(0, 1)
        torch.ops.sgl_kernel.bmm_cpu(
            attn_bmm_output,
            attn_output.transpose(0, 1),
            self.w_vc,
            True,  # is_vnni
            None,  # scale
        )
        attn_output = output
        output, _ = self.o_proj(attn_output)

        return output

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
            latent_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
                self.attn_mha.layer_id
            )
            latent_cache = latent_cache_buf[
                forward_batch.prefix_chunk_kv_indices[i]
            ].contiguous()

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            lse = torch.transpose(lse, 0, 1).contiguous()
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse

        return accum_output

1586
    def forward_normal_chunked_kv_prepare(
1587
1588
1589
1590
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1591
1592
        zero_allocator: BumpAllocator,
    ):
1593
1594
1595
1596
1597
1598
1599
1600
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
        if self.q_lora_rank is not None:
1601
1602
1603
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1604
1605
1606
1607
1608
1609
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1610
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )

1635
1636
1637
        return q, k, v, forward_batch

    def forward_normal_chunked_kv_core(self, q, k, v, forward_batch):
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
        attn_output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        lse = torch.transpose(lse, 0, 1).contiguous()

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
        if any(forward_batch.extend_prefix_lens_cpu):
            # Only initialize the info once
            if forward_batch.num_prefix_chunks is None:
                forward_batch.prepare_chunked_prefix_cache_info(q.device)

            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1661

Liangsheng Yin's avatar
Liangsheng Yin committed
1662
1663
1664
1665
1666
1667
1668
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
1669
        is_nextn: bool = False,
1670
        prefix: str = "",
1671
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1672
1673
1674
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
1675
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
1676
1677
1678
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Lianmin Zheng's avatar
Lianmin Zheng committed
1679
        self.enable_dp_attention = global_server_args_dict["enable_dp_attention"]
1680
        self.speculative_algorithm = global_server_args_dict["speculative_algorithm"]
Lianmin Zheng's avatar
Lianmin Zheng committed
1681
        self.layer_id = layer_id
1682
        self.is_nextn = is_nextn
Baizhou Zhang's avatar
Baizhou Zhang committed
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
1701
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
1702
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1703

1704
1705
1706
1707
1708
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
1709
            num_layers=1 if is_nextn else config.num_hidden_layers,
1710
1711
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
1712
1713
        )

1714
        if self.is_layer_sparse:
1715
1716
1717
1718
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
1719
                layer_id=self.layer_id,
1720
                alt_stream=alt_stream,
1721
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1722
        else:
1723
            if enable_moe_dense_fully_dp():
1724
1725
1726
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
1727
1728
1729
1730
1731
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
1732
                prefix=add_prefix("mlp", prefix),
1733
1734
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
1735
            )
1736

Liangsheng Yin's avatar
Liangsheng Yin committed
1737
1738
1739
1740
1741
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

1742
1743
1744
1745
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
1746
        )
1747
1748
1749
1750
1751
1752

    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
1753
1754
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
1755
1756
1757
1758
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1759
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
1760
        residual: Optional[torch.Tensor],
1761
        zero_allocator: BumpAllocator,
Liangsheng Yin's avatar
Liangsheng Yin committed
1762
    ) -> torch.Tensor:
1763

1764
1765
        hidden_states, residual = self.layer_communicator.prepare_attn(
            hidden_states, residual, forward_batch
1766
1767
        )

1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )

        hidden_states, residual = self.layer_communicator.prepare_mlp(
            hidden_states, residual, forward_batch
        )

        hidden_states = self.mlp(hidden_states, forward_batch)

        hidden_states, residual = self.layer_communicator.postprocess_layer(
            hidden_states, residual, forward_batch
        )

1785
1786
1787
1788
1789
        if self.enable_dp_attention and self.speculative_algorithm.is_eagle():
            # NOTE: this line resolves the degradation of MTP reception rate for non-zero DP ranks.
            # See discussion here (https://github.com/sgl-project/sglang/pull/6081#discussion_r2147452251).
            hidden_states = hidden_states.clone()

1790
1791
        return hidden_states, residual

1792
1793
1794
1795
1796
1797
1798
1799
    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
1800
        tbo_subbatch_index: Optional[int] = None,
1801
1802
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
1803
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
1804
1805
1806
1807
1808
1809
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
1810
                tbo_subbatch_index=tbo_subbatch_index,
1811
            )
1812
        )
1813

