deepseek_v2.py 79.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import logging
20
import os
21
from enum import IntEnum, auto
Liangsheng Yin's avatar
Liangsheng Yin committed
22
23
24
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
25
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
26
from torch import nn
27
from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
28
from transformers import PretrainedConfig
29
30

from sglang.srt.distributed import (
Liangsheng Yin's avatar
Liangsheng Yin committed
31
    get_tensor_model_parallel_world_size,
32
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
33
34
    tensor_model_parallel_all_reduce,
)
35
from sglang.srt.layers.activation import SiluAndMul
36
37
38
39
40
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
44
    get_local_attention_dp_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
45
)
46
from sglang.srt.layers.layernorm import RMSNorm
47
48
49
50
51
52
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
53
from sglang.srt.layers.logits_processor import LogitsProcessor
fzyzcjy's avatar
fzyzcjy committed
54
from sglang.srt.layers.moe.ep_moe.layer import get_moe_impl_class
Lianmin Zheng's avatar
Lianmin Zheng committed
55
from sglang.srt.layers.moe.ep_moe.token_dispatcher import DeepEPDispatcher
56
from sglang.srt.layers.moe.topk import select_experts
57
from sglang.srt.layers.quantization.base_config import QuantizationConfig
58
from sglang.srt.layers.quantization.deep_gemm import _ENABLE_JIT_DEEPGEMM
59
60
from sglang.srt.layers.quantization.fp8_kernel import (
    per_tensor_quant_mla_fp8,
61
    per_token_group_quant_mla_deep_gemm_masked_fp8,
62
)
HandH1998's avatar
HandH1998 committed
63
from sglang.srt.layers.quantization.fp8_utils import (
64
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
65
    block_quant_to_tensor_quant,
66
    channel_quant_to_tensor_quant,
67
    normalize_e4m3fn_to_e4m3fnuz,
HandH1998's avatar
HandH1998 committed
68
)
69
70
71
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
72
from sglang.srt.layers.radix_attention import RadixAttention
73
from sglang.srt.layers.rotary_embedding import get_rope
74
75
76
77
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
78
79
80
81
from sglang.srt.managers.expert_distribution import (
    get_global_expert_distribution_recorder,
)
from sglang.srt.managers.expert_location import ModelConfigForExpertLocation
82
from sglang.srt.managers.expert_location_dispatch import ExpertLocationDispatchInfo
83
from sglang.srt.managers.schedule_batch import global_server_args_dict
84
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
85
from sglang.srt.model_loader.weight_utils import default_weight_loader
86
87
from sglang.srt.operations import execute_operations
from sglang.srt.operations_strategy import compute_layer_operations
88
89
90
91
92
93
94
95
from sglang.srt.utils import (
    BumpAllocator,
    DeepEPMode,
    add_prefix,
    get_bool_env_var,
    get_int_env_var,
    is_cuda,
    is_hip,
96
    log_info_on_rank0,
97
)
98

99
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
100
_is_cuda = is_cuda()
101

Yineng Zhang's avatar
Yineng Zhang committed
102
if _is_cuda:
103
    from sgl_kernel import awq_dequantize, bmm_fp8, merge_state_v2
104
105
106
107

    from sglang.srt.layers.quantization.deep_gemm import (
        grouped_gemm_nt_f8f8bf16_masked as deep_gemm_grouped_gemm_nt_f8f8bf16_masked,
    )
Yineng Zhang's avatar
Yineng Zhang committed
108
else:
Lianmin Zheng's avatar
Lianmin Zheng committed
109
    from vllm._custom_ops import awq_dequantize
Liangsheng Yin's avatar
Liangsheng Yin committed
110

111
112
113
114
115
if _is_hip:
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )

116
117
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
118

119
120
121
122
123
124
125
126
127
128
129
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()

130
131
132
    # Use MLA but with fused RoPE
    MLA_FUSED_ROPE = auto()

133

Liangsheng Yin's avatar
Liangsheng Yin committed
134
135
136
137
138
139
140
141
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
142
        prefix: str = "",
143
144
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
145
146
    ) -> None:
        super().__init__()
147
148
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
149
        self.gate_up_proj = MergedColumnParallelLinear(
150
151
152
153
154
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
155
156
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
157
158
159
160
161
162
163
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
164
            prefix=add_prefix("down_proj", prefix),
165
166
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
167
168
169
170
171
172
173
174
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

175
176
177
178
    def forward(self, x, forward_batch=None):
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

Liangsheng Yin's avatar
Liangsheng Yin committed
179
180
181
182
183
184
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


Ke Bao's avatar
Ke Bao committed
185
class MoEGate(nn.Module):
186
187
188
189
190
    def __init__(
        self,
        config,
        prefix: str = "",
    ):
Ke Bao's avatar
Ke Bao committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        super().__init__()
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None

    def forward(self, hidden_states):
        logits = F.linear(hidden_states, self.weight, None)
        return logits


207
208
209
210
211
212
213
214
def is_non_idle_and_non_empty(forward_mode, hidden_states):
    return (
        (forward_mode is not None)
        and not forward_mode.is_idle()
        and hidden_states.shape[0] > 0
    )


