"Dockerfile" did not exist on "880fbee95782a30fb16654f830502d03dd92fae2"
deepseek_v2.py 103 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import concurrent.futures
20
import logging
21
import os
22
from enum import IntEnum, auto
Liangsheng Yin's avatar
Liangsheng Yin committed
23
24
25
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
26
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
27
from torch import nn
28
from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
29
from transformers import PretrainedConfig
30
31

from sglang.srt.distributed import (
32
    get_moe_expert_parallel_world_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
33
    get_tensor_model_parallel_world_size,
34
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
35
36
    tensor_model_parallel_all_reduce,
)
37
38
39
from sglang.srt.distributed.device_communicators.pynccl_allocator import (
    use_symmetric_memory,
)
fzyzcjy's avatar
fzyzcjy committed
40
41
42
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
from sglang.srt.eplb.expert_location import ModelConfigForExpertLocation
from sglang.srt.eplb.expert_location_dispatch import ExpertLocationDispatchInfo
43
from sglang.srt.layers.activation import SiluAndMul
44
from sglang.srt.layers.amx_utils import PackWeightMethod
45
46
47
48
49
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
50
51
52
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
53
    is_dp_attention_enabled,
Lianmin Zheng's avatar
Lianmin Zheng committed
54
)
55
from sglang.srt.layers.layernorm import RMSNorm
56
57
58
59
60
61
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
62
from sglang.srt.layers.logits_processor import LogitsProcessor
63
from sglang.srt.layers.moe import get_deepep_mode, get_moe_a2a_backend
64
from sglang.srt.layers.moe.ep_moe.layer import DeepEPMoE, get_moe_impl_class
65
from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoE
66
from sglang.srt.layers.moe.topk import TopK
67
from sglang.srt.layers.quantization import deep_gemm_wrapper
68
from sglang.srt.layers.quantization.base_config import QuantizationConfig
69
from sglang.srt.layers.quantization.fp8_kernel import (
70
    is_fp8_fnuz,
71
    per_tensor_quant_mla_fp8,
72
    per_token_group_quant_mla_deep_gemm_masked_fp8,
73
)
HandH1998's avatar
HandH1998 committed
74
from sglang.srt.layers.quantization.fp8_utils import (
75
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
76
    block_quant_to_tensor_quant,
77
    channel_quant_to_tensor_quant,
78
    normalize_e4m3fn_to_e4m3fnuz,
79
    requant_weight_ue8m0_inplace,
HandH1998's avatar
HandH1998 committed
80
)
81
82
83
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
84
from sglang.srt.layers.radix_attention import RadixAttention
85
from sglang.srt.layers.rotary_embedding import get_rope, get_rope_wrapper
86
from sglang.srt.layers.utils import is_sm100_supported
87
88
89
90
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
91
from sglang.srt.managers.schedule_batch import global_server_args_dict
92
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
93
from sglang.srt.model_loader.weight_utils import default_weight_loader
94
95
96
97
from sglang.srt.two_batch_overlap import (
    MaybeTboDeepEPDispatcher,
    model_forward_maybe_tbo,
)
98
99
from sglang.srt.utils import (
    BumpAllocator,
100
    LazyValue,
101
    add_prefix,
102
    bind_or_assign,
103
    cpu_has_amx_support,
104
    get_bool_env_var,
105
    get_device_sm,
106
    get_int_env_var,
107
    is_cpu,
108
    is_cuda,
109
    is_flashinfer_available,
110
    is_hip,
111
    is_non_idle_and_non_empty,
112
    log_info_on_rank0,
113
    use_intel_amx_backend,
114
)
115

116
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
117
_is_cuda = is_cuda()
118
_is_fp8_fnuz = is_fp8_fnuz()
119
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
120
121
_is_cpu_amx_available = cpu_has_amx_support()
_is_cpu = is_cpu()
122
_device_sm = get_device_sm()
123

Yineng Zhang's avatar
Yineng Zhang committed
124
if _is_cuda:
125
126
127
128
129
130
131
    from sgl_kernel import (
        awq_dequantize,
        bmm_fp8,
        dsv3_fused_a_gemm,
        dsv3_router_gemm,
        merge_state_v2,
    )
132
133
elif _is_cpu and _is_cpu_amx_available:
    pass
134
135
136
137
elif _is_hip:
    from sglang.srt.layers.quantization.awq_triton import (
        awq_dequantize_triton as awq_dequantize,
    )
Yineng Zhang's avatar
Yineng Zhang committed
138
else:
Lianmin Zheng's avatar
Lianmin Zheng committed
139
    from vllm._custom_ops import awq_dequantize
Liangsheng Yin's avatar
Liangsheng Yin committed
140

141
142
143
144
145
if _is_hip:
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )

146
147
148
_is_flashinfer_available = is_flashinfer_available()
_is_sm100_supported = is_cuda() and is_sm100_supported()

149

150
151
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
152

153
154
155
156
157
158
159
160
161
162
163
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()

164
165
166
    # Use MLA but with fused RoPE
    MLA_FUSED_ROPE = auto()

167
168
169
    # Use MLA with fused RoPE kernel for CPU
    MLA_FUSED_ROPE_CPU = auto()

170

Liangsheng Yin's avatar
Liangsheng Yin committed
171
172
173
174
175
176
177
178
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
179
        prefix: str = "",
180
181
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
182
183
    ) -> None:
        super().__init__()
184
185
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
186
        self.gate_up_proj = MergedColumnParallelLinear(
187
188
189
190
191
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
192
193
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
194
195
196
197
198
199
200
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
201
            prefix=add_prefix("down_proj", prefix),
202
203
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
204
205
206
207
208
209
210
211
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

