deepseek_v2.py 72.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import logging
20
import os
21
from enum import IntEnum, auto
Liangsheng Yin's avatar
Liangsheng Yin committed
22
23
24
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
25
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
26
from torch import nn
27
from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
28
from transformers import PretrainedConfig
29
30

from sglang.srt.distributed import (
Liangsheng Yin's avatar
Liangsheng Yin committed
31
    get_tensor_model_parallel_world_size,
32
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
33
34
    tensor_model_parallel_all_reduce,
)
35
from sglang.srt.layers.activation import SiluAndMul
36
37
38
39
40
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
44
    get_local_attention_dp_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
45
)
46
from sglang.srt.layers.layernorm import RMSNorm
47
48
49
50
51
52
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
53
from sglang.srt.layers.logits_processor import LogitsProcessor
fzyzcjy's avatar
fzyzcjy committed
54
from sglang.srt.layers.moe.ep_moe.layer import get_moe_impl_class
Lianmin Zheng's avatar
Lianmin Zheng committed
55
from sglang.srt.layers.moe.ep_moe.token_dispatcher import DeepEPDispatcher
56
from sglang.srt.layers.moe.topk import select_experts
57
from sglang.srt.layers.quantization.base_config import QuantizationConfig
58
from sglang.srt.layers.quantization.deep_gemm import _ENABLE_JIT_DEEPGEMM
59
60
from sglang.srt.layers.quantization.fp8_kernel import (
    per_tensor_quant_mla_fp8,
61
    per_token_group_quant_mla_deep_gemm_masked_fp8,
62
)
HandH1998's avatar
HandH1998 committed
63
from sglang.srt.layers.quantization.fp8_utils import (
64
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
65
    block_quant_to_tensor_quant,
66
    channel_quant_to_tensor_quant,
67
    normalize_e4m3fn_to_e4m3fnuz,
HandH1998's avatar
HandH1998 committed
68
)
69
70
71
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
72
from sglang.srt.layers.radix_attention import RadixAttention
73
from sglang.srt.layers.rotary_embedding import get_rope
74
75
76
77
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
78
79
80
81
from sglang.srt.managers.expert_distribution import (
    get_global_expert_distribution_recorder,
)
from sglang.srt.managers.expert_location import ModelConfigForExpertLocation
82
from sglang.srt.managers.expert_location_dispatch import ExpertLocationDispatchInfo
83
from sglang.srt.managers.schedule_batch import global_server_args_dict
84
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
85
from sglang.srt.model_loader.weight_utils import default_weight_loader
86
87
from sglang.srt.operations import execute_operations
from sglang.srt.operations_strategy import compute_layer_operations
88
89
90
91
92
93
94
95
from sglang.srt.utils import (
    BumpAllocator,
    DeepEPMode,
    add_prefix,
    get_bool_env_var,
    get_int_env_var,
    is_cuda,
    is_hip,
96
    log_info_on_rank0,
97
)
98

99
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
100
_is_cuda = is_cuda()
101

Yineng Zhang's avatar
Yineng Zhang committed
102
if _is_cuda:
103
    from sgl_kernel import awq_dequantize, bmm_fp8, merge_state_v2
104
105
106
107

    from sglang.srt.layers.quantization.deep_gemm import (
        grouped_gemm_nt_f8f8bf16_masked as deep_gemm_grouped_gemm_nt_f8f8bf16_masked,
    )
Yineng Zhang's avatar
Yineng Zhang committed
108
else:
Lianmin Zheng's avatar
Lianmin Zheng committed
109
    from vllm._custom_ops import awq_dequantize
Liangsheng Yin's avatar
Liangsheng Yin committed
110

111
112
113
114
115
if _is_hip:
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )

116
117
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
118

119
120
121
122
123
124
125
126
127
128
129
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()

130
131
132
    # Use MLA but with fused RoPE
    MLA_FUSED_ROPE = auto()

133

Liangsheng Yin's avatar
Liangsheng Yin committed
134
135
136
137
138
139
140
141
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
142
        prefix: str = "",
143
144
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
145
146
    ) -> None:
        super().__init__()
147
148
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
149
        self.gate_up_proj = MergedColumnParallelLinear(
150
151
152
153
154
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
155
156
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
157
158
159
160
161
162
163
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
164
            prefix=add_prefix("down_proj", prefix),
165
166
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
167
168
169
170
171
172
173
174
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

175
176
177
178
    def forward(self, x, forward_batch=None):
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

Liangsheng Yin's avatar
Liangsheng Yin committed
179
180
181
182
183
184
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