Liangsheng Yin's avatar
Liangsheng Yin committed
215
216
217
218
219
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
220
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
221
        quant_config: Optional[QuantizationConfig] = None,
222
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
223
224
225
226
227
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
228
        self.n_share_experts_fusion = global_server_args_dict["n_share_experts_fusion"]
fzyzcjy's avatar
fzyzcjy committed
229
        self.layer_id = layer_id
230

Liangsheng Yin's avatar
Liangsheng Yin committed
231
232
233
234
235
236
237
238
239
240
241
242
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

243
        self.gate = MoEGate(config=config, prefix=add_prefix("gate", prefix))
Ke Bao's avatar
Ke Bao committed
244

245
        self.experts = get_moe_impl_class()(
246
247
248
            num_experts=config.n_routed_experts
            + self.n_share_experts_fusion
            + global_server_args_dict["ep_num_redundant_experts"],
249
            top_k=config.num_experts_per_tok + min(self.n_share_experts_fusion, 1),
250
251
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
252
            layer_id=self.layer_id,
253
254
255
256
257
258
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            topk_group=config.topk_group,
            correction_bias=self.gate.e_score_correction_bias,
259
            routed_scaling_factor=self.routed_scaling_factor,
260
261
262
263
264
265
266
            prefix=add_prefix("experts", prefix),
            **(
                dict(deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]])
                if global_server_args_dict["enable_deepep_moe"]
                else {}
            ),
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
267

268
        if config.n_shared_experts is not None and self.n_share_experts_fusion == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
269
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
270
            # disable tp for shared experts when enable deepep moe
271
272
273
274
275
276
277
278
279
280
281
282
283
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
                    if global_server_args_dict["enable_deepep_moe"]
                    else {}
                ),
            )
284

285
286
        self.top_k = config.num_experts_per_tok

287
        if global_server_args_dict["enable_deepep_moe"]:
288
289
            # TODO: we will support tp < ep in the future
            self.ep_size = get_tensor_model_parallel_world_size()
290
291
292
293
            self.num_experts = (
                config.n_routed_experts
                + global_server_args_dict["ep_num_redundant_experts"]
            )
294
295
296
297
298
299
300
301
302
303
304
305
306
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

            self.deepep_dispatcher = DeepEPDispatcher(
                group=parallel_state.get_tp_group().device_group,
                router_topk=self.top_k,
                permute_fusion=True,
307
                num_experts=self.num_experts,
308
                num_local_experts=config.n_routed_experts // self.tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
309
                hidden_size=config.hidden_size,
310
                params_dtype=config.torch_dtype,
311
                deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]],
fzyzcjy's avatar
fzyzcjy committed
312
                async_finish=True,  # TODO
313
                return_recv_hook=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
314
315
            )

316
317
318
319
    @property
    def _enable_deepep_moe(self):
        return global_server_args_dict["enable_deepep_moe"]

320
321
322
323
324
325
326
    def get_moe_weights(self):
        return [
            x.data
            for name, x in self.experts.named_parameters()
            if name not in ["correction_bias"]
        ]

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    def forward(
        self, hidden_states: torch.Tensor, forward_batch: Optional[ForwardBatch] = None
    ) -> torch.Tensor:
        if not self._enable_deepep_moe:
            return self.forward_normal(hidden_states)
        else:
            return self.forward_deepep(hidden_states, forward_batch)

    def forward_normal(self, hidden_states: torch.Tensor) -> torch.Tensor:
        shared_output = self._forward_shared_experts(hidden_states)
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
        final_hidden_states = self.experts(
            hidden_states=hidden_states, router_logits=router_logits
        )
        final_hidden_states *= self.routed_scaling_factor
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

    def forward_deepep(
        self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        forward_mode = forward_batch.forward_mode
        shared_output = None
        if is_non_idle_and_non_empty(forward_mode, hidden_states):
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
            shared_output = self._forward_shared_experts(hidden_states)
            topk_weights, topk_idx = select_experts(
                hidden_states=hidden_states,
                router_logits=router_logits,
                top_k=self.top_k,
                use_grouped_topk=True,
                renormalize=self.renormalize,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
                correction_bias=self.correction_bias,
                routed_scaling_factor=self.routed_scaling_factor,
                num_token_non_padded=forward_batch.num_token_non_padded,
            )
        else:
            topk_idx = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            topk_weights = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
        if self.ep_size > 1:
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
            (
                hidden_states,
                topk_idx,
                topk_weights,
                reorder_topk_ids,
                num_recv_tokens_per_expert,
                seg_indptr,
                masked_m,
                expected_m,
            ) = self.deepep_dispatcher.dispatch(
                hidden_states=hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )
        final_hidden_states = self.experts(
            hidden_states=hidden_states,
            topk_idx=topk_idx,
            topk_weights=topk_weights,
            reorder_topk_ids=reorder_topk_ids,
            seg_indptr=seg_indptr,
            masked_m=masked_m,
            expected_m=expected_m,
            num_recv_tokens_per_expert=num_recv_tokens_per_expert,
            forward_mode=forward_mode,
        )
        if self.ep_size > 1:
            final_hidden_states = self.deepep_dispatcher.combine(
                hidden_states=final_hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )
        final_hidden_states *= self.routed_scaling_factor

