deepseek_v2.py 85.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import logging
20
import os
21
from enum import IntEnum, auto
Liangsheng Yin's avatar
Liangsheng Yin committed
22
23
24
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
25
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
26
from torch import nn
27
from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
28
from transformers import PretrainedConfig
29
30

from sglang.srt.distributed import (
Liangsheng Yin's avatar
Liangsheng Yin committed
31
    get_tensor_model_parallel_world_size,
32
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
33
34
    tensor_model_parallel_all_reduce,
)
35
from sglang.srt.layers.activation import SiluAndMul
36
37
38
39
40
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
44
    get_local_attention_dp_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
45
)
46
from sglang.srt.layers.layernorm import RMSNorm
47
48
49
50
51
52
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
53
from sglang.srt.layers.logits_processor import LogitsProcessor
fzyzcjy's avatar
fzyzcjy committed
54
from sglang.srt.layers.moe.ep_moe.layer import get_moe_impl_class
Lianmin Zheng's avatar
Lianmin Zheng committed
55
from sglang.srt.layers.moe.ep_moe.token_dispatcher import DeepEPDispatcher
56
from sglang.srt.layers.moe.topk import select_experts
57
from sglang.srt.layers.quantization.base_config import QuantizationConfig
58
from sglang.srt.layers.quantization.deep_gemm import _ENABLE_JIT_DEEPGEMM
59
from sglang.srt.layers.quantization.fp8_kernel import (
60
    is_fp8_fnuz,
61
    per_tensor_quant_mla_fp8,
62
    per_token_group_quant_mla_deep_gemm_masked_fp8,
63
)
HandH1998's avatar
HandH1998 committed
64
from sglang.srt.layers.quantization.fp8_utils import (
65
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
66
    block_quant_to_tensor_quant,
67
    channel_quant_to_tensor_quant,
68
    normalize_e4m3fn_to_e4m3fnuz,
HandH1998's avatar
HandH1998 committed
69
)
70
71
72
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
73
from sglang.srt.layers.radix_attention import RadixAttention
74
from sglang.srt.layers.rotary_embedding import get_rope
75
76
77
78
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
79
80
81
82
from sglang.srt.managers.expert_distribution import (
    get_global_expert_distribution_recorder,
)
from sglang.srt.managers.expert_location import ModelConfigForExpertLocation
83
from sglang.srt.managers.expert_location_dispatch import ExpertLocationDispatchInfo
84
from sglang.srt.managers.schedule_batch import global_server_args_dict
85
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
86
from sglang.srt.model_loader.weight_utils import default_weight_loader
87
88
89
90
from sglang.srt.two_batch_overlap import (
    MaybeTboDeepEPDispatcher,
    model_forward_maybe_tbo,
)
91
92
93
from sglang.srt.utils import (
    BumpAllocator,
    DeepEPMode,
94
    LazyValue,
95
    add_prefix,
96
    bind_or_assign,
97
98
99
100
    get_bool_env_var,
    get_int_env_var,
    is_cuda,
    is_hip,
101
    is_non_idle_and_non_empty,
102
    log_info_on_rank0,
103
)
104

105
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
106
_is_cuda = is_cuda()
107
_is_fp8_fnuz = is_fp8_fnuz()
108
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
109

Yineng Zhang's avatar
Yineng Zhang committed
110
if _is_cuda:
111
    from sgl_kernel import awq_dequantize, bmm_fp8, merge_state_v2
112
113
114
115

    from sglang.srt.layers.quantization.deep_gemm import (
        grouped_gemm_nt_f8f8bf16_masked as deep_gemm_grouped_gemm_nt_f8f8bf16_masked,
    )
Yineng Zhang's avatar
Yineng Zhang committed
116
else:
Lianmin Zheng's avatar
Lianmin Zheng committed
117
    from vllm._custom_ops import awq_dequantize
Liangsheng Yin's avatar
Liangsheng Yin committed
118

119
120
121
122
123
if _is_hip:
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )

124
125
126
if _use_aiter:
    from aiter.rotary_embedding import get_rope

127
128
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
129

130
131
132
133
134
135
136
137
138
139
140
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()

141
142
143
    # Use MLA but with fused RoPE
    MLA_FUSED_ROPE = auto()

144

Liangsheng Yin's avatar
Liangsheng Yin committed
145
146
147
148
149
150
151
152
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
153
        prefix: str = "",
154
155
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
156
157
    ) -> None:
        super().__init__()
158
159
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
160
        self.gate_up_proj = MergedColumnParallelLinear(
161
162
163
164
165
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
166
167
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
168
169
170
171
172
173
174
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
175
            prefix=add_prefix("down_proj", prefix),
176
177
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
178
179
180
181
182
183
184
185
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

186
187
188
189
    def forward(self, x, forward_batch=None):
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

Liangsheng Yin's avatar
Liangsheng Yin committed
190
191
192
193
194
195
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


Ke Bao's avatar
Ke Bao committed
196
class MoEGate(nn.Module):
197
198
199
200
201
    def __init__(
        self,
        config,
        prefix: str = "",
    ):
Ke Bao's avatar
Ke Bao committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        super().__init__()
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None

    def forward(self, hidden_states):
        logits = F.linear(hidden_states, self.weight, None)
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
218
219
220
221
222
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
223
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
224
        quant_config: Optional[QuantizationConfig] = None,
225
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
226
227
228
229
230
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
231
232
233
234
235
        self.num_fused_shared_experts = (
            0
            if global_server_args_dict["disable_shared_experts_fusion"]
            else config.n_shared_experts
        )
236
        self.config = config
fzyzcjy's avatar
fzyzcjy committed
237
        self.layer_id = layer_id
238

Liangsheng Yin's avatar
Liangsheng Yin committed
239
240
241
242
243
244
245
246
247
248
249
250
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