Ke Bao's avatar
Ke Bao committed
185
class MoEGate(nn.Module):
186
187
188
189
190
    def __init__(
        self,
        config,
        prefix: str = "",
    ):
Ke Bao's avatar
Ke Bao committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        super().__init__()
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None

    def forward(self, hidden_states):
        logits = F.linear(hidden_states, self.weight, None)
        return logits


207
208
209
210
211
212
213
214
def is_non_idle_and_non_empty(forward_mode, hidden_states):
    return (
        (forward_mode is not None)
        and not forward_mode.is_idle()
        and hidden_states.shape[0] > 0
    )


Liangsheng Yin's avatar
Liangsheng Yin committed
215
216
217
218
219
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
220
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
221
        quant_config: Optional[QuantizationConfig] = None,
222
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
223
224
225
226
227
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
228
        self.n_share_experts_fusion = global_server_args_dict["n_share_experts_fusion"]
fzyzcjy's avatar
fzyzcjy committed
229
        self.layer_id = layer_id
230

Liangsheng Yin's avatar
Liangsheng Yin committed
231
232
233
234
235
236
237
238
239
240
241
242
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

243
        self.gate = MoEGate(config=config, prefix=add_prefix("gate", prefix))
Ke Bao's avatar
Ke Bao committed
244

245
        self.experts = get_moe_impl_class()(
246
247
248
            num_experts=config.n_routed_experts
            + self.n_share_experts_fusion
            + global_server_args_dict["ep_num_redundant_experts"],
249
            top_k=config.num_experts_per_tok + min(self.n_share_experts_fusion, 1),
250
251
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
252
            layer_id=self.layer_id,
253
254
255
256
257
258
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            topk_group=config.topk_group,
            correction_bias=self.gate.e_score_correction_bias,
259
            routed_scaling_factor=self.routed_scaling_factor,
260
261
262
263
264
265
266
            prefix=add_prefix("experts", prefix),
            **(
                dict(deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]])
                if global_server_args_dict["enable_deepep_moe"]
                else {}
            ),
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
267

268
        if config.n_shared_experts is not None and self.n_share_experts_fusion == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
269
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
270
            # disable tp for shared experts when enable deepep moe
271
272
273
274
275
276
277
278
279
280
281
282
283
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
                    if global_server_args_dict["enable_deepep_moe"]
                    else {}
                ),
            )
284

285
286
        self.top_k = config.num_experts_per_tok

287
        if global_server_args_dict["enable_deepep_moe"]:
288
289
            # TODO: we will support tp < ep in the future
            self.ep_size = get_tensor_model_parallel_world_size()
290
291
292
293
            self.num_experts = (
                config.n_routed_experts
                + global_server_args_dict["ep_num_redundant_experts"]
            )
294
295
296
297
298
299
300
301
302
303
304
305
306
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

            self.deepep_dispatcher = DeepEPDispatcher(
                group=parallel_state.get_tp_group().device_group,
                router_topk=self.top_k,
                permute_fusion=True,
307
                num_experts=self.num_experts,
308
                num_local_experts=config.n_routed_experts // self.tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
309
                hidden_size=config.hidden_size,
310
                params_dtype=config.torch_dtype,
311
                deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]],
fzyzcjy's avatar
fzyzcjy committed
312
                async_finish=True,  # TODO
313
                return_recv_hook=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
314
315
            )

316
317
318
319
    @property
    def _enable_deepep_moe(self):
        return global_server_args_dict["enable_deepep_moe"]

320
321
322
323
324
325
326
    def get_moe_weights(self):
        return [
            x.data
            for name, x in self.experts.named_parameters()
            if name not in ["correction_bias"]
        ]

327
    def op_gate(self, state):
328
        if (not self._enable_deepep_moe) or is_non_idle_and_non_empty(
329
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
330
        ):
331
            # router_logits: (num_tokens, n_experts)
332
            state.router_logits = self.gate(state.hidden_states_mlp_input)
333
        else:
334
            state.router_logits = None
335

336
    def op_shared_experts(self, state):
337
338
        if (self.n_share_experts_fusion == 0) and (
            (not self._enable_deepep_moe)
339
340
341
            or is_non_idle_and_non_empty(
                state.forward_batch.forward_mode, state.hidden_states_mlp_input
            )
342
        ):
343
            state.shared_output = self.shared_experts(state.hidden_states_mlp_input)
344
        else:
345
            state.shared_output = None
346