        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output

        return final_hidden_states

    def _forward_shared_experts(self, hidden_states):
        if self.n_share_experts_fusion == 0:
            return self.shared_experts(hidden_states)
        else:
            return None

425
    def op_gate(self, state):
426
        if (not self._enable_deepep_moe) or is_non_idle_and_non_empty(
427
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
428
        ):
429
            # router_logits: (num_tokens, n_experts)
430
            state.router_logits = self.gate(state.hidden_states_mlp_input)
431
        else:
432
            state.router_logits = None
433

434
    def op_shared_experts(self, state):
435
436
        if (self.n_share_experts_fusion == 0) and (
            (not self._enable_deepep_moe)
437
438
439
            or is_non_idle_and_non_empty(
                state.forward_batch.forward_mode, state.hidden_states_mlp_input
            )
440
        ):
441
            state.shared_output = self.shared_experts(state.hidden_states_mlp_input)
442
        else:
443
            state.shared_output = None
444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    def op_select_experts(self, state):
        router_logits = state.router_logits
        hidden_states = state.hidden_states_mlp_input

        if self._enable_deepep_moe:
            if router_logits is not None:
                state.topk_weights_local, state.topk_idx_local = select_experts(
                    hidden_states=hidden_states,
                    router_logits=router_logits,
                    top_k=self.top_k,
                    use_grouped_topk=True,
                    renormalize=self.renormalize,
                    topk_group=self.topk_group,
                    num_expert_group=self.num_expert_group,
                    correction_bias=self.correction_bias,
                    routed_scaling_factor=self.routed_scaling_factor,
fzyzcjy's avatar
fzyzcjy committed
461
462
463
                    expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                        layer_id=self.layer_id,
                    ),
464
465
466
467
468
469
470
471
                )
            else:
                state.topk_idx_local = torch.full(
                    (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
                )
                state.topk_weights_local = torch.empty(
                    (0, self.top_k), dtype=torch.float32, device=hidden_states.device
                )
472

473
    def op_dispatch_a(self, state):
474
        if self._enable_deepep_moe and (self.ep_size > 1):
475
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
476
477
478
479
480
            self.deepep_dispatcher.dispatch_a(
                hidden_states=state.pop("hidden_states_mlp_input"),
                topk_idx=state.pop("topk_idx_local"),
                topk_weights=state.pop("topk_weights_local"),
                forward_mode=state.forward_batch.forward_mode,
481
            )
482

483
484
485
486
487
488
489
490
491
492
493
494
495
496
    def op_dispatch_b(self, state):
        if self._enable_deepep_moe and (self.ep_size > 1):
            (
                state.hidden_states_experts_input,
                state.topk_idx_dispatched,
                state.topk_weights_dispatched,
                state.reorder_topk_ids,
                state.num_recv_tokens_per_expert,
                state.seg_indptr,
                state.masked_m,
                state.expected_m,
            ) = self.deepep_dispatcher.dispatch_b()

    def op_experts(self, state):
497
        if self._enable_deepep_moe:
498
499
500
501
502
503
504
505
506
507
508
            state.pop("router_logits")
            state.hidden_states_experts_output = self.experts(
                hidden_states=state.pop("hidden_states_experts_input"),
                topk_idx=state.topk_idx_dispatched,
                topk_weights=state.topk_weights_dispatched,
                reorder_topk_ids=state.pop("reorder_topk_ids"),
                seg_indptr=state.pop("seg_indptr"),
                masked_m=state.pop("masked_m"),
                expected_m=state.pop("expected_m"),
                num_recv_tokens_per_expert=state.pop("num_recv_tokens_per_expert"),
                forward_mode=state.forward_batch.forward_mode,
509
510
            )
        else:
511
512
513
            state.hidden_states_experts_output = self.experts(
                hidden_states=state.pop("hidden_states_mlp_input"),
                router_logits=state.pop("router_logits"),
514
515
            )

516
    def op_combine_a(self, state):
517
        if self._enable_deepep_moe and (self.ep_size > 1):
518
519
520
521
522
            self.deepep_dispatcher.combine_a(
                state.pop("hidden_states_experts_output"),
                topk_idx=state.pop("topk_idx_dispatched"),
                topk_weights=state.pop("topk_weights_dispatched"),
                forward_mode=state.forward_batch.forward_mode,
523
            )
524

525
526
527
528
529
530
531
532
533
534
535
    def op_combine_b(self, state):
        if self._enable_deepep_moe and (self.ep_size > 1):
            state.hidden_states_after_combine = self.deepep_dispatcher.combine_b()

    def op_output(self, state):
        final_hidden_states = (
            state.pop("hidden_states_after_combine")
            if self._enable_deepep_moe
            else state.pop("hidden_states_experts_output")
        )

536
537
        final_hidden_states *= self.routed_scaling_factor

538
539
        if (s := state.pop("shared_output")) is not None:
            final_hidden_states = final_hidden_states + s
Liangsheng Yin's avatar
Liangsheng Yin committed
540

541
542
        if (not self._enable_deepep_moe) and (self.tp_size > 1):
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
Liangsheng Yin's avatar
Liangsheng Yin committed
543

544
        state.hidden_states_mlp_output = final_hidden_states
545

Liangsheng Yin's avatar
Liangsheng Yin committed
546
547
548
549
550
551
552
553
554