251
        self.gate = MoEGate(config=config, prefix=add_prefix("gate", prefix))
Ke Bao's avatar
Ke Bao committed
252

253
        self.experts = get_moe_impl_class()(
254
            num_experts=config.n_routed_experts
255
            + self.num_fused_shared_experts
256
            + global_server_args_dict["ep_num_redundant_experts"],
257
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
258
259
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
260
            layer_id=self.layer_id,
261
262
263
264
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
265
            num_fused_shared_experts=self.num_fused_shared_experts,
266
267
            topk_group=config.topk_group,
            correction_bias=self.gate.e_score_correction_bias,
268
            routed_scaling_factor=self.routed_scaling_factor,
269
270
271
272
273
274
275
            prefix=add_prefix("experts", prefix),
            **(
                dict(deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]])
                if global_server_args_dict["enable_deepep_moe"]
                else {}
            ),
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
276

277
        if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
278
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
279
            # disable tp for shared experts when enable deepep moe
280
281
282
283
284
285
286
287
288
289
290
291
292
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
                    if global_server_args_dict["enable_deepep_moe"]
                    else {}
                ),
            )
293

294
295
        self.top_k = config.num_experts_per_tok

296
        if global_server_args_dict["enable_deepep_moe"]:
297
298
            # TODO: we will support tp < ep in the future
            self.ep_size = get_tensor_model_parallel_world_size()
299
300
301
302
            self.num_experts = (
                config.n_routed_experts
                + global_server_args_dict["ep_num_redundant_experts"]
            )
303
304
305
306
307
308
309
310
311
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

312
            self.deepep_dispatcher = MaybeTboDeepEPDispatcher(
313
314
315
                group=parallel_state.get_tp_group().device_group,
                router_topk=self.top_k,
                permute_fusion=True,
316
                num_experts=self.num_experts,
317
                num_local_experts=config.n_routed_experts // self.tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
318
                hidden_size=config.hidden_size,
319
                params_dtype=config.torch_dtype,
320
                deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]],
321
                async_finish=True,
322
                return_recv_hook=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
323
324
            )

325
        self._enable_deepep_moe = global_server_args_dict["enable_deepep_moe"]
326

327
328
329
330
331
332
333
    def get_moe_weights(self):
        return [
            x.data
            for name, x in self.experts.named_parameters()
            if name not in ["correction_bias"]
        ]

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    def forward(
        self, hidden_states: torch.Tensor, forward_batch: Optional[ForwardBatch] = None
    ) -> torch.Tensor:
        if not self._enable_deepep_moe:
            return self.forward_normal(hidden_states)
        else:
            return self.forward_deepep(hidden_states, forward_batch)

    def forward_normal(self, hidden_states: torch.Tensor) -> torch.Tensor:
        shared_output = self._forward_shared_experts(hidden_states)
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
        final_hidden_states = self.experts(
            hidden_states=hidden_states, router_logits=router_logits
        )
349
350
        if not _is_cuda:
            final_hidden_states *= self.routed_scaling_factor
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

    def forward_deepep(
        self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        forward_mode = forward_batch.forward_mode
        shared_output = None
        if is_non_idle_and_non_empty(forward_mode, hidden_states):
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
            shared_output = self._forward_shared_experts(hidden_states)
            topk_weights, topk_idx = select_experts(
                hidden_states=hidden_states,
                router_logits=router_logits,
                top_k=self.top_k,
                use_grouped_topk=True,
                renormalize=self.renormalize,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
374
                num_fused_shared_experts=self.num_fused_shared_experts,
375
376
377
                correction_bias=self.correction_bias,
                routed_scaling_factor=self.routed_scaling_factor,
                num_token_non_padded=forward_batch.num_token_non_padded,
378
379
380
                expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                    layer_id=self.layer_id,
                ),
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
            )
        else:
            topk_idx = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            topk_weights = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
        if self.ep_size > 1:
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
            (
                hidden_states,
                topk_idx,
                topk_weights,
                reorder_topk_ids,
                num_recv_tokens_per_expert,
                seg_indptr,
                masked_m,
                expected_m,
            ) = self.deepep_dispatcher.dispatch(
                hidden_states=hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )
        final_hidden_states = self.experts(
            hidden_states=hidden_states,
            topk_idx=topk_idx,
            topk_weights=topk_weights,
            reorder_topk_ids=reorder_topk_ids,
            seg_indptr=seg_indptr,
            masked_m=masked_m,
            expected_m=expected_m,
            num_recv_tokens_per_expert=num_recv_tokens_per_expert,
            forward_mode=forward_mode,
        )
        if self.ep_size > 1:
            final_hidden_states = self.deepep_dispatcher.combine(
                hidden_states=final_hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )
        final_hidden_states *= self.routed_scaling_factor

        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output

        return final_hidden_states

    def _forward_shared_experts(self, hidden_states):
432
        if self.num_fused_shared_experts == 0:
433
434
435
436
            return self.shared_experts(hidden_states)
        else:
            return None

437
    def op_gate(self, state):
438
        if is_non_idle_and_non_empty(
439
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
440
        ):
441
            # router_logits: (num_tokens, n_experts)
442
            state.router_logits = self.gate(state.hidden_states_mlp_input)
443
        else:
444
            state.router_logits = None
445

446
    def op_shared_experts(self, state):
447
        hidden_states_mlp_input = state.pop("hidden_states_mlp_input")
448
        if (self.num_fused_shared_experts == 0) and is_non_idle_and_non_empty(
449
            state.forward_batch.forward_mode, hidden_states_mlp_input
450
        ):
451
            state.shared_output = self.shared_experts(hidden_states_mlp_input)
452
        else:
453
            state.shared_output = None
454