212
213
214
215
    def forward(
        self,
        x,
        forward_batch=None,
216
        should_allreduce_fusion: bool = False,
217
218
        use_reduce_scatter: bool = False,
    ):
219
220
221
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

Liangsheng Yin's avatar
Liangsheng Yin committed
222
223
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
224
        x, _ = self.down_proj(
225
            x, skip_all_reduce=should_allreduce_fusion or use_reduce_scatter
226
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
227
228
229
        return x


Ke Bao's avatar
Ke Bao committed
230
class MoEGate(nn.Module):
231
232
233
234
    def __init__(
        self,
        config,
        prefix: str = "",
235
        is_nextn: bool = False,
236
    ):
Ke Bao's avatar
Ke Bao committed
237
        super().__init__()
238
        self.is_nextn = is_nextn
Ke Bao's avatar
Ke Bao committed
239
240
241
242
243
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
244
                torch.empty((config.n_routed_experts), dtype=torch.float32)
Ke Bao's avatar
Ke Bao committed
245
246
247
            )
        else:
            self.e_score_correction_bias = None
248
249
        if _is_cpu and _is_cpu_amx_available:
            self.quant_method = PackWeightMethod(weight_names=["weight"])
Ke Bao's avatar
Ke Bao committed
250
251

    def forward(self, hidden_states):
252
        if use_intel_amx_backend(self):
253
254
255
256
257
258
259
            return torch.ops.sgl_kernel.weight_packed_linear(
                hidden_states,
                self.weight,
                None,  # bias
                True,  # is_vnni
            )

260
        # NOTE: For some unknown reason, router_gemm seems degrade accept length.
261
        if (
262
            _is_cuda
263
            and hidden_states.shape[0] <= 16
264
265
266
267
            and hidden_states.shape[1] == 7168
            and self.weight.shape[0] == 256
            and _device_sm >= 90
        ):
268
269
            # router gemm output float32
            logits = dsv3_router_gemm(hidden_states, self.weight)
270
271
272
        else:
            logits = F.linear(hidden_states, self.weight, None)

Ke Bao's avatar
Ke Bao committed
273
274
275
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
276
277
278
279
280
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
281
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
282
        quant_config: Optional[QuantizationConfig] = None,
283
        prefix: str = "",
284
        alt_stream: Optional[torch.cuda.Stream] = None,
285
        is_nextn: bool = False,
Liangsheng Yin's avatar
Liangsheng Yin committed
286
287
288
289
290
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
291
292
293
294
295
        self.num_fused_shared_experts = (
            0
            if global_server_args_dict["disable_shared_experts_fusion"]
            else config.n_shared_experts
        )
296
        self.config = config
fzyzcjy's avatar
fzyzcjy committed
297
        self.layer_id = layer_id
298
        self.alt_stream = alt_stream
299

Liangsheng Yin's avatar
Liangsheng Yin committed
300
301
302
303
304
305
306
307
308
309
310
311
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

312
313
314
        self.gate = MoEGate(
            config=config, prefix=add_prefix("gate", prefix), is_nextn=is_nextn
        )
Ke Bao's avatar
Ke Bao committed
315

316
317
318
319
320
321
322
323
324
        self.topk = TopK(
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
            renormalize=config.norm_topk_prob,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            num_fused_shared_experts=self.num_fused_shared_experts,
            topk_group=config.topk_group,
            correction_bias=self.gate.e_score_correction_bias,
            routed_scaling_factor=self.routed_scaling_factor,
325
326
        )

327
        self.experts = get_moe_impl_class()(
328
            num_experts=config.n_routed_experts
329
            + self.num_fused_shared_experts
330
            + global_server_args_dict["ep_num_redundant_experts"],
Cheng Wan's avatar
Cheng Wan committed
331
            num_fused_shared_experts=self.num_fused_shared_experts,
332
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
333
334
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
335
            layer_id=self.layer_id,
336
            quant_config=quant_config,
337
            routed_scaling_factor=self.routed_scaling_factor,
338
339
            prefix=add_prefix("experts", prefix),
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
340

341
342
343
        self.shared_experts_is_int8 = False
        self.shared_experts_is_fp8 = False
        self.shared_experts_weight_block_size = None
344
        if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
345
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
346
            # disable tp for shared experts when enable deepep moe
347
348
349
350
351
352
353
354
355
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
356
                    if get_moe_a2a_backend().is_deepep()
357
358
359
                    else {}
                ),
            )
AniZpZ's avatar
AniZpZ committed
360
361
362
363
            is_packed_weight = hasattr(
                self.shared_experts.gate_up_proj.quant_method, "quant_config"
            ) and self.shared_experts.gate_up_proj.quant_method.quant_config.get_name() in {
                "awq",
364
                "awq_marlin",
AniZpZ's avatar
AniZpZ committed
365
366
                "moe_wna16",
            }
367
            self.shared_experts_is_int8 = (
368
369
                not is_packed_weight
                and self.shared_experts.gate_up_proj.weight.dtype == torch.int8
370
371
            )
            self.shared_experts_is_fp8 = (
372
373
                not is_packed_weight
                and self.shared_experts.gate_up_proj.weight.dtype == torch.float8_e4m3fn
374
375
376
377
378
379
380
381
382
            )
            if self.shared_experts_is_fp8:
                assert (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                    == self.shared_experts.down_proj.quant_method.quant_config.weight_block_size
                )
                self.shared_experts_weight_block_size = (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                )
383