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
571
572
        reduce_results: bool = True,
        layer_id: int = None,
573
        prefix: str = "",
574
        alt_stream: Optional[torch.cuda.Stream] = None,
575
576
577
578
579
580
581
582
583
584
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
585
586
587
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

588
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
589
590
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
591
592
593
594
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
595
596
        # For tensor parallel attention
        if self.q_lora_rank is not None:
597
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
598
                self.hidden_size,
599
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
600
601
                bias=False,
                quant_config=quant_config,
602
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
603
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
604
605
606
607
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
608
609
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
610
611
612
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
613
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
614
615
        else:
            self.q_proj = ColumnParallelLinear(
616
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
617
                self.num_heads * self.qk_head_dim,
618
619
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
620
621
622
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
623
            )
624
625
626
627
628
629
630
631
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
652
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
653
654
655
656

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

657
        self.rotary_emb = get_rope(
658
659
660
661
662
663
664
665
666
667
668
669
670
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
671
672
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
673

674
        self.attn_mqa = RadixAttention(
675
676
677
678
679
680
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
681
            quant_config=quant_config,
682
            prefix=add_prefix("attn_mqa", prefix),
683
684
        )

685
686
687
688
689
690
691
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
692
            quant_config=quant_config,
693
            prefix=add_prefix("attn_mha", prefix),
694
695
        )

696
697
        self.alt_stream = alt_stream

Ke Bao's avatar
Ke Bao committed
698
699
        self.w_kc = None
        self.w_vc = None
700
        self.w_scale = None
701

702
703
704
705
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

Lianmin Zheng's avatar
Lianmin Zheng committed
706
707
708
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
709
710
711
        self.disable_chunked_prefix_cache = global_server_args_dict[
            "disable_chunked_prefix_cache"
        ]
712
        self.attention_backend = global_server_args_dict["attention_backend"]
713
714
715
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
716

717
        # TODO: Design a finer way to determine the threshold
718
719
720
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
721
722
723
724

    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
725
726
727
728
729
730
731
732
733
734
735
736
        def _dispatch_mla_subtype():
            if _is_hip:
                if (
                    self.rocm_fused_decode_mla
                    and forward_batch.forward_mode.is_decode()
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE
                else:
                    return AttnForwardMethod.MLA
            else:
                return AttnForwardMethod.MLA

737
        if self.attention_backend == "flashinfer":
Lianmin Zheng's avatar
Lianmin Zheng committed
738
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
739
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
740
741
742
743
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
744
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
745
746
747
            ):
                return AttnForwardMethod.MHA
            else:
748
                return _dispatch_mla_subtype()
749
        elif self.attention_backend == "fa3":
750
            # Flash Attention: Use MHA with chunked KV cache when prefilling on long sequences.
751
752
            if forward_batch.extend_prefix_lens_cpu is not None:
                sum_extend_prefix_lens = sum(forward_batch.extend_prefix_lens_cpu)
753
754
755
756
757
            if (
                forward_batch.forward_mode.is_extend()
                and not self.disable_chunked_prefix_cache
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
758
759
760
761
                and (
                    sum_extend_prefix_lens >= self.chunked_prefix_cache_threshold
                    or sum_extend_prefix_lens == 0
                )
762
763
764
            ):
                return AttnForwardMethod.MHA_CHUNKED_KV
            else:
765
                return _dispatch_mla_subtype()
Lianmin Zheng's avatar
Lianmin Zheng committed
766
767
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
768
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
769
770
771
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
772
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
773
774
775
            ):
                return AttnForwardMethod.MHA
            else:
776
                return _dispatch_mla_subtype()
Lianmin Zheng's avatar
Lianmin Zheng committed
777

778
779
780
781
782
783
784
785
786
787
788
789
790
    def op_prepare(self, state):
        state.attn_intermediate_state = self.forward_prepare(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
        )

    def op_core(self, state):
        state.hidden_states_after_attn = self.forward_core(
            state.pop("attn_intermediate_state")
        )

791
792
793
794
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
795
        forward_batch: ForwardBatch,
796
        zero_allocator: BumpAllocator,
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    ):
        s = self.forward_prepare(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )
        return self.forward_core(s)

    def forward_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
813
814
815
816
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
817
            return hidden_states, None, forward_batch, None
818

819
820
821
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)

        if attn_forward_method == AttnForwardMethod.MHA:
822
823
824
            inner_state = self.forward_normal_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
825
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
826
827
            inner_state = self.forward_normal_chunked_kv_prepare(
                positions, hidden_states, forward_batch, zero_allocator
828
            )
829
        elif attn_forward_method == AttnForwardMethod.MLA:
830
            inner_state = self.forward_absorb_prepare(
831
832
833
                positions, hidden_states, forward_batch, zero_allocator
            )
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
834
835
            inner_state = self.forward_absorb_fused_mla_rope_prepare(
                positions, hidden_states, forward_batch, zero_allocator
836
            )
837
        else:
838
            raise NotImplementedError
839
        return None, attn_forward_method, forward_batch, inner_state
840