455
    def op_select_experts(self, state):
456
        router_logits = state.pop("router_logits")
457
458
        hidden_states = state.hidden_states_mlp_input

459
460
461
462
463
464
465
466
467
        if router_logits is not None:
            state.topk_weights_local, state.topk_idx_local = select_experts(
                hidden_states=hidden_states,
                router_logits=router_logits,
                top_k=self.top_k,
                use_grouped_topk=True,
                renormalize=self.renormalize,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
468
                num_fused_shared_experts=self.num_fused_shared_experts,
469
470
                correction_bias=self.correction_bias,
                routed_scaling_factor=self.routed_scaling_factor,
471
                num_token_non_padded=state.forward_batch.num_token_non_padded,
472
473
474
475
476
477
478
479
480
481
482
                expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                    layer_id=self.layer_id,
                ),
            )
        else:
            state.topk_idx_local = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            state.topk_weights_local = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
483

484
    def op_dispatch_a(self, state):
485
        if self.ep_size > 1:
486
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
487
            self.deepep_dispatcher.dispatch_a(
488
                hidden_states=state.hidden_states_mlp_input,
489
490
491
                topk_idx=state.pop("topk_idx_local"),
                topk_weights=state.pop("topk_weights_local"),
                forward_mode=state.forward_batch.forward_mode,
492
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
493
            )
494

495
    def op_dispatch_b(self, state):
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
        if self.ep_size > 1:
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
                (
                    state.hidden_states_experts_input,
                    state.topk_idx_dispatched,
                    state.topk_weights_dispatched,
                    state.reorder_topk_ids,
                    state.num_recv_tokens_per_expert,
                    state.seg_indptr,
                    state.masked_m,
                    state.expected_m,
                ) = self.deepep_dispatcher.dispatch_b(
                    tbo_subbatch_index=state.get("tbo_subbatch_index"),
                )
512
513

    def op_experts(self, state):
514
515
516
517
518
519
520
521
522
523
524
        state.hidden_states_experts_output = self.experts(
            hidden_states=state.pop("hidden_states_experts_input"),
            topk_idx=state.topk_idx_dispatched,
            topk_weights=state.topk_weights_dispatched,
            reorder_topk_ids=state.pop("reorder_topk_ids"),
            seg_indptr=state.pop("seg_indptr"),
            masked_m=state.pop("masked_m"),
            expected_m=state.pop("expected_m"),
            num_recv_tokens_per_expert=state.pop("num_recv_tokens_per_expert"),
            forward_mode=state.forward_batch.forward_mode,
        )
525

526
    def op_combine_a(self, state):
527
        if self.ep_size > 1:
528
            self.deepep_dispatcher.combine_a(
529
                hidden_states=state.pop("hidden_states_experts_output"),
530
531
532
                topk_idx=state.pop("topk_idx_dispatched"),
                topk_weights=state.pop("topk_weights_dispatched"),
                forward_mode=state.forward_batch.forward_mode,
533
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
534
            )
535

536
    def op_combine_b(self, state):
537
538
539
540
        if self.ep_size > 1:
            state.hidden_states_after_combine = self.deepep_dispatcher.combine_b(
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
            )
541
542

    def op_output(self, state):
543
        final_hidden_states = state.pop("hidden_states_after_combine")
544
545
546
547
548
549
550

        if (shared_output := state.pop("shared_output")) is not None:
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
Liangsheng Yin's avatar
Liangsheng Yin committed
551

552
        state.hidden_states_mlp_output = final_hidden_states
553

Liangsheng Yin's avatar
Liangsheng Yin committed
554
555
556
557
558
559
560
561
562

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
579
580
        reduce_results: bool = True,
        layer_id: int = None,
581
        prefix: str = "",
582
        alt_stream: Optional[torch.cuda.Stream] = None,
583
584
585
586
587
588
589
590
591
592
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
593
594
595
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

596
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
597
598
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
599
600
601
602
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
603
604
        # For tensor parallel attention
        if self.q_lora_rank is not None:
605
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
606
                self.hidden_size,
607
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
608
609
                bias=False,
                quant_config=quant_config,
610
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
611
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
612
613
614
615
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
616
617
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
618
619
620
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
621
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
622
623
        else:
            self.q_proj = ColumnParallelLinear(
624
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
625
                self.num_heads * self.qk_head_dim,
626
627
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
628
629
630
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
631
            )
632
633
634
635
636
637
638
639
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
660
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
661
662
663
664

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

665
        self.rotary_emb = get_rope(
666
667
668
669
670
671
672
673
674
675
676
677
678
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
679
680
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
681

682
        self.attn_mqa = RadixAttention(
683
684
685
686
687
688
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
689
            quant_config=quant_config,
690
            prefix=add_prefix("attn_mqa", prefix),
691
692
        )

693
694
695
696
697
698
699
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
700
            quant_config=quant_config,
701
            prefix=add_prefix("attn_mha", prefix),
702
703
        )

704
        self.alt_stream = alt_stream
705
        self.attn_mha.kv_b_proj = None
706

Ke Bao's avatar
Ke Bao committed
707
708
        self.w_kc = None
        self.w_vc = None
709
        self.w_scale = 1.0
710

711
712
713
714
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

Lianmin Zheng's avatar
Lianmin Zheng committed
715
716
717
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
718
719
720
        self.disable_chunked_prefix_cache = global_server_args_dict[
            "disable_chunked_prefix_cache"
        ]
721
        self.attention_backend = global_server_args_dict["attention_backend"]
722
723
724
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
725

726
        # TODO: Design a finer way to determine the threshold
727
728
729
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
730
731
732
733