384
385
        self.top_k = config.num_experts_per_tok

386
        if get_moe_a2a_backend().is_deepep():
387
            # TODO: we will support tp < ep in the future
388
            self.ep_size = get_moe_expert_parallel_world_size()
389
390
391
392
            self.num_experts = (
                config.n_routed_experts
                + global_server_args_dict["ep_num_redundant_experts"]
            )
393
394
395
396
397
398
399
400
401
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

402
            self.deepep_dispatcher = MaybeTboDeepEPDispatcher(
403
404
405
                group=parallel_state.get_tp_group().device_group,
                router_topk=self.top_k,
                permute_fusion=True,
406
                num_experts=self.num_experts,
407
                num_local_experts=config.n_routed_experts // self.tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
408
                hidden_size=config.hidden_size,
409
                params_dtype=config.torch_dtype,
410
                deepep_mode=get_deepep_mode(),
411
                async_finish=True,
412
                return_recv_hook=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
413
414
            )

415
        self._enable_deepep_moe = get_moe_a2a_backend().is_deepep()
416

417
418
419
420
421
422
423
    def get_moe_weights(self):
        return [
            x.data
            for name, x in self.experts.named_parameters()
            if name not in ["correction_bias"]
        ]

424
    def forward(
425
426
427
        self,
        hidden_states: torch.Tensor,
        forward_batch: Optional[ForwardBatch] = None,
428
        should_allreduce_fusion: bool = False,
429
        use_reduce_scatter: bool = False,
430
431
    ) -> torch.Tensor:
        if not self._enable_deepep_moe:
432
433
434
435
436
437
            DUAL_STREAM_TOKEN_THRESHOLD = 1024
            if (
                self.alt_stream is not None
                and self.num_fused_shared_experts == 0
                and hidden_states.shape[0] <= DUAL_STREAM_TOKEN_THRESHOLD
            ):
438
                return self.forward_normal_dual_stream(
439
                    hidden_states, should_allreduce_fusion, use_reduce_scatter
440
                )
441
            else:
442
                return self.forward_normal(
443
                    hidden_states, should_allreduce_fusion, use_reduce_scatter
444
                )
445
446
447
        else:
            return self.forward_deepep(hidden_states, forward_batch)

448
    def forward_normal_dual_stream(
449
450
        self,
        hidden_states: torch.Tensor,
451
        should_allreduce_fusion: bool = False,
452
        use_reduce_scatter: bool = False,
453
    ) -> torch.Tensor:
454

455
456
457
        current_stream = torch.cuda.current_stream()
        self.alt_stream.wait_stream(current_stream)
        shared_output = self._forward_shared_experts(hidden_states)
458

459
        with torch.cuda.stream(self.alt_stream):
460
461
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
Cheng Wan's avatar
Cheng Wan committed
462
463
            topk_output = self.topk(hidden_states, router_logits)
            final_hidden_states = self.experts(hidden_states, topk_output)
464
465
            if not _is_cuda:
                final_hidden_states *= self.routed_scaling_factor
Cheng Wan's avatar
Cheng Wan committed
466

467
        current_stream.wait_stream(self.alt_stream)
468
469
        with use_symmetric_memory(parallel_state.get_tp_group()) as sm:
            final_hidden_states_out = torch.empty_like(final_hidden_states)
Cheng Wan's avatar
Cheng Wan committed
470

471
472
473
        torch.add(final_hidden_states, shared_output, out=final_hidden_states_out)
        final_hidden_states = final_hidden_states_out
        sm.tag(final_hidden_states)
474
        if self.tp_size > 1 and not should_allreduce_fusion and not use_reduce_scatter:
475
476
477
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

478
    def forward_normal(
479
480
        self,
        hidden_states: torch.Tensor,
481
        should_allreduce_fusion: bool = False,
482
        use_reduce_scatter: bool = False,
483
    ) -> torch.Tensor:
484
485
        if hasattr(self, "shared_experts") and use_intel_amx_backend(
            self.shared_experts.gate_up_proj
486
        ):
487
            return self.forward_cpu(hidden_states, should_allreduce_fusion)
488

489
490
491
        shared_output = self._forward_shared_experts(hidden_states)
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
Cheng Wan's avatar
Cheng Wan committed
492
        topk_output = self.topk(hidden_states, router_logits)
493

Cheng Wan's avatar
Cheng Wan committed
494
        final_hidden_states = self.experts(hidden_states, topk_output)
495
496
        if not _is_cuda and not _use_aiter:
            # fused in biased_grouped_topk so we can skip here
497
            final_hidden_states *= self.routed_scaling_factor
498
        if shared_output is not None:
499
500
501
502
503
            with use_symmetric_memory(parallel_state.get_tp_group()) as sm:
                final_hidden_states_out = torch.empty_like(final_hidden_states)
            torch.add(final_hidden_states, shared_output, out=final_hidden_states_out)
            final_hidden_states = final_hidden_states_out
            sm.tag(final_hidden_states)
504
        if self.tp_size > 1 and not should_allreduce_fusion and not use_reduce_scatter:
505
506
507
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

508
    def forward_cpu(
509
510
511
        self,
        hidden_states: torch.Tensor,
        should_allreduce_fusion: bool = False,
512
    ) -> torch.Tensor:
513
514
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
515
        topk_output = self.topk(hidden_states, router_logits)
516
        fused_experts_out = self.experts(
517
            hidden_states=hidden_states, topk_output=topk_output
518
519
        )