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    def op_select_experts(self, state):
        router_logits = state.router_logits
        hidden_states = state.hidden_states_mlp_input

        if self._enable_deepep_moe:
            if router_logits is not None:
                state.topk_weights_local, state.topk_idx_local = select_experts(
                    hidden_states=hidden_states,
                    router_logits=router_logits,
                    top_k=self.top_k,
                    use_grouped_topk=True,
                    renormalize=self.renormalize,
                    topk_group=self.topk_group,
                    num_expert_group=self.num_expert_group,
                    correction_bias=self.correction_bias,
                    routed_scaling_factor=self.routed_scaling_factor,
fzyzcjy's avatar
fzyzcjy committed
363
364
365
                    expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                        layer_id=self.layer_id,
                    ),
366
367
368
369
370
371
372
373
                )
            else:
                state.topk_idx_local = torch.full(
                    (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
                )
                state.topk_weights_local = torch.empty(
                    (0, self.top_k), dtype=torch.float32, device=hidden_states.device
                )
374

375
    def op_dispatch_a(self, state):
376
        if self._enable_deepep_moe and (self.ep_size > 1):
377
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
378
379
380
381
382
            self.deepep_dispatcher.dispatch_a(
                hidden_states=state.pop("hidden_states_mlp_input"),
                topk_idx=state.pop("topk_idx_local"),
                topk_weights=state.pop("topk_weights_local"),
                forward_mode=state.forward_batch.forward_mode,
383
            )
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
    def op_dispatch_b(self, state):
        if self._enable_deepep_moe and (self.ep_size > 1):
            (
                state.hidden_states_experts_input,
                state.topk_idx_dispatched,
                state.topk_weights_dispatched,
                state.reorder_topk_ids,
                state.num_recv_tokens_per_expert,
                state.seg_indptr,
                state.masked_m,
                state.expected_m,
            ) = self.deepep_dispatcher.dispatch_b()

    def op_experts(self, state):
399
        if self._enable_deepep_moe:
400
401
402
403
404
405
406
407
408
409
410
            state.pop("router_logits")
            state.hidden_states_experts_output = self.experts(
                hidden_states=state.pop("hidden_states_experts_input"),
                topk_idx=state.topk_idx_dispatched,
                topk_weights=state.topk_weights_dispatched,
                reorder_topk_ids=state.pop("reorder_topk_ids"),
                seg_indptr=state.pop("seg_indptr"),
                masked_m=state.pop("masked_m"),
                expected_m=state.pop("expected_m"),
                num_recv_tokens_per_expert=state.pop("num_recv_tokens_per_expert"),
                forward_mode=state.forward_batch.forward_mode,
411
412
            )
        else:
413
414
415
            state.hidden_states_experts_output = self.experts(
                hidden_states=state.pop("hidden_states_mlp_input"),
                router_logits=state.pop("router_logits"),
416
417
            )

418
    def op_combine_a(self, state):
419
        if self._enable_deepep_moe and (self.ep_size > 1):
420
421
422
423
424
            self.deepep_dispatcher.combine_a(
                state.pop("hidden_states_experts_output"),
                topk_idx=state.pop("topk_idx_dispatched"),
                topk_weights=state.pop("topk_weights_dispatched"),
                forward_mode=state.forward_batch.forward_mode,
425
            )
426

427
428
429
430
431
432
433
434
435
436
437
    def op_combine_b(self, state):
        if self._enable_deepep_moe and (self.ep_size > 1):
            state.hidden_states_after_combine = self.deepep_dispatcher.combine_b()

    def op_output(self, state):
        final_hidden_states = (
            state.pop("hidden_states_after_combine")
            if self._enable_deepep_moe
            else state.pop("hidden_states_experts_output")
        )

438
439
        final_hidden_states *= self.routed_scaling_factor

440
441
        if (s := state.pop("shared_output")) is not None:
            final_hidden_states = final_hidden_states + s
Liangsheng Yin's avatar
Liangsheng Yin committed
442

443
444
        if (not self._enable_deepep_moe) and (self.tp_size > 1):
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
Liangsheng Yin's avatar
Liangsheng Yin committed
445

446
        state.hidden_states_mlp_output = final_hidden_states
447

Liangsheng Yin's avatar
Liangsheng Yin committed
448
449
450
451
452
453
454
455
456

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
473
474
        reduce_results: bool = True,
        layer_id: int = None,
475
        prefix: str = "",
476
        alt_stream: Optional[torch.cuda.Stream] = None,
477
478
479
480
481
482
483
484
485
486
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
487
488
489
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

490
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
491
492
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
493
494
495
496
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
497
498
        # For tensor parallel attention
        if self.q_lora_rank is not None:
499
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
500
                self.hidden_size,
501
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
502
503
                bias=False,
                quant_config=quant_config,
504
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
505
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
506
507
508
509
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
510
511
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
512
513
514
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
515
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
516
517
        else:
            self.q_proj = ColumnParallelLinear(
518
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
519
                self.num_heads * self.qk_head_dim,
520
521
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
522
523
524
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
525
            )
526
527
528
529
530
531
532
533
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
554
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
555
556
557
558