1814
1815
1816
1817
1818
1819
1820
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
1821
        )
1822

1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
                hidden_states, state.forward_batch.forward_mode
            )
        else:
            state.hidden_states_mlp_output = hidden_states
1835

1836
    def op_comm_postprocess_layer(self, state):
1837
        hidden_states, residual = self.layer_communicator.postprocess_layer(
1838
1839
1840
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
1841
        )
1842

1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
        output = dict(
            positions=state.positions,
            hidden_states=hidden_states,
            residual=residual,
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
            tbo_subbatch_index=state.tbo_subbatch_index,
        )

        state.clear(
            expect_keys={
                "positions",
                "forward_batch",
                "zero_allocator",
                "tbo_subbatch_index",
            }
        )
        return output
1861

Liangsheng Yin's avatar
Liangsheng Yin committed
1862
1863
1864
1865
1866
1867
1868
1869

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1870
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1871
1872
1873
1874
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size
1875
        self.first_k_dense_replace = config.first_k_dense_replace
Liangsheng Yin's avatar
Liangsheng Yin committed
1876
1877
1878
1879

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
1880
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
1881
        )
1882
        self.alt_stream = torch.cuda.Stream() if _is_cuda else None
Liangsheng Yin's avatar
Liangsheng Yin committed
1883
1884
1885
1886
1887
1888
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
1889
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
1890
                    alt_stream=self.alt_stream,
Liangsheng Yin's avatar
Liangsheng Yin committed
1891
1892
1893
1894
1895
1896
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

1897
1898
1899
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
1900
1901
1902
1903
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1904
        forward_batch: ForwardBatch,
1905
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1906
    ) -> torch.Tensor:
1907
1908
        total_num_layers = len(self.layers)
        device = input_embeds.device if input_embeds is not None else input_ids.device
1909
        zero_allocator = BumpAllocator(
1910
            buffer_size=total_num_layers * 2 * (2 if forward_batch.can_run_tbo else 1),
1911
            dtype=torch.float32,
1912
            device=device,
1913
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1914

1915
1916
1917
1918
1919
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
1920
        residual = None
1921
1922
1923
1924
1925
1926
1927

        normal_num_layers = (
            self.first_k_dense_replace
            if forward_batch.can_run_tbo
            else total_num_layers
        )
        for i in range(normal_num_layers):
1928
1929
1930
1931
1932
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
                    positions, hidden_states, forward_batch, residual, zero_allocator
                )
1933
1934
1935
1936
1937
1938
1939
1940
1941

        if normal_num_layers != total_num_layers:
            hidden_states, residual = model_forward_maybe_tbo(
                layers=self.layers[normal_num_layers:],
                enable_tbo=True,
                positions=positions,
                forward_batch=forward_batch,
                hidden_states=hidden_states,
                residual=residual,
1942
1943
1944
                input_data_scatter_mode=self.layers[
                    normal_num_layers - 1
                ].layer_scatter_modes.layer_output_mode,
1945
1946
1947
                zero_allocator=zero_allocator,
            )

Ke Bao's avatar
Ke Bao committed
1948
        if not forward_batch.forward_mode.is_idle():
1949
1950
1951
1952
            if residual is None:
                hidden_states = self.norm(hidden_states)
            else:
                hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
1953
1954
1955
1956
1957
1958
1959
1960
1961
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1962
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1963
1964
1965
    ) -> None:
        super().__init__()
        self.config = config
1966
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
1967
        self.quant_config = quant_config
1968
        self.determine_num_fused_shared_experts()
1969
1970
1971
1972
1973
1974
1975
1976
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
1977
            use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
1978
1979
1980
        )
        self.logits_processor = LogitsProcessor(config)

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
        self._routed_experts_weights_of_layer = LazyValue(
            lambda: {
                layer_id: layer.mlp.get_moe_weights()
                for layer_id, layer in enumerate(self.model.layers)
                if isinstance(layer.mlp, DeepseekV2MoE)
            }
        )

    @property
    def routed_experts_weights_of_layer(self):
        return self._routed_experts_weights_of_layer.value

1993
    def determine_num_fused_shared_experts(
1994
1995
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
1996
1997
1998
1999
2000
2001
2002
2003
        self.num_fused_shared_experts = 0
        if global_server_args_dict["disable_shared_experts_fusion"]:
            return