520
521
522
        assert use_intel_amx_backend(
            self.shared_experts.gate_up_proj
        ) == use_intel_amx_backend(self.shared_experts.down_proj)
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
        # [Note] inplace should be False in fused_experts.
        # If inplace is True in fused_experts (self.experts), hidden_states will be changed after fused_experts
        # While hidden_states is still needed in shared_expert.
        final_hidden_states = torch.ops.sgl_kernel.shared_expert_cpu(
            hidden_states,
            self.shared_experts.gate_up_proj.weight,
            self.shared_experts.down_proj.weight,
            fused_experts_out,
            self.routed_scaling_factor,
            True,  # inplace
            self.shared_experts_is_int8,  # use_int8_w8a8
            self.shared_experts_is_fp8,  # use_fp8_w8a16
            (
                self.shared_experts.gate_up_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.gate_up_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w1_scale
            (
                self.shared_experts.down_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.down_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w2_scale
            (
                self.shared_experts_weight_block_size
                if self.shared_experts_is_fp8
                else None
            ),  # block_size
            None,  # a1_scale
            None,  # a2_scale
            True,  # is_vnni
        )
562
        if self.tp_size > 1 and not should_allreduce_fusion:
563
564
565
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

566
567
568
569
    def forward_deepep(
        self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        shared_output = None
Cheng Wan's avatar
Cheng Wan committed
570
        if hidden_states.shape[0] > 0:
571
572
573
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
            shared_output = self._forward_shared_experts(hidden_states)
574
575
576
            topk_weights, topk_idx, _ = self.topk(
                hidden_states,
                router_logits,
577
                num_token_non_padded=forward_batch.num_token_non_padded,
578
579
580
                expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                    layer_id=self.layer_id,
                ),
581
582
583
584
585
586
587
588
            )
        else:
            topk_idx = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            topk_weights = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
589

590
591
592
593
        final_hidden_states = self.experts(
            hidden_states=hidden_states,
            topk_idx=topk_idx,
            topk_weights=topk_weights,
594
            forward_batch=forward_batch,
595
596
597
        )

        if shared_output is not None:
598
599
600
601
602
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
603
604
605
606

        return final_hidden_states

    def _forward_shared_experts(self, hidden_states):
607
        if self.num_fused_shared_experts == 0:
608
609
610
611
            return self.shared_experts(hidden_states)
        else:
            return None

612
    def op_gate(self, state):
613
        if is_non_idle_and_non_empty(
614
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
615
        ):
616
            # router_logits: (num_tokens, n_experts)
617
            state.router_logits = self.gate(state.hidden_states_mlp_input)
618
        else:
619
            state.router_logits = None
620

621
    def op_shared_experts(self, state):
622
        hidden_states_mlp_input = state.pop("hidden_states_mlp_input")
623
        if (self.num_fused_shared_experts == 0) and is_non_idle_and_non_empty(
624
            state.forward_batch.forward_mode, hidden_states_mlp_input
625
        ):
626
            state.shared_output = self.shared_experts(hidden_states_mlp_input)
627
        else:
628
            state.shared_output = None
629

630
    def op_select_experts(self, state):
631
        router_logits = state.pop("router_logits")
632
633
        hidden_states = state.hidden_states_mlp_input

634
        if router_logits is not None:
635
636
637
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
638
                state.topk_weights_local, state.topk_idx_local, _ = self.topk(
639
640
641
642
643
644
645
                    hidden_states=hidden_states,
                    router_logits=router_logits,
                    num_token_non_padded=state.forward_batch.num_token_non_padded,
                    expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                        layer_id=self.layer_id,
                    ),
                )
646
647
648
649
650
651
652
        else:
            state.topk_idx_local = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            state.topk_weights_local = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
653

654
    def op_dispatch_a(self, state):
655
        if self.ep_size > 1:
656
            self.experts.deepep_dispatcher.dispatch_a(
657
                hidden_states=state.hidden_states_mlp_input,
658
659
                topk_idx=state.pop("topk_idx_local"),
                topk_weights=state.pop("topk_weights_local"),
660
                forward_batch=state.forward_batch,
661
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
662
            )
663

664
    def op_dispatch_b(self, state):
665
666
667
668
        if self.ep_size > 1:
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
669
                state.dispatch_output = self.experts.deepep_dispatcher.dispatch_b(
670
671
                    tbo_subbatch_index=state.get("tbo_subbatch_index"),
                )
672
673

    def op_experts(self, state):
674
675
        state.hidden_states_experts_output = self.experts.moe_impl(
            dispatch_output=state.dispatch_output,
676
        )
677

678
    def op_combine_a(self, state):
679
        if self.ep_size > 1:
680
            self.experts.deepep_dispatcher.combine_a(
681
                hidden_states=state.pop("hidden_states_experts_output"),
682
683
                topk_idx=state.dispatch_output.topk_idx,
                topk_weights=state.dispatch_output.topk_weights,
684
                forward_batch=state.forward_batch,
685
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
686
            )
687
            state.pop("dispatch_output")
688

689
    def op_combine_b(self, state):
690
        if self.ep_size > 1:
691
692
693
694
            state.hidden_states_after_combine = (
                self.experts.deepep_dispatcher.combine_b(
                    tbo_subbatch_index=state.get("tbo_subbatch_index"),
                )
695
            )
696
697

    def op_output(self, state):
698
        final_hidden_states = state.pop("hidden_states_after_combine")
699
700
701
702
703
704
705

        if (shared_output := state.pop("shared_output")) is not None:
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
Liangsheng Yin's avatar
Liangsheng Yin committed
706

707
        state.hidden_states_mlp_output = final_hidden_states
708

Liangsheng Yin's avatar
Liangsheng Yin committed
709
710
711
712
713
714
715
716
717