    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
734
735
736
737
738
739
740
741
742
743
744
745
        def _dispatch_mla_subtype():
            if _is_hip:
                if (
                    self.rocm_fused_decode_mla
                    and forward_batch.forward_mode.is_decode()
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE
                else:
                    return AttnForwardMethod.MLA
            else:
                return AttnForwardMethod.MLA

746
        if self.attention_backend == "flashinfer":
Lianmin Zheng's avatar
Lianmin Zheng committed
747
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
748
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
749
750
751
752
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
753
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
754
755
756
            ):
                return AttnForwardMethod.MHA
            else:
757
                return _dispatch_mla_subtype()
758
        elif self.attention_backend == "fa3":
759
            # Flash Attention: Use MHA with chunked KV cache when prefilling on long sequences.
760
761
            if forward_batch.extend_prefix_lens_cpu is not None:
                sum_extend_prefix_lens = sum(forward_batch.extend_prefix_lens_cpu)
762
763
764
765
766
            if (
                forward_batch.forward_mode.is_extend()
                and not self.disable_chunked_prefix_cache
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
767
768
769
770
                and (
                    sum_extend_prefix_lens >= self.chunked_prefix_cache_threshold
                    or sum_extend_prefix_lens == 0
                )
771
772
773
            ):
                return AttnForwardMethod.MHA_CHUNKED_KV
            else:
774
                return _dispatch_mla_subtype()
775
776
777
778
779
780
781
782
783
        elif self.attention_backend == "aiter":
            if (
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
            ):
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
Lianmin Zheng's avatar
Lianmin Zheng committed
784
785
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
786
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
787
788
789
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
790
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
791
792
793
            ):
                return AttnForwardMethod.MHA
            else:
794
                return _dispatch_mla_subtype()
Lianmin Zheng's avatar
Lianmin Zheng committed
795

796
797
798
799
800
801
802
803
804
805
806
807
808
    def op_prepare(self, state):
        state.attn_intermediate_state = self.forward_prepare(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
        )

    def op_core(self, state):
        state.hidden_states_after_attn = self.forward_core(
            state.pop("attn_intermediate_state")
        )

809
810
811
812
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
813
        forward_batch: ForwardBatch,
814
        zero_allocator: BumpAllocator,
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
    ):
        s = self.forward_prepare(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )
        return self.forward_core(s)

    def forward_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
831
832
833
        if self.attn_mha.kv_b_proj is None:
            self.attn_mha.kv_b_proj = self.kv_b_proj

Lianmin Zheng's avatar
Lianmin Zheng committed
834
835
836
837
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
838
            return hidden_states, None, forward_batch, None
839

840
841
842
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)

        if attn_forward_method == AttnForwardMethod.MHA:
843
844
845
            inner_state = self.forward_normal_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
846
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
847
848
            inner_state = self.forward_normal_chunked_kv_prepare(
                positions, hidden_states, forward_batch, zero_allocator
849
            )
850
        elif attn_forward_method == AttnForwardMethod.MLA:
851
            inner_state = self.forward_absorb_prepare(
852
853
854
                positions, hidden_states, forward_batch, zero_allocator
            )
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
855
856
            inner_state = self.forward_absorb_fused_mla_rope_prepare(
                positions, hidden_states, forward_batch, zero_allocator
857
            )
858
        else:
859
            raise NotImplementedError
860
        return None, attn_forward_method, forward_batch, inner_state
861

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
    def forward_core(self, intermediate_state):
        hidden_states, attn_forward_method, forward_batch, inner_state = (
            intermediate_state
        )
        if inner_state is None:
            return hidden_states

        if attn_forward_method == AttnForwardMethod.MHA:
            return self.forward_normal_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA:
            return self.forward_absorb_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
            return self.forward_absorb_fused_mla_rope_core(*inner_state)
        else:
            raise NotImplementedError

    def forward_normal_prepare(
881
882
883
884
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
885
886
        zero_allocator: BumpAllocator,
    ):
887
        if self.q_lora_rank is not None:
888
889
890
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
891
892
893
894
895
896
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
897
898
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
921
922
923
924

        return q, k, v, forward_batch

    def forward_normal_core(self, q, k, v, forward_batch):
925
926
927
928
929
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

930
    def forward_absorb_prepare(
931
932
933
934
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
935
        zero_allocator: BumpAllocator,
936
    ):
937
938
        from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode

939
        if self.q_lora_rank is not None:
940
941
942
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
943
944
945
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
946
            if self.alt_stream is not None and get_is_capture_mode():
947
948
949
950
951
952
953
954
955
956
957
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                q = self.q_a_layernorm(q)
                k_nope = self.kv_a_layernorm(k_nope)

            k_nope = k_nope.unsqueeze(1)
958
959
960
961
962
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
963
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
964
965
966
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

967
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
968
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
969

970
971
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
972
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
973
974
975
976
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
977
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
978
979
980
981
982
983
984
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
985
986
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
987
988
989
990
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
991
        elif self.w_kc.dtype == torch.float8_e4m3fn:
992
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
993
                q_nope.transpose(0, 1),
994
                zero_allocator.allocate(1),
995
996
997
998
999
1000
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
1001
1002

        q_nope_out = q_nope_out.transpose(0, 1)
1003
1004
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