        # Only Deepseek V3/R1 can use shared experts fusion optimization now.
        disable_reason = None
        if (
            not _is_cuda
2004
            or torch.cuda.get_device_capability("cuda") < (8, 0)
2005
2006
2007
2008
            or self.config.architectures[0] != architecture
            or self.config.n_routed_experts != 256
            or self.config.n_shared_experts != 1
        ):
2009
            disable_reason = "Only Deepseek V3/R1 on NV-platform with capability >= 80 can use shared experts fusion optimization."
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
        elif (
            global_server_args_dict["enable_deepep_moe"]
            or global_server_args_dict["enable_ep_moe"]
        ):
            disable_reason = "Deepseek V3/R1 can not use shared experts fusion optimization when in deepep_moe or ep_moe mode."

        if disable_reason is not None:
            global_server_args_dict["disable_shared_experts_fusion"] = True
            log_info_on_rank0(
                logger,
                f"{disable_reason} Shared experts fusion optimization is disabled.",
            )
            return

        self.num_fused_shared_experts = self.config.n_shared_experts
2025

Mick's avatar
Mick committed
2026
2027
2028
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

2029
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
2030
2031
2032
2033
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
2034
        forward_batch: ForwardBatch,
2035
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2036
    ) -> torch.Tensor:
2037
        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
2038

2039
2040
2041
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
2042

2043
    def post_load_weights(self, is_nextn=False, weight_names=None):
inkcherry's avatar
inkcherry committed
2044
2045

        # Perform post-processing after loading weights
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
        if is_nextn:
            layer_ids = [self.config.num_hidden_layers]
        else:
            if weight_names is None:
                layer_ids = range(self.config.num_hidden_layers)
            else:
                layer_ids = set()
                for name in weight_names:
                    if "kv_b_proj" in name:
                        layer_id = int(name.split(".")[2])
2056
                        if layer_id < self.config.num_hidden_layers:
2057
2058
                            layer_ids.add(layer_id)

2059
2060
2061
2062
2063
2064
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
2065
2066
2067
2068
2069
2070
2071
2072
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
                if _is_cuda:
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
2073
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
2086
2087
2088
2089
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False
            model_dtype = torch.get_default_dtype()

Baizhou Zhang's avatar
Baizhou Zhang committed
2090
2091
2092
2093
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
2094
2095
2096
2097
                if (
                    hasattr(self.quant_config, "weight_block_size")
                    and self.quant_config.weight_block_size is not None
                ):
Baizhou Zhang's avatar
Baizhou Zhang committed
2098
                    weight_block_size = self.quant_config.weight_block_size
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
                    assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv

                    if (
                        _is_cuda
                        and weight_block_size[0] == 128
                        and weight_block_size[1] == 128
                        and model_dtype == torch.bfloat16
                    ):
2116
2117
2118
2119
                        if (
                            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
                            and not deep_gemm_wrapper.DEEPGEMM_BLACKWELL
                            and get_bool_env_var("SGL_USE_DEEPGEMM_BMM", "false")
2120
                        ):
2121
2122
                            block_scale = weight_scale
                            use_deep_gemm_bmm = True
2123
                        else:
2124
2125
2126
2127
2128
                            w = block_quant_dequant(
                                weight,
                                weight_scale,
                                weight_block_size,
                                model_dtype,
2129
                            )
2130
2131
2132
2133
2134
                    else:
                        w, scale = block_quant_to_tensor_quant(
                            weight, weight_scale, weight_block_size
                        )
                        self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
2135
                else:
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale

Baizhou Zhang's avatar
Baizhou Zhang committed
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
2165