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
734
735
        reduce_results: bool = True,
        layer_id: int = None,
736
        prefix: str = "",
737
        alt_stream: Optional[torch.cuda.Stream] = None,
738
739
740
741
742
743
744
745
746
747
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
748
749
750
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

751
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
752
753
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
754
755
756
757
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
758
759
        # For tensor parallel attention
        if self.q_lora_rank is not None:
760
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
761
                self.hidden_size,
762
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
763
764
                bias=False,
                quant_config=quant_config,
765
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
766
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
767
768
769
770
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
771
772
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
773
774
775
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
776
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
777
778
        else:
            self.q_proj = ColumnParallelLinear(
779
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
780
                self.num_heads * self.qk_head_dim,
781
782
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
783
784
785
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
786
            )
787
788
789
790
791
792
793
794
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
815
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
816
817
818
819

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

820
        self.rotary_emb = get_rope_wrapper(
821
822
823
824
825
826
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
827
            device=global_server_args_dict["device"],
828
829
830
831
832
833
834
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
835
836
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
837

838
        self.attn_mqa = RadixAttention(
839
840
841
842
843
844
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
845
            quant_config=quant_config,
846
            prefix=add_prefix("attn_mqa", prefix),
847
848
        )

849
850
851
852
853
854
855
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
856
            quant_config=quant_config,
857
            prefix=add_prefix("attn_mha", prefix),
858
859
        )

860
        self.alt_stream = alt_stream
861
        self.attn_mha.kv_b_proj = None
862

Ke Bao's avatar
Ke Bao committed
863
864
        self.w_kc = None
        self.w_vc = None
865
        self.w_scale = 1.0
866

867
868
869
870
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

Lianmin Zheng's avatar
Lianmin Zheng committed
871
872
873
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
874
875
876
        self.disable_chunked_prefix_cache = global_server_args_dict[
            "disable_chunked_prefix_cache"
        ]
877
878
879
880

        self.current_attention_backend = (
            None  # Attention backend used by current forward batch
        )
881
882
883
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
884

885
        # TODO: Design a finer way to determine the threshold
886
887
888
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
889

890
891
892
        # If we have self.fused_qkv_a_proj_with_mqa and we're running on CPU, we will choose the torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight kernel
        # which requires self.w_kc and self.w_vc to be packed.
        # If not, we will use torch.bmm and weight shouldn't be packed in this case
AniZpZ's avatar
AniZpZ committed
893
894
        has_fused_proj = hasattr(self, "fused_qkv_a_proj_with_mqa")
        if has_fused_proj and _is_cpu and _is_cpu_amx_available:
895
896
897
898
            self.quant_method = PackWeightMethod(
                weight_names=["w_kc", "w_vc"], transpose_dims=[[1, 2], [1, 2]]
            )

899
        is_packed_weight = (
AniZpZ's avatar
AniZpZ committed
900
901
902
            has_fused_proj
            and hasattr(self.fused_qkv_a_proj_with_mqa.quant_method, "quant_config")
            and self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.get_name()
903
            in {"awq", "awq_marlin", "moe_wna16"}
904
        )
905
        self.use_min_latency_fused_a_gemm = (
AniZpZ's avatar
AniZpZ committed
906
            has_fused_proj
907
            and not is_packed_weight
908
909
910
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.bfloat16
            and self.fused_qkv_a_proj_with_mqa.weight.shape[0] == 2112
            and self.fused_qkv_a_proj_with_mqa.weight.shape[1] == 7168
911
            and _is_cuda
912
            and _device_sm >= 90
913
914
        )

915
        self.qkv_proj_with_rope_is_int8 = (
AniZpZ's avatar
AniZpZ committed
916
            has_fused_proj
917
            and not is_packed_weight
918
919
920
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.int8
        )
        self.qkv_proj_with_rope_is_fp8 = (
AniZpZ's avatar
AniZpZ committed
921
            has_fused_proj
922
            and not is_packed_weight
923
924
925
926
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.float8_e4m3fn
        )

        self.weight_block_size = None
927
928
929
930
931
932
        if self.qkv_proj_with_rope_is_fp8 and _is_cpu and _is_cpu_amx_available:
            assert getattr(
                self.fused_qkv_a_proj_with_mqa.quant_method, "block_quant", False
            ) == getattr(self.q_b_proj.quant_method, "block_quant", False)
            use_block_quant = getattr(
                self.fused_qkv_a_proj_with_mqa.quant_method, "block_quant", False
933
934
            )

935
936
937
938
939
940
941
942
943
            if use_block_quant:
                assert (
                    self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
                    == self.q_b_proj.quant_method.quant_config.weight_block_size
                )
                self.weight_block_size = (
                    self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
                )

944
945
946
    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
947
948
949
950
951
952
953
954
955
956
        def _dispatch_mla_subtype():
            if _is_hip:
                if (
                    self.rocm_fused_decode_mla
                    and forward_batch.forward_mode.is_decode()
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE
                else:
                    return AttnForwardMethod.MLA
            else:
957
958
                if hasattr(self, "fused_qkv_a_proj_with_mqa") and use_intel_amx_backend(
                    self
959
960
961
962
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE_CPU
                else:
                    return AttnForwardMethod.MLA
963