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
    def forward_core(self, intermediate_state):
        hidden_states, attn_forward_method, forward_batch, inner_state = (
            intermediate_state
        )
        if inner_state is None:
            return hidden_states

        if attn_forward_method == AttnForwardMethod.MHA:
            return self.forward_normal_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA:
            return self.forward_absorb_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
            return self.forward_absorb_fused_mla_rope_core(*inner_state)
        else:
            raise NotImplementedError

    def forward_normal_prepare(
860
861
862
863
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
864
865
        zero_allocator: BumpAllocator,
    ):
866
        if self.q_lora_rank is not None:
867
868
869
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
870
871
872
873
874
875
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
876
877
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
900
901
902
903

        return q, k, v, forward_batch

    def forward_normal_core(self, q, k, v, forward_batch):
904
905
906
907
908
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

909
    def forward_absorb_prepare(
910
911
912
913
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
914
        zero_allocator: BumpAllocator,
915
    ):
916
917
        from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode

918
        if self.q_lora_rank is not None:
919
920
921
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
922
923
924
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
925
            if self.alt_stream is not None and get_is_capture_mode():
926
927
928
929
930
931
932
933
934
935
936
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                q = self.q_a_layernorm(q)
                k_nope = self.kv_a_layernorm(k_nope)

            k_nope = k_nope.unsqueeze(1)
937
938
939
940
941
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
942
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
943
944
945
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

946
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
947
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
948

949
950
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
951
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
952
953
954
955
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
956
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
957
958
959
960
961
962
963
964
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
        elif self.w_kc.dtype == torch.float8_e4m3fnuz:
965
966
967
968
969
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
970
        elif self.w_kc.dtype == torch.float8_e4m3fn:
971
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
972
                q_nope.transpose(0, 1),
973
                zero_allocator.allocate(1),
974
975
976
977
978
979
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
980
981

        q_nope_out = q_nope_out.transpose(0, 1)
982
983
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

984
985
986
987
988
        return q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator

    def forward_absorb_core(
        self, q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator
    ):
xu-yfei's avatar
xu-yfei committed
989
        if self.attention_backend == "fa3" or self.attention_backend == "flashinfer":
990
            attn_output = self.attn_mqa(
Ke Bao's avatar
Ke Bao committed
991
                q_nope_out, k_nope, k_nope, forward_batch, q_rope=q_pe, k_rope=k_pe
992
993
994
            )
        else:
            q = torch.cat([q_nope_out, q_pe], dim=-1)
Ke Bao's avatar
Ke Bao committed
995
            k = torch.cat([k_nope, k_pe], dim=-1)
996
            attn_output = self.attn_mqa(q, k, k_nope, forward_batch)
997
998
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

999
1000
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
1001
1002
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
1003
1004
1005
1006
1007
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
1008
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
1009
1010
1011
1012
1013
1014
1015
1016
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
            attn_bmm_output = attn_bmm_output[:, :expected_m, :]
        elif self.w_vc.dtype == torch.float8_e4m3fnuz:
1017
1018
1019
1020
1021
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
1022
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1023
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1024
                attn_output.transpose(0, 1),
1025
                zero_allocator.allocate(1),
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
        output, _ = self.o_proj(attn_output)

        return output

1041
    def forward_absorb_fused_mla_rope_prepare(
1042
1043
1044
1045
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1046
        zero_allocator: BumpAllocator,
1047
    ):
1048
1049
1050
1051
1052
1053
1054
1055
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
1056
1057
1058
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1059
1060
1061
1062
1063
1064
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1065
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1066
1067
1068
1069
1070
1071
1072
1073
1074
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

        if self.w_kc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1075
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
1076
1077
1078
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        return (
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            enable_rope_fusion,
            k_input,
            forward_batch,
            zero_allocator,
        )

    def forward_absorb_fused_mla_rope_core(
        self,
        q_input,
        key_cache_buf,
        val_cache_buf,
        attn_output,
        kv_indptr,
        kv_indices,
        k_pe_output,
        cos_sin_cache,
        positions,
        attn_logits,
        num_kv_split,
        sm_scale,
        enable_rope_fusion,
        k_input,
        forward_batch,
        zero_allocator,
    ):
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1202
1203
1204
1205
1206
1207
1208
        if self.w_vc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1209
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
1210
1211
1212
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1224
1225
1226
1227
        output, _ = self.o_proj(attn_output)

        return output

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
            latent_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
                self.attn_mha.layer_id
            )
            latent_cache = latent_cache_buf[
                forward_batch.prefix_chunk_kv_indices[i]
            ].contiguous()

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            lse = torch.transpose(lse, 0, 1).contiguous()
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse

        return accum_output

1280
    def forward_normal_chunked_kv_prepare(
1281
1282
1283
1284
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1285
1286
        zero_allocator: BumpAllocator,
    ):
1287
1288
1289
1290
1291
1292
1293
1294
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
        if self.q_lora_rank is not None:
1295
1296
1297
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1298
1299
1300
1301
1302
1303
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1304
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )

1329
1330
1331
        return q, k, v, forward_batch

    def forward_normal_chunked_kv_core(self, q, k, v, forward_batch):
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
        attn_output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        lse = torch.transpose(lse, 0, 1).contiguous()