Baizhou Zhang's avatar
Baizhou Zhang committed
2166
2167
2168
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
2169
            if not use_deep_gemm_bmm:
2170
2171
2172
2173
2174
2175
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                )
                self_attn.w_vc = bind_or_assign(
                    self_attn.w_vc, w_vc.contiguous().transpose(1, 2)
                )
2176
2177
2178
2179
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
2180
2181
2182
                    self_attn.w_scale = bind_or_assign(
                        self_attn.w_scale, self_attn.kv_b_proj.weight_scale
                    )
2183
2184
                    if _is_hip:
                        self_attn.w_scale *= 2.0
2185
2186
2187
2188
2189
2190
2191
2192
                # TODO: remove this after adding FP8 support in bmm cpu kernel
                if _is_cpu and _is_cpu_amx_available and w.dtype == torch.float8_e4m3fn:
                    self_attn.w_kc = (
                        self_attn.w_kc.to(torch.bfloat16) * self_attn.w_scale
                    )
                    self_attn.w_vc = (
                        self_attn.w_vc.to(torch.bfloat16) * self_attn.w_scale
                    )
2193
2194
2195
2196
2197
2198
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
                self_attn.w_scale_k = bind_or_assign(
                    self_attn.w_scale_k, ws_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_scale_v = bind_or_assign(
                    self_attn.w_scale_v, ws_vc.contiguous()
                )
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_vc = bind_or_assign(self_attn.w_vc, w_vc.contiguous())
2209
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
2210

2211
2212
2213
        if (
            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
            and deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
2214
2215
            and hasattr(self.quant_config, "weight_block_size")
            and self.quant_config.weight_block_size is not None
2216
        ):
2217
            self._weight_requant_ue8m0(is_nextn)
2218

2219
    def _weight_requant_ue8m0(self, is_nextn=False):
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
        weight_block_size = self.quant_config.weight_block_size

        moe_layers = list(
            range(
                self.config.first_k_dense_replace,
                self.config.num_hidden_layers,
                self.config.moe_layer_freq,
            )
        )

2230
2231
2232
2233
2234
2235
        num_hidden_layers = 1 if is_nextn else self.config.num_hidden_layers
        for layer_id in range(num_hidden_layers):
            if is_nextn:
                layer = self.model.decoder
            else:
                layer = self.model.layers[layer_id]
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246

            for module in [
                layer.self_attn.fused_qkv_a_proj_with_mqa,
                layer.self_attn.q_b_proj,
                layer.self_attn.kv_b_proj,
                layer.self_attn.o_proj,
            ]:
                requant_weight_ue8m0_inplace(
                    module.weight, module.weight_scale_inv, weight_block_size
                )

2247
            if layer_id in moe_layers or is_nextn:
2248
2249
2250
2251
2252
2253
2254
2255
2256
                shared_experts = getattr(layer.mlp, "shared_experts", None)
                if shared_experts is not None:
                    for module in [
                        shared_experts.gate_up_proj,
                        shared_experts.down_proj,
                    ]:
                        requant_weight_ue8m0_inplace(
                            module.weight, module.weight_scale_inv, weight_block_size
                        )
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275

                experts = layer.mlp.experts
                if isinstance(experts, DeepEPMoE):
                    for w in [
                        experts.w13_weight_fp8,
                        experts.w2_weight_fp8,
                    ]:
                        requant_weight_ue8m0_inplace(w[0], w[1], weight_block_size)
            else:
                mlp = layer.mlp
                assert isinstance(mlp, DeepseekV2MLP)
                for module in [
                    mlp.gate_up_proj,
                    mlp.down_proj,
                ]:
                    requant_weight_ue8m0_inplace(
                        module.weight, module.weight_scale_inv, weight_block_size
                    )

2276
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
2277

2278
2279
2280
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
2281
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
2282
2283
2284
2285
2286
2287
2288
2289
2290
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

Liangsheng Yin's avatar
Liangsheng Yin committed
2291
2292
2293
2294
2295
2296
2297
2298
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
2299
        expert_params_mapping = get_moe_impl_class().make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
2300
2301
2302
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
2303
            num_experts=self.config.n_routed_experts + self.num_fused_shared_experts,
Liangsheng Yin's avatar
Liangsheng Yin committed
2304
2305
        )

2306
2307
2308
2309
2310
2311
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

2312
2313
2314
2315
2316
2317
2318
2319
2320
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

2321
2322
        if self.num_fused_shared_experts > 0:
            assert self.num_fused_shared_experts == 1
2323
            log_info_on_rank0(logger, "Shared experts fusion optimization enabled.")
2324

Liangsheng Yin's avatar
Liangsheng Yin committed
2325
        params_dict = dict(self.named_parameters())
2326
        weight_names = []
Liangsheng Yin's avatar
Liangsheng Yin committed
2327
        for name, loaded_weight in weights:
2328
2329
2330
2331
2332
2333
            if self.num_fused_shared_experts > 0 and "mlp.shared_experts" in name:
                name = name.replace(
                    "mlp.shared_experts",
                    f"mlp.experts.{self.config.n_routed_experts}",
                )