1005
1006
1007
1008
1009
        return q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator

    def forward_absorb_core(
        self, q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator
    ):
xu-yfei's avatar
xu-yfei committed
1010
        if self.attention_backend == "fa3" or self.attention_backend == "flashinfer":
1011
            attn_output = self.attn_mqa(
Ke Bao's avatar
Ke Bao committed
1012
                q_nope_out, k_nope, k_nope, forward_batch, q_rope=q_pe, k_rope=k_pe
1013
1014
1015
            )
        else:
            q = torch.cat([q_nope_out, q_pe], dim=-1)
Ke Bao's avatar
Ke Bao committed
1016
            k = torch.cat([k_nope, k_pe], dim=-1)
1017
            attn_output = self.attn_mqa(q, k, k_nope, forward_batch)
1018
1019
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1020
1021
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
1022
1023
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
1024
1025
1026
1027
1028
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
1029
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
1030
1031
1032
1033
1034
1035
1036
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
            attn_bmm_output = attn_bmm_output[:, :expected_m, :]
1037
1038
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1039
1040
1041
1042
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
1043
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1044
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1045
                attn_output.transpose(0, 1),
1046
                zero_allocator.allocate(1),
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
        output, _ = self.o_proj(attn_output)

        return output

1062
    def forward_absorb_fused_mla_rope_prepare(
1063
1064
1065
1066
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1067
        zero_allocator: BumpAllocator,
1068
    ):
1069
1070
1071
1072
1073
1074
1075
1076
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
1077
1078
1079
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1080
1081
1082
1083
1084
1085
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1086
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1087
1088
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

1089
1090
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1091
1092
1093
1094
1095
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1096
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
1097
1098
1099
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
        return (
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            enable_rope_fusion,
            k_input,
            forward_batch,
            zero_allocator,
        )

    def forward_absorb_fused_mla_rope_core(
        self,
        q_input,
        key_cache_buf,
        val_cache_buf,
        attn_output,
        kv_indptr,
        kv_indices,
        k_pe_output,
        cos_sin_cache,
        positions,
        attn_logits,
        num_kv_split,
        sm_scale,
        enable_rope_fusion,
        k_input,
        forward_batch,
        zero_allocator,
    ):
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1223
1224
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1225
1226
1227
1228
1229
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1230
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
1231
1232
1233
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1245
1246
1247
1248
        output, _ = self.o_proj(attn_output)

        return output

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
            latent_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
                self.attn_mha.layer_id
            )
            latent_cache = latent_cache_buf[
                forward_batch.prefix_chunk_kv_indices[i]
            ].contiguous()

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            lse = torch.transpose(lse, 0, 1).contiguous()
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse

        return accum_output

1301
    def forward_normal_chunked_kv_prepare(
1302
1303
1304
1305
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1306
1307
        zero_allocator: BumpAllocator,
    ):
1308
1309
1310
1311
1312
1313
1314
1315
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
        if self.q_lora_rank is not None:
1316
1317
1318
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1319
1320
1321
1322
1323
1324
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1325
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )

1350
1351
1352
        return q, k, v, forward_batch

    def forward_normal_chunked_kv_core(self, q, k, v, forward_batch):
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
        attn_output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        lse = torch.transpose(lse, 0, 1).contiguous()

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
        if any(forward_batch.extend_prefix_lens_cpu):
            # Only initialize the info once
            if forward_batch.num_prefix_chunks is None:
                forward_batch.prepare_chunked_prefix_cache_info(q.device)

            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1376

Liangsheng Yin's avatar
Liangsheng Yin committed
1377
1378
1379
1380
1381
1382
1383
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
1384
        is_nextn: bool = False,
1385
        prefix: str = "",
1386
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1387
1388
1389
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
1390
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
1391
1392
1393
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Lianmin Zheng's avatar
Lianmin Zheng committed
1394
1395
        self.enable_dp_attention = global_server_args_dict["enable_dp_attention"]
        self.layer_id = layer_id
Baizhou Zhang's avatar
Baizhou Zhang committed
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
1414
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
1415
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1416

1417
1418
1419
1420
1421
1422
1423
1424
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
            num_layers=config.num_hidden_layers,
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
1425
1426
        )

1427
        if self.is_layer_sparse:
1428
1429
1430
1431
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
1432
                layer_id=self.layer_id,
1433
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1434
        else:
1435
            if enable_moe_dense_fully_dp():
1436
1437
1438
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
1439
1440
1441
1442
1443
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
1444
                prefix=add_prefix("mlp", prefix),
1445
1446
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
1447
            )
1448

Liangsheng Yin's avatar
Liangsheng Yin committed
1449
1450
1451
1452
1453
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

1454
1455
1456
1457
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
1458
        )
1459
1460
1461
1462
1463
1464

    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
1465
1466
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
1467
1468
1469
1470
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1471
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
1472
        residual: Optional[torch.Tensor],
1473
        zero_allocator: BumpAllocator,
Liangsheng Yin's avatar
Liangsheng Yin committed
1474
    ) -> torch.Tensor:
1475
1476
        hidden_states, residual = self.layer_communicator.prepare_attn(
            hidden_states, residual, forward_batch
1477
1478
        )

1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )

        hidden_states, residual = self.layer_communicator.prepare_mlp(
            hidden_states, residual, forward_batch
        )

        hidden_states = self.mlp(hidden_states, forward_batch)

        hidden_states, residual = self.layer_communicator.postprocess_layer(
            hidden_states, residual, forward_batch
        )

        return hidden_states, residual

1498
1499
1500
1501
1502
1503
1504
1505
    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
1506
        tbo_subbatch_index: Optional[int] = None,
1507
1508
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
1509
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
1510
1511
1512
1513
1514
1515
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
1516
                tbo_subbatch_index=tbo_subbatch_index,
1517
            )
1518
        )
1519

1520
1521
1522
1523
1524
1525
1526
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
1527
        )
1528

1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
                hidden_states, state.forward_batch.forward_mode
            )
        else:
            state.hidden_states_mlp_output = hidden_states
1541

1542
    def op_comm_postprocess_layer(self, state):
1543
        hidden_states, residual = self.layer_communicator.postprocess_layer(
1544
1545
1546
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
1547
        )
1548