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
        if any(forward_batch.extend_prefix_lens_cpu):
            # Only initialize the info once
            if forward_batch.num_prefix_chunks is None:
                forward_batch.prepare_chunked_prefix_cache_info(q.device)

            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1355

Liangsheng Yin's avatar
Liangsheng Yin committed
1356
1357
1358
1359
1360
1361
1362
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
1363
        is_nextn: bool = False,
1364
        prefix: str = "",
1365
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1366
1367
1368
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
1369
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
1370
1371
1372
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Lianmin Zheng's avatar
Lianmin Zheng committed
1373
1374
        self.enable_dp_attention = global_server_args_dict["enable_dp_attention"]
        self.layer_id = layer_id
Baizhou Zhang's avatar
Baizhou Zhang committed
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
1393
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
1394
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1395

1396
1397
1398
1399
1400
1401
1402
1403
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
            num_layers=config.num_hidden_layers,
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
1404
1405
        )

1406
        if self.is_layer_sparse:
1407
1408
1409
1410
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
1411
                layer_id=self.layer_id,
1412
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1413
        else:
1414
            if enable_moe_dense_fully_dp():
1415
1416
1417
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
1418
1419
1420
1421
1422
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
1423
                prefix=add_prefix("mlp", prefix),
1424
1425
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
1426
            )
1427

Liangsheng Yin's avatar
Liangsheng Yin committed
1428
1429
1430
1431
1432
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

1433
1434
1435
1436
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
1437
        )
1438
1439
1440
1441
1442
1443

    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
1444
1445
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
1446
1447
1448
1449
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1450
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
1451
        residual: Optional[torch.Tensor],
1452
        zero_allocator: BumpAllocator,
Liangsheng Yin's avatar
Liangsheng Yin committed
1453
    ) -> torch.Tensor:
1454
1455
        hidden_states, residual = self.layer_communicator.prepare_attn(
            hidden_states, residual, forward_batch
1456
1457
        )

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )

        hidden_states, residual = self.layer_communicator.prepare_mlp(
            hidden_states, residual, forward_batch
        )

        hidden_states = self.mlp(hidden_states, forward_batch)

        hidden_states, residual = self.layer_communicator.postprocess_layer(
            hidden_states, residual, forward_batch
        )

        return hidden_states, residual

1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
1487
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
1488
1489
1490
1491
1492
1493
1494
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
            )
1495
        )
1496

1497
1498
1499
1500
1501
1502
1503
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
1504
        )
1505

1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
                hidden_states, state.forward_batch.forward_mode
            )
        else:
            state.hidden_states_mlp_output = hidden_states
1518

1519
    def op_comm_postprocess_layer(self, state):
1520
        hidden_states, residual = self.layer_communicator.postprocess_layer(
1521
1522
1523
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
1524
        )
1525

1526
        state.clear(expect_keys={"positions", "forward_batch", "zero_allocator"})
1527
1528
        return hidden_states, residual

Liangsheng Yin's avatar
Liangsheng Yin committed
1529
1530
1531
1532
1533
1534
1535
1536

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1537
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1538
1539
1540
1541
1542
1543
1544
1545
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
1546
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
1547
        )
1548
        self.alt_stream = torch.cuda.Stream() if _is_cuda else None
Liangsheng Yin's avatar
Liangsheng Yin committed
1549
1550
1551
1552
1553
1554
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
1555
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
1556
                    alt_stream=self.alt_stream,
Liangsheng Yin's avatar
Liangsheng Yin committed
1557
1558
1559
1560
1561
1562
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

1563
        self.dp_size = get_local_attention_dp_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1564

1565
1566
1567
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
1568
1569
1570
1571
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1572
        forward_batch: ForwardBatch,
1573
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1574
    ) -> torch.Tensor:
1575
1576
1577
1578
        zero_allocator = BumpAllocator(
            # TODO for two-batch-overlap, we need a larger buffer size
            buffer_size=len(self.layers) * 2,
            dtype=torch.float32,
1579
1580
1581
            device=(
                input_embeds.device if input_embeds is not None else input_ids.device
            ),
1582
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1583

1584
1585
1586
1587
1588
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
1589
1590
        residual = None
        for i in range(len(self.layers)):
1591
1592
1593
1594
1595
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
                    positions, hidden_states, forward_batch, residual, zero_allocator
                )
Ke Bao's avatar
Ke Bao committed
1596
        if not forward_batch.forward_mode.is_idle():
1597
1598
1599
1600
            if residual is None:
                hidden_states = self.norm(hidden_states)
            else:
                hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
1601
1602
1603
1604
1605
1606
1607
1608
1609
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1610
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1611
1612
1613
    ) -> None:
        super().__init__()
        self.config = config
1614
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
1615
        self.quant_config = quant_config
1616
1617
1618
1619
1620
1621
1622
1623
1624
        self.determine_n_share_experts_fusion()
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
1625
            use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
1626
1627
        )
        self.logits_processor = LogitsProcessor(config)
1628
        self.dp_size = get_local_attention_dp_size()
1629
1630
1631
1632