2334
2335
            weight_names.append(name)

2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
            if not is_nextn:
                if hasattr(self.config, "num_nextn_predict_layers"):
                    num_nextn_layers = self.config.num_nextn_predict_layers
                    if num_nextn_layers > 0 and name.startswith("model.layers"):
                        name_list = name.split(".")
                        if (
                            len(name_list) >= 3
                            and int(name_list[2]) >= self.config.num_hidden_layers
                        ):
                            continue
            else:
                if not name.startswith(nextn_layer_prefix):
                    continue

                # Use shared head and embed weights from target model
                if "shared_head.head" in name or "embed_tokens" in name:
                    continue

                is_decoder = True
                # For nextn specific weights
                for weight_name in nextn_spec_weight_names:
                    if weight_name in name:
                        name = name.replace(nextn_layer_prefix, "model")
                        is_decoder = False
                        break
                # For decoder layer weights
                if is_decoder:
                    name = name.replace(nextn_layer_prefix, "model.decoder")

Liangsheng Yin's avatar
Liangsheng Yin committed
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
2398
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
2399
2400
2401
2402
2403
2404
2405
2406
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
                    if fuse_qkv_a_proj and (
                        "q_a_proj" in name or "kv_a_proj_with_mqa" in name
                    ):
                        cached_a_proj[name] = loaded_weight
                        q_a_proj_name = (
                            name
                            if "q_a_proj" in name
                            else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                        )
                        kv_a_proj_name = (
                            name
                            if "kv_a_proj_with_mqa" in name
                            else name.replace("q_a_proj", "kv_a_proj_with_mqa")
                        )

                        # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                        if (
                            q_a_proj_name in cached_a_proj
                            and kv_a_proj_name in cached_a_proj
                        ):
                            q_a_proj_weight = cached_a_proj[q_a_proj_name]
                            kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
2429
                            cat_dim = 0
2430
                            if self.quant_config is not None and (
2431
2432
2433
2434
                                self.quant_config.get_name() == "awq"
                                or self.quant_config.get_name() == "moe_wna16"
                            ):
                                cat_dim = 1
2435
                            fused_weight = torch.cat(
2436
                                [q_a_proj_weight, kv_a_proj_weight], dim=cat_dim
2437
                            )
2438
2439
2440
2441
2442
2443
                            param_name = (
                                name.replace("q_a_proj", "fused_qkv_a_proj_with_mqa")
                                if "q_a_proj" in name
                                else name.replace(
                                    "kv_a_proj_with_mqa", "fused_qkv_a_proj_with_mqa"
                                )
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
                            )
                            param = params_dict[param_name]

                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
                            weight_loader(param, fused_weight)
                            cached_a_proj.pop(q_a_proj_name)
                            cached_a_proj.pop(kv_a_proj_name)
                    else:
2454
2455
2456
2457
                        if (
                            "k_scale" in name or "v_scale" in name
                        ) and name not in params_dict:
                            # modelopt attn kv scale is named differently
2458
2459
2460
                            for scale in ["k_scale", "v_scale"]:
                                if scale in name:
                                    name = name.replace(f"{scale[0]}_proj", "attn_mqa")
2461
2462
2463
2464
2465
2466
2467
                                    break
                        if name not in params_dict:
                            # modelopt ckpt contains not needed weights for MTP module:
                            # model.decoder.self_attn.attn_mqa.v_scale and
                            # model.decoder.self_attn.attn_mqa.k_scale
                            logger.warning(f"{name} not found in params_dict.")
                            continue
2468
2469
2470
2471
2472
                        param = params_dict[name]
                        weight_loader = getattr(
                            param, "weight_loader", default_weight_loader
                        )
                        weight_loader(param, loaded_weight)
Liangsheng Yin's avatar
Liangsheng Yin committed
2473

2474
        self.post_load_weights(is_nextn=is_nextn, weight_names=weight_names)
Ke Bao's avatar
Ke Bao committed
2475

2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

2487
2488
2489
2490
2491
2492
2493
2494
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
2495

HandH1998's avatar
HandH1998 committed
2496
2497
2498
2499
2500
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]