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

559
        self.rotary_emb = get_rope(
560
561
562
563
564
565
566
567
568
569
570
571
572
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
573
574
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
575

576
        self.attn_mqa = RadixAttention(
577
578
579
580
581
582
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
583
            quant_config=quant_config,
584
            prefix=add_prefix("attn_mqa", prefix),
585
586
        )

587
588
589
590
591
592
593
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
594
            quant_config=quant_config,
595
            prefix=add_prefix("attn_mha", prefix),
596
597
        )

598
599
        self.alt_stream = alt_stream

Ke Bao's avatar
Ke Bao committed
600
601
        self.w_kc = None
        self.w_vc = None
602
        self.w_scale = None
603

604
605
606
607
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

Lianmin Zheng's avatar
Lianmin Zheng committed
608
609
610
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
611
612
613
        self.disable_chunked_prefix_cache = global_server_args_dict[
            "disable_chunked_prefix_cache"
        ]
614
        self.attention_backend = global_server_args_dict["attention_backend"]
615
616
617
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
618

619
        # TODO: Design a finer way to determine the threshold
620
621
622
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
623
624
625
626

    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
627
628
629
630
631
632
633
634
635
636
637
638
        def _dispatch_mla_subtype():
            if _is_hip:
                if (
                    self.rocm_fused_decode_mla
                    and forward_batch.forward_mode.is_decode()
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE
                else:
                    return AttnForwardMethod.MLA
            else:
                return AttnForwardMethod.MLA

639
        if self.attention_backend == "flashinfer":
Lianmin Zheng's avatar
Lianmin Zheng committed
640
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
641
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
642
643
644
645
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
646
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
647
648
649
            ):
                return AttnForwardMethod.MHA
            else:
650
                return _dispatch_mla_subtype()
651
        elif self.attention_backend == "fa3":
652
            # Flash Attention: Use MHA with chunked KV cache when prefilling on long sequences.
653
654
            if forward_batch.extend_prefix_lens_cpu is not None:
                sum_extend_prefix_lens = sum(forward_batch.extend_prefix_lens_cpu)
655
656
657
658
659
            if (
                forward_batch.forward_mode.is_extend()
                and not self.disable_chunked_prefix_cache
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
660
661
662
663
                and (
                    sum_extend_prefix_lens >= self.chunked_prefix_cache_threshold
                    or sum_extend_prefix_lens == 0
                )
664
665
666
            ):
                return AttnForwardMethod.MHA_CHUNKED_KV
            else:
667
                return _dispatch_mla_subtype()
Lianmin Zheng's avatar
Lianmin Zheng committed
668
669
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
670
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
671
672
673
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
674
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
675
676
677
            ):
                return AttnForwardMethod.MHA
            else:
678
                return _dispatch_mla_subtype()
Lianmin Zheng's avatar
Lianmin Zheng committed
679

680
681
682
683
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
684
        forward_batch: ForwardBatch,
685
        zero_allocator: BumpAllocator,
686
    ) -> torch.Tensor:
Lianmin Zheng's avatar
Lianmin Zheng committed
687
688
689
690
691
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
            return hidden_states
692

693
694
695
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)

        if attn_forward_method == AttnForwardMethod.MHA:
696
            return self.forward_normal(positions, hidden_states, forward_batch)
697
698
699
700
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv(
                positions, hidden_states, forward_batch
            )
701
702
703
704
705
706
707
708
        elif attn_forward_method == AttnForwardMethod.MLA:
            return self.forward_absorb(
                positions, hidden_states, forward_batch, zero_allocator
            )
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
            return self.forward_absorb_fused_mla_rope(
                positions, hidden_states, forward_batch
            )
709
        else:
710
            raise NotImplementedError
711
712
713
714
715
716
717
718

    def forward_normal(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        if self.q_lora_rank is not None:
719
720
721
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
722
723
724
725
726
727
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
728
729
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

    def forward_absorb(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
762
        zero_allocator: BumpAllocator,
763
    ) -> torch.Tensor:
764
765
        from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode

766
        if self.q_lora_rank is not None:
767
768
769
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
770
771
772
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
773
            if self.alt_stream is not None and get_is_capture_mode():
774
775
776
777
778
779
780
781
782
783
784
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                q = self.q_a_layernorm(q)
                k_nope = self.kv_a_layernorm(k_nope)

            k_nope = k_nope.unsqueeze(1)
785
786
787
788
789
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
790
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
791
792
793
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