964
965
966
967
968
969
970
971
        # Determine attention backend used by current forward batch
        if forward_batch.forward_mode.is_decode_or_idle():
            attention_backend = global_server_args_dict["decode_attention_backend"]
        else:
            attention_backend = global_server_args_dict["prefill_attention_backend"]
        self.current_attention_backend = attention_backend

        if attention_backend == "ascend":
972
            return AttnForwardMethod.MLA
973
        elif attention_backend == "flashinfer":
Lianmin Zheng's avatar
Lianmin Zheng committed
974
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
975
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
976
977
978
979
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
980
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
981
982
983
            ):
                return AttnForwardMethod.MHA
            else:
984
                return _dispatch_mla_subtype()
985
        elif attention_backend == "fa3":
986
            # Flash Attention: Use MHA with chunked KV cache when prefilling on long sequences.
987
988
            if forward_batch.extend_prefix_lens_cpu is not None:
                sum_extend_prefix_lens = sum(forward_batch.extend_prefix_lens_cpu)
989
990
991
992
993
            if (
                forward_batch.forward_mode.is_extend()
                and not self.disable_chunked_prefix_cache
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
994
995
996
997
                and (
                    sum_extend_prefix_lens >= self.chunked_prefix_cache_threshold
                    or sum_extend_prefix_lens == 0
                )
998
999
1000
            ):
                return AttnForwardMethod.MHA_CHUNKED_KV
            else:
1001
                return _dispatch_mla_subtype()
1002
        elif attention_backend == "aiter":
1003
1004
1005
1006
1007
1008
1009
1010
            if (
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
            ):
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
Lianmin Zheng's avatar
Lianmin Zheng committed
1011
1012
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
1013
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1014
1015
1016
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
1017
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
1018
1019
1020
            ):
                return AttnForwardMethod.MHA
            else:
1021
                return _dispatch_mla_subtype()
Lianmin Zheng's avatar
Lianmin Zheng committed
1022

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
    def op_prepare(self, state):
        state.attn_intermediate_state = self.forward_prepare(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
        )

    def op_core(self, state):
        state.hidden_states_after_attn = self.forward_core(
            state.pop("attn_intermediate_state")
        )

1036
1037
1038
1039
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1040
        forward_batch: ForwardBatch,
1041
        zero_allocator: BumpAllocator,
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
    ):
        s = self.forward_prepare(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )
        return self.forward_core(s)

    def forward_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
1058
1059
1060
        if self.attn_mha.kv_b_proj is None:
            self.attn_mha.kv_b_proj = self.kv_b_proj

Lianmin Zheng's avatar
Lianmin Zheng committed
1061
1062
1063
1064
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
1065
            return hidden_states, None, forward_batch, None
1066

1067
1068
1069
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)

        if attn_forward_method == AttnForwardMethod.MHA:
1070
1071
1072
            inner_state = self.forward_normal_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1073
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
1074
1075
            inner_state = self.forward_normal_chunked_kv_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1076
            )
1077
        elif attn_forward_method == AttnForwardMethod.MLA:
1078
            inner_state = self.forward_absorb_prepare(
1079
1080
1081
                positions, hidden_states, forward_batch, zero_allocator
            )
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
1082
1083
            inner_state = self.forward_absorb_fused_mla_rope_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1084
            )
1085
1086
1087
1088
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            inner_state = self.forward_absorb_fused_mla_rope_cpu_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1089
        else:
1090
            raise NotImplementedError
1091
        return None, attn_forward_method, forward_batch, inner_state
1092

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
    def forward_core(self, intermediate_state):
        hidden_states, attn_forward_method, forward_batch, inner_state = (
            intermediate_state
        )
        if inner_state is None:
            return hidden_states

        if attn_forward_method == AttnForwardMethod.MHA:
            return self.forward_normal_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA:
            return self.forward_absorb_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
            return self.forward_absorb_fused_mla_rope_core(*inner_state)
1108
1109
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            return self.forward_absorb_fused_mla_rope_cpu_core(*inner_state)
1110
1111
1112
1113
        else:
            raise NotImplementedError

    def forward_normal_prepare(
1114
1115
1116
1117
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1118
1119
        zero_allocator: BumpAllocator,
    ):
1120
        if self.q_lora_rank is not None:
1121
1122
1123
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1124
1125
1126
1127
1128
1129
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1130
1131
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

1132
1133
1134
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
1135
        kv_a = self.kv_a_layernorm(kv_a)
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
1154
1155
1156
1157

        return q, k, v, forward_batch

    def forward_normal_core(self, q, k, v, forward_batch):
1158
1159
1160
1161
1162
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

Faraz's avatar
Faraz committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
    def _fuse_rope_for_trtllm_mla(self, forward_batch: ForwardBatch) -> bool:
        """
        Check if we should skip rope and do fused rope+quantize for TRTLLM MLA decode in fp8_e4m3 path.
        """
        return (
            self.current_attention_backend == "trtllm_mla"
            and forward_batch.forward_mode.is_decode_or_idle()
            and forward_batch.attn_backend.data_type == torch.float8_e4m3fn
        )

1173
    def forward_absorb_prepare(
1174
1175
1176
1177
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1178
        zero_allocator: BumpAllocator,
1179
    ):
1180
1181
        from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode

1182
        if self.q_lora_rank is not None:
1183
1184
1185
1186
1187
1188
1189
            if hidden_states.shape[0] <= 16 and self.use_min_latency_fused_a_gemm:
                fused_qkv_a_proj_out = dsv3_fused_a_gemm(
                    hidden_states, self.fused_qkv_a_proj_with_mqa.weight.T
                )
            else:
                fused_qkv_a_proj_out = self.fused_qkv_a_proj_with_mqa(hidden_states)[0]
            q, latent_cache = fused_qkv_a_proj_out.split(
1190
1191
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1192
1193
1194
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
1195
            if self.alt_stream is not None and get_is_capture_mode():
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                q = self.q_a_layernorm(q)
                k_nope = self.kv_a_layernorm(k_nope)

            k_nope = k_nope.unsqueeze(1)
1207
1208
1209
1210
1211
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1212
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1213
1214
1215
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