1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
        output = dict(
            positions=state.positions,
            hidden_states=hidden_states,
            residual=residual,
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
            tbo_subbatch_index=state.tbo_subbatch_index,
        )

        state.clear(
            expect_keys={
                "positions",
                "forward_batch",
                "zero_allocator",
                "tbo_subbatch_index",
            }
        )
        return output
1567

Liangsheng Yin's avatar
Liangsheng Yin committed
1568
1569
1570
1571
1572
1573
1574
1575

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1576
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1577
1578
1579
1580
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size
1581
        self.first_k_dense_replace = config.first_k_dense_replace
Liangsheng Yin's avatar
Liangsheng Yin committed
1582
1583
1584
1585

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
1586
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
1587
        )
1588
        self.alt_stream = torch.cuda.Stream() if _is_cuda else None
Liangsheng Yin's avatar
Liangsheng Yin committed
1589
1590
1591
1592
1593
1594
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
1595
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
1596
                    alt_stream=self.alt_stream,
Liangsheng Yin's avatar
Liangsheng Yin committed
1597
1598
1599
1600
1601
1602
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

1603
        self.dp_size = get_local_attention_dp_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1604

1605
1606
1607
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
1608
1609
1610
1611
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1612
        forward_batch: ForwardBatch,
1613
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1614
    ) -> torch.Tensor:
1615
1616
        total_num_layers = len(self.layers)
        device = input_embeds.device if input_embeds is not None else input_ids.device
1617
        zero_allocator = BumpAllocator(
1618
            buffer_size=total_num_layers * 2 * (2 if forward_batch.can_run_tbo else 1),
1619
            dtype=torch.float32,
1620
            device=device,
1621
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1622

1623
1624
1625
1626
1627
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
1628
        residual = None
1629
1630
1631
1632
1633
1634
1635

        normal_num_layers = (
            self.first_k_dense_replace
            if forward_batch.can_run_tbo
            else total_num_layers
        )
        for i in range(normal_num_layers):
1636
1637
1638
1639
1640
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
                    positions, hidden_states, forward_batch, residual, zero_allocator
                )
1641
1642
1643
1644
1645
1646
1647
1648
1649

        if normal_num_layers != total_num_layers:
            hidden_states, residual = model_forward_maybe_tbo(
                layers=self.layers[normal_num_layers:],
                enable_tbo=True,
                positions=positions,
                forward_batch=forward_batch,
                hidden_states=hidden_states,
                residual=residual,
1650
1651
1652
                input_data_scatter_mode=self.layers[
                    normal_num_layers - 1
                ].layer_scatter_modes.layer_output_mode,
1653
1654
1655
                zero_allocator=zero_allocator,
            )

Ke Bao's avatar
Ke Bao committed
1656
        if not forward_batch.forward_mode.is_idle():
1657
1658
1659
1660
            if residual is None:
                hidden_states = self.norm(hidden_states)
            else:
                hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
1661
1662
1663
1664
1665
1666
1667
1668
1669
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1670
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1671
1672
1673
    ) -> None:
        super().__init__()
        self.config = config
1674
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
1675
        self.quant_config = quant_config
1676
        self.determine_num_fused_shared_experts()
1677
1678
1679
1680
1681
1682
1683
1684
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
1685
            use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
1686
1687
        )
        self.logits_processor = LogitsProcessor(config)
1688
        self.dp_size = get_local_attention_dp_size()
1689

1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
        self._routed_experts_weights_of_layer = LazyValue(
            lambda: {
                layer_id: layer.mlp.get_moe_weights()
                for layer_id, layer in enumerate(self.model.layers)
                if isinstance(layer.mlp, DeepseekV2MoE)
            }
        )

    @property
    def routed_experts_weights_of_layer(self):
        return self._routed_experts_weights_of_layer.value

1702
    def determine_num_fused_shared_experts(
1703
1704
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
1705
1706
1707
1708
1709
        self.num_fused_shared_experts = (
            0
            if global_server_args_dict["disable_shared_experts_fusion"]
            else self.config.n_shared_experts
        )
1710
        if self.num_fused_shared_experts > 0:
1711
1712
            # Only Deepseek V3/R1 can use shared experts fusion optimization now.
            if (
1713
1714
                not _is_cuda
                or self.config.architectures[0] != architecture
1715
1716
                or self.config.n_routed_experts != 256
            ):
1717
                self.num_fused_shared_experts = 0
1718
                global_server_args_dict["disable_shared_experts_fusion"] = True
1719
1720
                log_info_on_rank0(
                    logger,
1721
                    "Only Deepseek V3/R1 on NV-platform can use shared experts fusion optimization. Shared experts fusion optimization is disabled.",
1722
                )
1723
1724
1725
1726
            elif (
                global_server_args_dict["enable_deepep_moe"]
                or global_server_args_dict["enable_ep_moe"]
            ):
1727
1728
1729
1730
1731
1732
                self.num_fused_shared_experts = 0
                global_server_args_dict["disable_shared_experts_fusion"] = True
                log_info_on_rank0(
                    logger,
                    "Deepseek V3/R1 can not use shared experts fusion optimization when in deepep_moe or ep_moe mode. Shared experts fusion optimization is disabled.",
                )
1733
        elif self.num_fused_shared_experts == 0:
1734
            if (
1735
1736
                _is_cuda
                and torch.cuda.get_device_capability("cuda") >= (9, 0)
1737
                and self.config.architectures[0] == architecture
1738
                and self.config.n_routed_experts == 256
1739
1740
1741
1742
1743
1744
                and (
                    not (
                        global_server_args_dict["enable_deepep_moe"]
                        or global_server_args_dict["enable_ep_moe"]
                    )
                )
1745
            ):
1746
                self.num_fused_shared_experts = self.config.n_shared_experts
1747
                global_server_args_dict["disable_shared_experts_fusion"] = False
1748
1749
                log_info_on_rank0(
                    logger,
1750
                    "Deepseek V3/R1 with fp8/fp4 can use shared experts fusion optimization when SM version >=90. Shared experts fusion optimization is enabled.",
1751
                )
1752