    def determine_n_share_experts_fusion(
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
1633
        self.n_share_experts_fusion = global_server_args_dict["n_share_experts_fusion"]
1634
1635
1636
        if self.n_share_experts_fusion > 0:
            # Only Deepseek V3/R1 can use shared experts fusion optimization now.
            if (
1637
1638
                not _is_cuda
                or self.config.architectures[0] != architecture
1639
1640
1641
1642
                or self.config.n_routed_experts != 256
            ):
                self.n_share_experts_fusion = 0
                global_server_args_dict["n_share_experts_fusion"] = 0
1643
1644
                log_info_on_rank0(
                    logger,
1645
                    "Only Deepseek V3/R1 on NV-platform can use shared experts fusion optimization. Shared experts fusion optimization is disabled.",
1646
1647
1648
1649
                )
            else:
                assert (
                    self.n_share_experts_fusion == self.tp_size
1650
                ), f"Shared experts fusion optimization is enabled in DeepSeek V3/R1, set it to {self.tp_size} can get best optimized performance."
1651
1652
        elif self.n_share_experts_fusion == 0:
            if (
1653
1654
                _is_cuda
                and torch.cuda.get_device_capability("cuda") >= (9, 0)
1655
                and self.config.architectures[0] == architecture
1656
1657
1658
1659
1660
                and self.config.n_routed_experts == 256
                and (not global_server_args_dict["enable_deepep_moe"])
            ):
                self.n_share_experts_fusion = self.tp_size
                global_server_args_dict["n_share_experts_fusion"] = self.tp_size
1661
1662
1663
                log_info_on_rank0(
                    logger,
                    "Deepseek V3/R1 with fp8 can use shared experts fusion optimization when SM version >=90. Shared experts fusion optimization is enabled.",
1664
                )
1665

Mick's avatar
Mick committed
1666
1667
1668
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

1669
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
1670
1671
1672
1673
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1674
        forward_batch: ForwardBatch,
1675
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1676
    ) -> torch.Tensor:
1677
1678

        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
1679

1680
1681
1682
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
1683

1684
    def post_load_weights(self, is_nextn=False):
inkcherry's avatar
inkcherry committed
1685
1686

        # Perform post-processing after loading weights
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
        layer_ids = (
            range(self.config.num_hidden_layers)
            if not is_nextn
            else [self.config.num_hidden_layers]
        )
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
1698
1699
1700
1701
1702
1703
1704
1705
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
                if _is_cuda:
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
1706
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
1719
1720
1721
1722
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False
            model_dtype = torch.get_default_dtype()

Baizhou Zhang's avatar
Baizhou Zhang committed
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
                if hasattr(self.quant_config, "weight_block_size"):
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        if _is_hip:
                            weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                                weight=w,
                                weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                                input_scale=None,
inkcherry's avatar
inkcherry committed
1736
                            )
Baizhou Zhang's avatar
Baizhou Zhang committed
1737
                        else:
inkcherry's avatar
inkcherry committed
1738
1739
                            weight = w
                            weight_scale = self_attn.kv_b_proj.weight_scale_inv
Baizhou Zhang's avatar
Baizhou Zhang committed
1740

1741
1742
1743
1744
1745
1746
                        if (
                            _is_cuda
                            and weight_block_size[0] == 128
                            and weight_block_size[1] == 128
                            and model_dtype == torch.bfloat16
                        ):
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
                            if _ENABLE_JIT_DEEPGEMM and get_bool_env_var(
                                "SGL_USE_DEEPGEMM_BMM", "false"
                            ):
                                block_scale = weight_scale
                                use_deep_gemm_bmm = True
                            else:
                                w = block_quant_dequant(
                                    weight,
                                    weight_scale,
                                    weight_block_size,
                                    model_dtype,
                                )
1759
1760
1761
1762
1763
                        else:
                            w, scale = block_quant_to_tensor_quant(
                                weight, weight_scale, weight_block_size
                            )
                            self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
                else:
                    weight = w
                    weight_scale = self_attn.kv_b_proj.weight_scale
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
1786

Baizhou Zhang's avatar
Baizhou Zhang committed
1787
1788
1789
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
            if not use_deep_gemm_bmm:
                self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
                    self_attn.w_scale = self_attn.kv_b_proj.weight_scale
                    if _is_hip:
                        self_attn.w_scale *= 2.0
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
                self_attn.w_scale_k = ws_kc.transpose(1, 2).contiguous()
                self_attn.w_scale_v = ws_vc.contiguous()
                self_attn.w_kc = w_kc.transpose(1, 2).contiguous()
                self_attn.w_vc = w_vc.contiguous()
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
1811

1812
1813
1814
1815
1816
1817
1818
1819
        # TODO support nextn later
        if not is_nextn:
            self.routed_experts_weights_of_layer = {
                layer_id: layer.mlp.get_moe_weights()
                for layer_id, layer in enumerate(self.model.layers)
                if isinstance(layer.mlp, DeepseekV2MoE)
            }

1820
1821
1822
1823
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
1824
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
1825
1826
1827
1828
1829
1830
1831
1832
1833
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