1216
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
1217
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
1218

1219
1220
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
1221
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
1222
1223
1224
1225
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
1226
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1227
1228
1229
1230
1231
1232
1233
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
1234
1235
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1236
1237
1238
1239
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
1240
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1241
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1242
                q_nope.transpose(0, 1),
1243
                zero_allocator.allocate(1),
1244
1245
1246
1247
1248
1249
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
1250
1251

        q_nope_out = q_nope_out.transpose(0, 1)
Faraz's avatar
Faraz committed
1252
1253
1254

        if not self._fuse_rope_for_trtllm_mla(forward_batch):
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
1255

1256
1257
1258
1259
1260
        return q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator

    def forward_absorb_core(
        self, q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator
    ):
1261
        if (
1262
1263
1264
            self.current_attention_backend == "fa3"
            or self.current_attention_backend == "flashinfer"
            or self.current_attention_backend == "cutlass_mla"
1265
            or self.current_attention_backend == "trtllm_mla"
1266
        ):
Faraz's avatar
Faraz committed
1267
1268
1269
1270
1271
1272
            extra_args = {}
            if self._fuse_rope_for_trtllm_mla(forward_batch):
                extra_args = {
                    "cos_sin_cache": self.rotary_emb.cos_sin_cache,
                    "is_neox": self.rotary_emb.is_neox_style,
                }
1273
            attn_output = self.attn_mqa(
Faraz's avatar
Faraz committed
1274
1275
1276
1277
1278
1279
1280
                q_nope_out,
                k_nope,
                k_nope,
                forward_batch,
                q_rope=q_pe,
                k_rope=k_pe,
                **extra_args,
1281
1282
1283
            )
        else:
            q = torch.cat([q_nope_out, q_pe], dim=-1)
Ke Bao's avatar
Ke Bao committed
1284
            k = torch.cat([k_nope, k_pe], dim=-1)
1285
            attn_output = self.attn_mqa(q, k, k_nope, forward_batch)
1286
1287
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1288
1289
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
1290
1291
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
1292
1293
1294
1295
1296
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
1297
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1298
1299
1300
1301
1302
1303
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
Ke Bao's avatar
Ke Bao committed
1304
1305
1306
            attn_bmm_output = (
                attn_bmm_output[:, :expected_m, :].transpose(0, 1).flatten(1, 2)
            )
1307
1308
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1309
1310
1311
1312
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
Ke Bao's avatar
Ke Bao committed
1313
            attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1314
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1315
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1316
                attn_output.transpose(0, 1),
1317
                zero_allocator.allocate(1),
1318
1319
1320
1321
1322
1323
1324
1325
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
Ke Bao's avatar
Ke Bao committed
1326
            attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1327
        else:
Ke Bao's avatar
Ke Bao committed
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
            attn_bmm_output = torch.empty(
                (attn_output.shape[0], self.num_local_heads * self.v_head_dim),
                dtype=attn_output.dtype,
                device=attn_output.device,
            )
            torch.bmm(
                attn_output.transpose(0, 1),
                self.w_vc,
                out=attn_bmm_output.view(
                    -1, self.num_local_heads, self.v_head_dim
                ).transpose(0, 1),
            )
        output, _ = self.o_proj(attn_bmm_output)
1341
1342
1343

        return output

1344
    def forward_absorb_fused_mla_rope_prepare(
1345
1346
1347
1348
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1349
        zero_allocator: BumpAllocator,
1350
    ):
1351
1352
1353
1354
1355
1356
1357
1358
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
1359
1360
1361
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1362
1363
1364
1365
1366
1367
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1368
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1369
1370
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

1371
1372
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1373
1374
1375
1376
1377
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1378
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
1379
1380
1381
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
        return (
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            enable_rope_fusion,
            k_input,
            forward_batch,
            zero_allocator,
        )

1458
1459
1460
1461
1462
1463
1464
    def forward_absorb_fused_mla_rope_cpu_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
1465
1466
        assert self.q_lora_rank is not None and use_intel_amx_backend(
            self
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
        ), "forward_absorb_fused_mla_rope_cpu_prepare requires q_lora_rank is not None and use_intel_amx_backend"

        q_input, k_input, v_input = (
            torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight(
                hidden_states,
                self.fused_qkv_a_proj_with_mqa.weight,
                self.q_b_proj.weight,
                self.w_kc,
                self.q_a_layernorm.weight,
                self.kv_a_layernorm.weight,
                positions,
                self.rotary_emb.cos_sin_cache,
                self.kv_a_layernorm.variance_epsilon,
                self.qkv_proj_with_rope_is_int8,
                self.qkv_proj_with_rope_is_fp8,
                (
                    self.fused_qkv_a_proj_with_mqa.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.fused_qkv_a_proj_with_mqa.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                (
                    self.q_b_proj.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.q_b_proj.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                True,  # is_vnni
                self.weight_block_size,
                self.q_lora_rank,
                self.kv_lora_rank,
                self.qk_rope_head_dim,
            )
        )
        return (q_input, k_input, v_input, forward_batch, zero_allocator)