Mick's avatar
Mick committed
1753
1754
1755
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

1756
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
1757
1758
1759
1760
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1761
        forward_batch: ForwardBatch,
1762
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1763
    ) -> torch.Tensor:
1764
        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
1765

1766
1767
1768
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
1769

1770
    def post_load_weights(self, is_nextn=False, weight_names=None):
inkcherry's avatar
inkcherry committed
1771
1772

        # Perform post-processing after loading weights
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
        if is_nextn:
            layer_ids = [self.config.num_hidden_layers]
        else:
            if weight_names is None:
                layer_ids = range(self.config.num_hidden_layers)
            else:
                layer_ids = set()
                for name in weight_names:
                    if "kv_b_proj" in name:
                        layer_id = int(name.split(".")[2])
                        # filter the nextn layer.
                        if layer_id != self.config.num_hidden_layers:
                            layer_ids.add(layer_id)

1787
1788
1789
1790
1791
1792
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
1793
1794
1795
1796
1797
1798
1799
1800
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
                if _is_cuda:
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
1801
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
1814
1815
1816
1817
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False
            model_dtype = torch.get_default_dtype()

Baizhou Zhang's avatar
Baizhou Zhang committed
1818
1819
1820
1821
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
1822
1823
1824
1825
                if (
                    hasattr(self.quant_config, "weight_block_size")
                    and self.quant_config.weight_block_size is not None
                ):
Baizhou Zhang's avatar
Baizhou Zhang committed
1826
                    weight_block_size = self.quant_config.weight_block_size
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
                    assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv

                    if (
                        _is_cuda
                        and weight_block_size[0] == 128
                        and weight_block_size[1] == 128
                        and model_dtype == torch.bfloat16
                    ):
                        if _ENABLE_JIT_DEEPGEMM and get_bool_env_var(
                            "SGL_USE_DEEPGEMM_BMM", "false"
1846
                        ):
1847
1848
                            block_scale = weight_scale
                            use_deep_gemm_bmm = True
1849
                        else:
1850
1851
1852
1853
1854
                            w = block_quant_dequant(
                                weight,
                                weight_scale,
                                weight_block_size,
                                model_dtype,
1855
                            )
1856
1857
1858
1859
1860
                    else:
                        w, scale = block_quant_to_tensor_quant(
                            weight, weight_scale, weight_block_size
                        )
                        self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
1861
                else:
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale

Baizhou Zhang's avatar
Baizhou Zhang committed
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
1891

Baizhou Zhang's avatar
Baizhou Zhang committed
1892
1893
1894
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
1895
            if not use_deep_gemm_bmm:
1896
1897
1898
1899
1900
1901
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                )
                self_attn.w_vc = bind_or_assign(
                    self_attn.w_vc, w_vc.contiguous().transpose(1, 2)
                )
1902
1903
1904
1905
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
1906
1907
1908
                    self_attn.w_scale = bind_or_assign(
                        self_attn.w_scale, self_attn.kv_b_proj.weight_scale
                    )
1909
1910
1911
1912
1913
1914
1915
1916
                    if _is_hip:
                        self_attn.w_scale *= 2.0
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
                self_attn.w_scale_k = bind_or_assign(
                    self_attn.w_scale_k, ws_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_scale_v = bind_or_assign(
                    self_attn.w_scale_v, ws_vc.contiguous()
                )
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_vc = bind_or_assign(self_attn.w_vc, w_vc.contiguous())
1927
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
1928

1929
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
1930

1931
1932
1933
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
1934
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
1935
1936
1937
1938
1939
1940
1941
1942
1943
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

Liangsheng Yin's avatar
Liangsheng Yin committed
1944
1945
1946
1947
1948
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
1949
        if self.num_fused_shared_experts > 0:
1950
            assert self.num_fused_shared_experts == 1
1951
1952
            weights_list = list(weights)
            weights_dict = dict(weights_list)
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
            if self.quant_config is not None:
                if self.quant_config.get_name() == "w8a8_int8":
                    suffix_list = [
                        "down_proj.weight",
                        "down_proj.weight_scale",
                        "gate_proj.weight",
                        "gate_proj.weight_scale",
                        "up_proj.weight",
                        "up_proj.weight_scale",
                    ]
                elif (
                    self.quant_config.get_name() == "fp8"
                    or self.quant_config.get_name() == "blockwise_int8"
                ):
                    suffix_list = [
                        "down_proj.weight",
                        "down_proj.weight_scale_inv",
                        "gate_proj.weight",
                        "gate_proj.weight_scale_inv",
                        "up_proj.weight",
                        "up_proj.weight_scale_inv",
                    ]
                elif self.quant_config.get_name() == "awq":
                    suffix_list = [
                        "down_proj.qweight",
                        "down_proj.qzeros",
                        "down_proj.scales",
                        "gate_proj.qweight",
                        "gate_proj.qzeros",
                        "gate_proj.scales",
                        "up_proj.qweight",
                        "up_proj.qzeros",
                        "up_proj.scales",
                    ]
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
                elif self.quant_config.get_name() == "modelopt_fp4":
                    suffix_list = [
                        "down_proj.weight",
                        "down_proj.weight_scale",
                        "down_proj.weight_scale_2",
                        "down_proj.input_scale",
                        "gate_proj.weight",
                        "gate_proj.weight_scale",
                        "gate_proj.weight_scale_2",
                        "gate_proj.input_scale",
                        "up_proj.weight",
                        "up_proj.weight_scale",
                        "up_proj.weight_scale_2",
                        "up_proj.input_scale",
                    ]
2002
2003
2004
2005
                else:
                    raise ValueError(
                        f"Unsupported shared expert fusion for quantization: {self.quant_config.get_name()}."
                    )
2006
2007
2008
2009
2010
2011
            else:
                suffix_list = [
                    "down_proj.weight",
                    "gate_proj.weight",
                    "up_proj.weight",
                ]
2012
            names_to_remove = []
2013
2014