794
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
795
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
796

797
798
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
799
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
800
801
802
803
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
804
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
805
806
807
808
809
810
811
812
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
        elif self.w_kc.dtype == torch.float8_e4m3fnuz:
813
814
815
816
817
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
818
        elif self.w_kc.dtype == torch.float8_e4m3fn:
819
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
820
                q_nope.transpose(0, 1),
821
                zero_allocator.allocate(1),
822
823
824
825
826
827
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
828
829

        q_nope_out = q_nope_out.transpose(0, 1)
830
831
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

xu-yfei's avatar
xu-yfei committed
832
        if self.attention_backend == "fa3" or self.attention_backend == "flashinfer":
833
            attn_output = self.attn_mqa(
Ke Bao's avatar
Ke Bao committed
834
                q_nope_out, k_nope, k_nope, forward_batch, q_rope=q_pe, k_rope=k_pe
835
836
837
            )
        else:
            q = torch.cat([q_nope_out, q_pe], dim=-1)
Ke Bao's avatar
Ke Bao committed
838
            k = torch.cat([k_nope, k_pe], dim=-1)
839
            attn_output = self.attn_mqa(q, k, k_nope, forward_batch)
840
841
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

842
843
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
844
845
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
846
847
848
849
850
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
851
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
852
853
854
855
856
857
858
859
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
            attn_bmm_output = attn_bmm_output[:, :expected_m, :]
        elif self.w_vc.dtype == torch.float8_e4m3fnuz:
860
861
862
863
864
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
865
        elif self.w_vc.dtype == torch.float8_e4m3fn:
866
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
867
                attn_output.transpose(0, 1),
868
                zero_allocator.allocate(1),
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
        output, _ = self.o_proj(attn_output)

        return output

    def forward_absorb_fused_mla_rope(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
889
        zero_allocator: BumpAllocator,
890
891
892
893
894
895
896
897
898
    ) -> torch.Tensor:
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
899
900
901
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
902
903
904
905
906
907
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
908
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
909
910
911
912
913
914
915
916
917
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

        if self.w_kc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
918
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
919
920
921
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1007
1008
1009
1010
1011
1012
1013
        if self.w_vc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1014
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
1015
1016
1017
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1029
1030
1031
1032
        output, _ = self.o_proj(attn_output)

        return output

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
            latent_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
                self.attn_mha.layer_id
            )
            latent_cache = latent_cache_buf[
                forward_batch.prefix_chunk_kv_indices[i]
            ].contiguous()

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            lse = torch.transpose(lse, 0, 1).contiguous()
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse

        return accum_output

    def forward_normal_chunked_kv(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
        if self.q_lora_rank is not None:
1099
1100
1101
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1102
1103
1104
1105
1106
1107
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1108
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )

        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
        attn_output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        lse = torch.transpose(lse, 0, 1).contiguous()

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
        if any(forward_batch.extend_prefix_lens_cpu):
            # Only initialize the info once
            if forward_batch.num_prefix_chunks is None:
                forward_batch.prepare_chunked_prefix_cache_info(q.device)

            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1156

Liangsheng Yin's avatar
Liangsheng Yin committed
1157
1158
1159
1160
1161
1162
1163
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
1164
        is_nextn: bool = False,
1165
        prefix: str = "",
1166
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1167
1168
1169
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
1170
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
1171
1172
1173
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Lianmin Zheng's avatar
Lianmin Zheng committed
1174
1175
        self.enable_dp_attention = global_server_args_dict["enable_dp_attention"]
        self.layer_id = layer_id
Baizhou Zhang's avatar
Baizhou Zhang committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
1194
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
1195
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1196

1197
1198
1199
1200
1201
1202
1203
1204
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
            num_layers=config.num_hidden_layers,
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
1205
1206
        )

1207
        if self.is_layer_sparse:
1208
1209
1210
1211
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
1212
                layer_id=self.layer_id,
1213
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1214
        else:
1215
            if enable_moe_dense_fully_dp():
1216
1217
1218
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
1219
1220
1221
1222
1223
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
1224
                prefix=add_prefix("mlp", prefix),
1225
1226
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
1227
            )
1228

Liangsheng Yin's avatar
Liangsheng Yin committed
1229
1230
1231
1232
1233
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

1234
1235
1236
1237
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
1238
        )
1239
1240
1241
1242
1243
1244

    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
1245
1246
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
1247
1248
1249
1250
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1251
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
1252
        residual: Optional[torch.Tensor],
1253
        zero_allocator: BumpAllocator,
Liangsheng Yin's avatar
Liangsheng Yin committed
1254
    ) -> torch.Tensor:
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
        return execute_operations(
            inputs=dict(
                positions=positions,
                hidden_states=hidden_states,
                forward_batch=forward_batch,
                residual=residual,
                zero_allocator=zero_allocator,
            ),
            operations=compute_layer_operations(self),
        )