Liangsheng Yin's avatar
Liangsheng Yin committed
1834
1835
1836
1837
1838
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
1839
        if self.n_share_experts_fusion > 0:
1840
1841
            weights_list = list(weights)
            weights_dict = dict(weights_list)
1842
            if self.quant_config is None or self.quant_config.get_name() == "w8a8_int8":
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
                suffix_list = [
                    "down_proj.weight",
                    "down_proj.weight_scale",
                    "gate_proj.weight",
                    "gate_proj.weight_scale",
                    "up_proj.weight",
                    "up_proj.weight_scale",
                ]
            else:
                suffix_list = [
                    "down_proj.weight",
                    "down_proj.weight_scale_inv",
                    "gate_proj.weight",
                    "gate_proj.weight_scale_inv",
                    "up_proj.weight",
                    "up_proj.weight_scale_inv",
                ]
1860
            names_to_remove = []
1861
1862

            moe_layers = (
1863
1864
1865
1866
                range(
                    self.config.first_k_dense_replace,
                    self.config.num_hidden_layers,
                    self.config.moe_layer_freq,
1867
1868
1869
1870
1871
1872
1873
                )
                if not is_nextn
                else [nextn_layer_id]
            )

            for moe_layer in tqdm(
                moe_layers,
1874
1875
1876
                desc=f"Cloning {self.n_share_experts_fusion} "
                "replicas of the shared expert into MoE",
            ):
1877
1878
1879
1880
1881
                for suffix in suffix_list:
                    shared_expert_weight_name = (
                        f"model.layers.{moe_layer}.mlp.shared_experts.{suffix}"
                    )
                    for num_repeat in range(self.n_share_experts_fusion):
1882
1883
1884
1885
1886
1887
                        weights_list.append(
                            (
                                f"model.layers.{moe_layer}."
                                f"mlp.experts."
                                f"{self.config.n_routed_experts + num_repeat}"
                                f".{suffix}",
1888
                                weights_dict[shared_expert_weight_name],
1889
1890
                            )
                        )
1891
                    names_to_remove += [shared_expert_weight_name]
1892
            weights = [w for w in weights_list if w[0] not in names_to_remove]
Liangsheng Yin's avatar
Liangsheng Yin committed
1893
1894
1895

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
1896
        expert_params_mapping = get_moe_impl_class().make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
1897
1898
1899
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
1900
            num_experts=self.config.n_routed_experts + self.n_share_experts_fusion,
Liangsheng Yin's avatar
Liangsheng Yin committed
1901
1902
        )

1903
1904
1905
1906
1907
1908
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

1909
1910
1911
1912
1913
1914
1915
1916
1917
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

Liangsheng Yin's avatar
Liangsheng Yin committed
1918
1919
        params_dict = dict(self.named_parameters())
        for name, loaded_weight in weights:
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
            if not is_nextn:
                if hasattr(self.config, "num_nextn_predict_layers"):
                    num_nextn_layers = self.config.num_nextn_predict_layers
                    if num_nextn_layers > 0 and name.startswith("model.layers"):
                        name_list = name.split(".")
                        if (
                            len(name_list) >= 3
                            and int(name_list[2]) >= self.config.num_hidden_layers
                        ):
                            continue
            else:
                if not name.startswith(nextn_layer_prefix):
                    continue

                # Use shared head and embed weights from target model
                if "shared_head.head" in name or "embed_tokens" in name:
                    continue

                is_decoder = True
                # For nextn specific weights
                for weight_name in nextn_spec_weight_names:
                    if weight_name in name:
                        name = name.replace(nextn_layer_prefix, "model")
                        is_decoder = False
                        break
                # For decoder layer weights
                if is_decoder:
                    name = name.replace(nextn_layer_prefix, "model.decoder")

Liangsheng Yin's avatar
Liangsheng Yin committed
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
1982
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
1983
1984
1985
1986
1987
1988
1989
1990
1991
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
                    if fuse_qkv_a_proj and (
                        "q_a_proj" in name or "kv_a_proj_with_mqa" in name
                    ):
                        cached_a_proj[name] = loaded_weight
                        q_a_proj_name = (
                            name
                            if "q_a_proj" in name
                            else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                        )
                        kv_a_proj_name = (
                            name
                            if "kv_a_proj_with_mqa" in name
                            else name.replace("q_a_proj", "kv_a_proj_with_mqa")
                        )

                        # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                        if (
                            q_a_proj_name in cached_a_proj
                            and kv_a_proj_name in cached_a_proj
                        ):
                            q_a_proj_weight = cached_a_proj[q_a_proj_name]
                            kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
                            fused_weight = torch.cat(
                                [q_a_proj_weight, kv_a_proj_weight], dim=0
                            )

                            param_name = name.replace(
                                "q_a_proj", "fused_qkv_a_proj_with_mqa"
                            )
                            param = params_dict[param_name]

                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
                            weight_loader(param, fused_weight)
                            cached_a_proj.pop(q_a_proj_name)
                            cached_a_proj.pop(kv_a_proj_name)
                    else:
                        param = params_dict[name]
                        weight_loader = getattr(
                            param, "weight_loader", default_weight_loader
                        )
                        weight_loader(param, loaded_weight)
Liangsheng Yin's avatar
Liangsheng Yin committed
2035

2036
        self.post_load_weights(is_nextn=is_nextn)
Ke Bao's avatar
Ke Bao committed
2037

2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

2049
2050
2051
2052
2053
2054
2055
2056
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
2057

HandH1998's avatar
HandH1998 committed
2058
2059
2060
2061
2062
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]