            moe_layers = (
2015
2016
2017
2018
                range(
                    self.config.first_k_dense_replace,
                    self.config.num_hidden_layers,
                    self.config.moe_layer_freq,
2019
2020
2021
2022
2023
2024
2025
                )
                if not is_nextn
                else [nextn_layer_id]
            )

            for moe_layer in tqdm(
                moe_layers,
2026
                desc=f"Cloning {self.num_fused_shared_experts} "
2027
                "shared expert into MoE",
2028
            ):
2029
2030
2031
2032
                for suffix in suffix_list:
                    shared_expert_weight_name = (
                        f"model.layers.{moe_layer}.mlp.shared_experts.{suffix}"
                    )
2033
2034
2035
2036
2037
2038
2039
                    weights_list.append(
                        (
                            f"model.layers.{moe_layer}."
                            f"mlp.experts."
                            f"{self.config.n_routed_experts + 0}"
                            f".{suffix}",
                            weights_dict[shared_expert_weight_name],
2040
                        )
2041
                    )
2042
                    names_to_remove += [shared_expert_weight_name]
2043
            weights = [w for w in weights_list if w[0] not in names_to_remove]
Liangsheng Yin's avatar
Liangsheng Yin committed
2044
2045
2046

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
2047
        expert_params_mapping = get_moe_impl_class().make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
2048
2049
2050
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
2051
            num_experts=self.config.n_routed_experts + self.num_fused_shared_experts,
Liangsheng Yin's avatar
Liangsheng Yin committed
2052
2053
        )

2054
2055
2056
2057
2058
2059
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

2060
2061
2062
2063
2064
2065
2066
2067
2068
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

Liangsheng Yin's avatar
Liangsheng Yin committed
2069
        params_dict = dict(self.named_parameters())
2070
        weight_names = []
Liangsheng Yin's avatar
Liangsheng Yin committed
2071
        for name, loaded_weight in weights:
2072
2073
            weight_names.append(name)

2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
            if not is_nextn:
                if hasattr(self.config, "num_nextn_predict_layers"):
                    num_nextn_layers = self.config.num_nextn_predict_layers
                    if num_nextn_layers > 0 and name.startswith("model.layers"):
                        name_list = name.split(".")
                        if (
                            len(name_list) >= 3
                            and int(name_list[2]) >= self.config.num_hidden_layers
                        ):
                            continue
            else:
                if not name.startswith(nextn_layer_prefix):
                    continue

                # Use shared head and embed weights from target model
                if "shared_head.head" in name or "embed_tokens" in name:
                    continue

                is_decoder = True
                # For nextn specific weights
                for weight_name in nextn_spec_weight_names:
                    if weight_name in name:
                        name = name.replace(nextn_layer_prefix, "model")
                        is_decoder = False
                        break
                # For decoder layer weights
                if is_decoder:
                    name = name.replace(nextn_layer_prefix, "model.decoder")

Liangsheng Yin's avatar
Liangsheng Yin committed
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
2136
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
2137
2138
2139
2140
2141
2142
2143
2144
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
                    if fuse_qkv_a_proj and (
                        "q_a_proj" in name or "kv_a_proj_with_mqa" in name
                    ):
                        cached_a_proj[name] = loaded_weight
                        q_a_proj_name = (
                            name
                            if "q_a_proj" in name
                            else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                        )
                        kv_a_proj_name = (
                            name
                            if "kv_a_proj_with_mqa" in name
                            else name.replace("q_a_proj", "kv_a_proj_with_mqa")
                        )

                        # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                        if (
                            q_a_proj_name in cached_a_proj
                            and kv_a_proj_name in cached_a_proj
                        ):
                            q_a_proj_weight = cached_a_proj[q_a_proj_name]
                            kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
                            fused_weight = torch.cat(
                                [q_a_proj_weight, kv_a_proj_weight], dim=0
                            )
2170
2171
2172
2173
2174
2175
                            param_name = (
                                name.replace("q_a_proj", "fused_qkv_a_proj_with_mqa")
                                if "q_a_proj" in name
                                else name.replace(
                                    "kv_a_proj_with_mqa", "fused_qkv_a_proj_with_mqa"
                                )
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
                            )
                            param = params_dict[param_name]

                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
                            weight_loader(param, fused_weight)
                            cached_a_proj.pop(q_a_proj_name)
                            cached_a_proj.pop(kv_a_proj_name)
                    else:
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
                        if (
                            "k_scale" in name or "v_scale" in name
                        ) and name not in params_dict:
                            # modelopt attn kv scale is named differently
                            if any(scale in name for scale in ["k_scale", "v_scale"]):
                                name = name.replace("_proj", "attn_mqa")
                            else:
                                logger.warning(
                                    f"Unknown scale found in checkpoint: {name}"
                                )
2196
2197
2198
2199
2200
                        param = params_dict[name]
                        weight_loader = getattr(
                            param, "weight_loader", default_weight_loader
                        )
                        weight_loader(param, loaded_weight)
Liangsheng Yin's avatar
Liangsheng Yin committed
2201

2202
        self.post_load_weights(is_nextn=is_nextn, weight_names=weight_names)
Ke Bao's avatar
Ke Bao committed
2203

2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

2215
2216
2217
2218
2219
2220
2221
2222
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
2223

HandH1998's avatar
HandH1998 committed
2224
2225
2226
2227
2228
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]