    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
1276
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
1277
1278
1279
1280
1281
1282
1283
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
            )
1284
        )
1285

1286
1287
1288
1289
1290
1291
    def op_attn(self, state):
        state.hidden_states_after_attn = self.self_attn(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
1292
1293
        )

1294
1295
1296
1297
1298
1299
1300
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
1301
        )
1302

1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
                hidden_states, state.forward_batch.forward_mode
            )
        else:
            state.hidden_states_mlp_output = hidden_states
1315

1316
    def op_comm_postprocess_layer(self, state):
1317
        hidden_states, residual = self.layer_communicator.postprocess_layer(
1318
1319
1320
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
1321
        )
1322

1323
        state.clear(expect_keys={"positions", "forward_batch", "zero_allocator"})
1324
1325
        return hidden_states, residual

Liangsheng Yin's avatar
Liangsheng Yin committed
1326
1327
1328
1329
1330
1331
1332
1333

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1334
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1335
1336
1337
1338
1339
1340
1341
1342
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
1343
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
1344
        )
1345
        self.alt_stream = torch.cuda.Stream() if _is_cuda else None
Liangsheng Yin's avatar
Liangsheng Yin committed
1346
1347
1348
1349
1350
1351
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
1352
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
1353
                    alt_stream=self.alt_stream,
Liangsheng Yin's avatar
Liangsheng Yin committed
1354
1355
1356
1357
1358
1359
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

1360
        self.dp_size = get_local_attention_dp_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1361

1362
1363
1364
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
1365
1366
1367
1368
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1369
        forward_batch: ForwardBatch,
1370
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1371
    ) -> torch.Tensor:
1372
1373
1374
1375
        zero_allocator = BumpAllocator(
            # TODO for two-batch-overlap, we need a larger buffer size
            buffer_size=len(self.layers) * 2,
            dtype=torch.float32,
1376
1377
1378
            device=(
                input_embeds.device if input_embeds is not None else input_ids.device
            ),
1379
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1380

1381
1382
1383
1384
1385
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
1386
1387
        residual = None
        for i in range(len(self.layers)):
1388
1389
1390
1391
1392
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
                    positions, hidden_states, forward_batch, residual, zero_allocator
                )
Ke Bao's avatar
Ke Bao committed
1393
        if not forward_batch.forward_mode.is_idle():
1394
1395
1396
1397
            if residual is None:
                hidden_states = self.norm(hidden_states)
            else:
                hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
1398
1399
1400
1401
1402
1403
1404
1405
1406
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1407
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1408
1409
1410
    ) -> None:
        super().__init__()
        self.config = config
1411
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
1412
        self.quant_config = quant_config
1413
1414
1415
1416
1417
1418
1419
1420
1421
        self.determine_n_share_experts_fusion()
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
1422
            use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
1423
1424
        )
        self.logits_processor = LogitsProcessor(config)
1425
        self.dp_size = get_local_attention_dp_size()
1426
1427
1428
1429

    def determine_n_share_experts_fusion(
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
1430
        self.n_share_experts_fusion = global_server_args_dict["n_share_experts_fusion"]
1431
1432
1433
        if self.n_share_experts_fusion > 0:
            # Only Deepseek V3/R1 can use shared experts fusion optimization now.
            if (
1434
1435
                not _is_cuda
                or self.config.architectures[0] != architecture
1436
1437
1438
1439
                or self.config.n_routed_experts != 256
            ):
                self.n_share_experts_fusion = 0
                global_server_args_dict["n_share_experts_fusion"] = 0
1440
1441
                log_info_on_rank0(
                    logger,
1442
                    "Only Deepseek V3/R1 on NV-platform can use shared experts fusion optimization. Shared experts fusion optimization is disabled.",
1443
1444
1445
1446
                )
            else:
                assert (
                    self.n_share_experts_fusion == self.tp_size
1447
                ), f"Shared experts fusion optimization is enabled in DeepSeek V3/R1, set it to {self.tp_size} can get best optimized performance."
1448
1449
        elif self.n_share_experts_fusion == 0:
            if (
1450
1451
                _is_cuda
                and torch.cuda.get_device_capability("cuda") >= (9, 0)
1452
                and self.config.architectures[0] == architecture
1453
1454
1455
1456
1457
                and self.config.n_routed_experts == 256
                and (not global_server_args_dict["enable_deepep_moe"])
            ):
                self.n_share_experts_fusion = self.tp_size
                global_server_args_dict["n_share_experts_fusion"] = self.tp_size
1458
1459
1460
                log_info_on_rank0(
                    logger,
                    "Deepseek V3/R1 with fp8 can use shared experts fusion optimization when SM version >=90. Shared experts fusion optimization is enabled.",
1461
                )
1462

Mick's avatar
Mick committed
1463
1464
1465
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

1466
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
1467
1468
1469
1470
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1471
        forward_batch: ForwardBatch,
1472
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1473
    ) -> torch.Tensor:
1474
1475

        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
1476

1477
1478
1479
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
1480

1481
    def post_load_weights(self, is_nextn=False):
inkcherry's avatar
inkcherry committed
1482
1483

        # Perform post-processing after loading weights
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
        layer_ids = (
            range(self.config.num_hidden_layers)
            if not is_nextn
            else [self.config.num_hidden_layers]
        )
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
1495
1496
1497
1498
1499
1500
1501
1502
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
                if _is_cuda:
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
1503
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
1516
1517
1518
1519
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False
            model_dtype = torch.get_default_dtype()

Baizhou Zhang's avatar
Baizhou Zhang committed
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
                if hasattr(self.quant_config, "weight_block_size"):
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        if _is_hip:
                            weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                                weight=w,
                                weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                                input_scale=None,
inkcherry's avatar
inkcherry committed
1533
                            )
Baizhou Zhang's avatar
Baizhou Zhang committed
1534
                        else:
inkcherry's avatar
inkcherry committed
1535
1536
                            weight = w
                            weight_scale = self_attn.kv_b_proj.weight_scale_inv
Baizhou Zhang's avatar
Baizhou Zhang committed
1537

1538
1539
1540
1541
1542
1543
                        if (
                            _is_cuda
                            and weight_block_size[0] == 128
                            and weight_block_size[1] == 128
                            and model_dtype == torch.bfloat16
                        ):
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
                            if _ENABLE_JIT_DEEPGEMM and get_bool_env_var(
                                "SGL_USE_DEEPGEMM_BMM", "false"
                            ):
                                block_scale = weight_scale
                                use_deep_gemm_bmm = True
                            else:
                                w = block_quant_dequant(
                                    weight,
                                    weight_scale,
                                    weight_block_size,
                                    model_dtype,
                                )
1556
1557
1558
1559
1560
                        else:
                            w, scale = block_quant_to_tensor_quant(
                                weight, weight_scale, weight_block_size
                            )
                            self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
                else:
                    weight = w
                    weight_scale = self_attn.kv_b_proj.weight_scale
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
1583

Baizhou Zhang's avatar
Baizhou Zhang committed
1584
1585
1586
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
            if not use_deep_gemm_bmm:
                self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
                    self_attn.w_scale = self_attn.kv_b_proj.weight_scale
                    if _is_hip:
                        self_attn.w_scale *= 2.0
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
                self_attn.w_scale_k = ws_kc.transpose(1, 2).contiguous()
                self_attn.w_scale_v = ws_vc.contiguous()
                self_attn.w_kc = w_kc.transpose(1, 2).contiguous()
                self_attn.w_vc = w_vc.contiguous()
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
1608

1609
1610
1611
1612
1613
1614
1615
1616
        # TODO support nextn later
        if not is_nextn:
            self.routed_experts_weights_of_layer = {
                layer_id: layer.mlp.get_moe_weights()
                for layer_id, layer in enumerate(self.model.layers)
                if isinstance(layer.mlp, DeepseekV2MoE)
            }

1617
1618
1619
1620
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
1621
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
1622
1623
1624
1625
1626
1627
1628
1629
1630
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

Liangsheng Yin's avatar
Liangsheng Yin committed
1631
1632
1633
1634
1635
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
1636
        if self.n_share_experts_fusion > 0:
1637
1638
            weights_list = list(weights)
            weights_dict = dict(weights_list)
1639
            if self.quant_config is None or self.quant_config.get_name() == "w8a8_int8":
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
                suffix_list = [
                    "down_proj.weight",
                    "down_proj.weight_scale",
                    "gate_proj.weight",
                    "gate_proj.weight_scale",
                    "up_proj.weight",
                    "up_proj.weight_scale",
                ]
            else:
                suffix_list = [
                    "down_proj.weight",
                    "down_proj.weight_scale_inv",
                    "gate_proj.weight",
                    "gate_proj.weight_scale_inv",
                    "up_proj.weight",
                    "up_proj.weight_scale_inv",
                ]
1657
            names_to_remove = []
1658
1659

            moe_layers = (
1660
1661
1662
1663
                range(
                    self.config.first_k_dense_replace,
                    self.config.num_hidden_layers,
                    self.config.moe_layer_freq,
1664
1665
1666
1667
1668
1669
1670
                )
                if not is_nextn
                else [nextn_layer_id]
            )

            for moe_layer in tqdm(
                moe_layers,
1671
1672
1673
                desc=f"Cloning {self.n_share_experts_fusion} "
                "replicas of the shared expert into MoE",
            ):
1674
1675
1676
1677
1678
                for suffix in suffix_list:
                    shared_expert_weight_name = (
                        f"model.layers.{moe_layer}.mlp.shared_experts.{suffix}"
                    )
                    for num_repeat in range(self.n_share_experts_fusion):
1679
1680
1681
1682
1683
1684
                        weights_list.append(
                            (
                                f"model.layers.{moe_layer}."
                                f"mlp.experts."
                                f"{self.config.n_routed_experts + num_repeat}"
                                f".{suffix}",
1685
                                weights_dict[shared_expert_weight_name],
1686
1687
                            )
                        )
1688
                    names_to_remove += [shared_expert_weight_name]
1689
            weights = [w for w in weights_list if w[0] not in names_to_remove]
Liangsheng Yin's avatar
Liangsheng Yin committed
1690
1691
1692

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
1693
        expert_params_mapping = get_moe_impl_class().make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
1694
1695
1696
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
1697
            num_experts=self.config.n_routed_experts + self.n_share_experts_fusion,
Liangsheng Yin's avatar
Liangsheng Yin committed
1698
1699
        )

1700
1701
1702
1703
1704
1705
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

1706
1707
1708
1709
1710
1711
1712
1713
1714
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

Liangsheng Yin's avatar
Liangsheng Yin committed
1715
1716
        params_dict = dict(self.named_parameters())
        for name, loaded_weight in weights:
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
            if not is_nextn:
                if hasattr(self.config, "num_nextn_predict_layers"):
                    num_nextn_layers = self.config.num_nextn_predict_layers
                    if num_nextn_layers > 0 and name.startswith("model.layers"):
                        name_list = name.split(".")
                        if (
                            len(name_list) >= 3
                            and int(name_list[2]) >= self.config.num_hidden_layers
                        ):
                            continue
            else:
                if not name.startswith(nextn_layer_prefix):
                    continue

                # Use shared head and embed weights from target model
                if "shared_head.head" in name or "embed_tokens" in name:
                    continue

                is_decoder = True
                # For nextn specific weights
                for weight_name in nextn_spec_weight_names:
                    if weight_name in name:
                        name = name.replace(nextn_layer_prefix, "model")
                        is_decoder = False
                        break
                # For decoder layer weights
                if is_decoder:
                    name = name.replace(nextn_layer_prefix, "model.decoder")

Liangsheng Yin's avatar
Liangsheng Yin committed
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
1779
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
1780
1781
1782
1783
1784
1785
1786
1787
1788
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue

1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
                    if fuse_qkv_a_proj and (
                        "q_a_proj" in name or "kv_a_proj_with_mqa" in name
                    ):
                        cached_a_proj[name] = loaded_weight
                        q_a_proj_name = (
                            name
                            if "q_a_proj" in name
                            else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                        )
                        kv_a_proj_name = (
                            name
                            if "kv_a_proj_with_mqa" in name
                            else name.replace("q_a_proj", "kv_a_proj_with_mqa")
                        )

                        # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                        if (
                            q_a_proj_name in cached_a_proj
                            and kv_a_proj_name in cached_a_proj
                        ):
                            q_a_proj_weight = cached_a_proj[q_a_proj_name]
                            kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
                            fused_weight = torch.cat(
                                [q_a_proj_weight, kv_a_proj_weight], dim=0
                            )

                            param_name = name.replace(
                                "q_a_proj", "fused_qkv_a_proj_with_mqa"
                            )
                            param = params_dict[param_name]

                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
                            weight_loader(param, fused_weight)
                            cached_a_proj.pop(q_a_proj_name)
                            cached_a_proj.pop(kv_a_proj_name)
                    else:
                        param = params_dict[name]
                        weight_loader = getattr(
                            param, "weight_loader", default_weight_loader
                        )
                        weight_loader(param, loaded_weight)
Liangsheng Yin's avatar
Liangsheng Yin committed
1832

1833
        self.post_load_weights(is_nextn=is_nextn)
Ke Bao's avatar
Ke Bao committed
1834

1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

1846
1847
1848
1849
1850
1851
1852
1853
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
1854

HandH1998's avatar
HandH1998 committed
1855
1856
1857
1858
1859
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]