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
    def forward_absorb_fused_mla_rope_core(
        self,
        q_input,
        key_cache_buf,
        val_cache_buf,
        attn_output,
        kv_indptr,
        kv_indices,
        k_pe_output,
        cos_sin_cache,
        positions,
        attn_logits,
        num_kv_split,
        sm_scale,
        enable_rope_fusion,
        k_input,
        forward_batch,
        zero_allocator,
    ):
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1556
1557
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1558
1559
1560
1561
1562
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1563
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
1564
1565
1566
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1578
1579
1580
1581
        output, _ = self.o_proj(attn_output)

        return output

1582
1583
1584
    def forward_absorb_fused_mla_rope_cpu_core(
        self, q_input, k_input, v_input, forward_batch, zero_allocator
    ):
1585
1586
        assert self.q_lora_rank is not None and use_intel_amx_backend(
            self
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
        ), "forward_absorb_fused_mla_rope_cpu_core requires q_lora_rank is not None and use_intel_amx_backend"

        attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

        # [Note] Align shapes of bmm inputs.
        # Shapes of inputs:
        #   q_nope: [M, B, K]
        #   original self.w_kc: [B, K, N]
        #   current self.w_kc (which has been converted in PackWeightMethod): [B, N, K]

        # Shapes of inputs to sgl_kernel.cpu.bmm:
        #   out: [B, M, N]
        #   mat1: [B, M, K]
        #   mat2: [B, N, K]
        B = self.w_vc.size(0)
        N = self.w_vc.size(1)
        M = attn_output.size(0)
        output = torch.empty([M, int(B * N)], dtype=attn_output.dtype)
        attn_bmm_output = output.view([M, B, N]).transpose_(0, 1)
        torch.ops.sgl_kernel.bmm_cpu(
            attn_bmm_output,
            attn_output.transpose(0, 1),
            self.w_vc,
            True,  # is_vnni
            None,  # scale
        )
        attn_output = output
        output, _ = self.o_proj(attn_output)

        return output

1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
            latent_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
                self.attn_mha.layer_id
            )
            latent_cache = latent_cache_buf[
                forward_batch.prefix_chunk_kv_indices[i]
            ].contiguous()

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            lse = torch.transpose(lse, 0, 1).contiguous()
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse

        return accum_output

1671
    def forward_normal_chunked_kv_prepare(
1672
1673
1674
1675
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1676
1677
        zero_allocator: BumpAllocator,
    ):
1678
1679
1680
1681
1682
1683
1684
1685
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
        if self.q_lora_rank is not None:
1686
1687
1688
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1689
1690
1691
1692
1693
1694
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1695
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1696
1697
1698
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
1699
        kv_a = self.kv_a_layernorm(kv_a)
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )

1720
1721
1722
        return q, k, v, forward_batch

    def forward_normal_chunked_kv_core(self, q, k, v, forward_batch):
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
        attn_output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        lse = torch.transpose(lse, 0, 1).contiguous()

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
        if any(forward_batch.extend_prefix_lens_cpu):
            # Only initialize the info once
            if forward_batch.num_prefix_chunks is None:
                forward_batch.prepare_chunked_prefix_cache_info(q.device)

            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1746

Liangsheng Yin's avatar
Liangsheng Yin committed
1747
1748
1749
1750
1751
1752
1753
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
1754
        is_nextn: bool = False,
1755
        prefix: str = "",
1756
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1757
1758
1759
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
1760
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
1761
1762
1763
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
1764
        self.speculative_algorithm = global_server_args_dict["speculative_algorithm"]
Lianmin Zheng's avatar
Lianmin Zheng committed
1765
        self.layer_id = layer_id
1766
        self.is_nextn = is_nextn
Baizhou Zhang's avatar
Baizhou Zhang committed
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
1785
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
1786
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1787

1788
1789
1790
1791
1792
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
1793
            num_layers=1 if is_nextn else config.num_hidden_layers,
1794
1795
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
1796
1797
        )

1798
        if self.is_layer_sparse:
1799
1800
1801
1802
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
1803
                layer_id=self.layer_id,
1804
                alt_stream=alt_stream,
1805
                is_nextn=is_nextn,
1806
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1807
        else:
1808
            if enable_moe_dense_fully_dp():
1809
1810
1811
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
1812
1813
1814
1815
1816
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
1817
                prefix=add_prefix("mlp", prefix),
1818
1819
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
1820
            )
1821

Liangsheng Yin's avatar
Liangsheng Yin committed
1822
1823
1824
1825
1826
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

1827
1828
1829
1830
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
1831
            allow_reduce_scatter=True,
1832
        )
1833

1834
1835
        self._fuse_allreduce_lookup_table = self._build_fuse_allreduce_lookup_table()

1836
1837
1838
1839
1840
    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
1841
1842
        )

1843
    def _should_fuse_mlp_allreduce_with_next_layer(self, forward_batch) -> bool:
1844
        """Check if MLP allreduce can be fused with next layer's residual_rmsnorm"""
1845

1846
1847
1848
1849
1850
        batch_size = (
            forward_batch.input_ids.shape[0]
            if hasattr(forward_batch, "input_ids")
            else 0
        )
1851

1852
        if batch_size > 128:
1853
1854
            return False

1855
        return self._fuse_allreduce_lookup_table.get(batch_size, False)
1856

Liangsheng Yin's avatar
Liangsheng Yin committed
1857
1858
1859
1860
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1861
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
1862
        residual: Optional[torch.Tensor],
1863
        zero_allocator: BumpAllocator,
Liangsheng Yin's avatar
Liangsheng Yin committed
1864
    ) -> torch.Tensor:
1865

1866
1867
        hidden_states, residual = self.layer_communicator.prepare_attn(
            hidden_states, residual, forward_batch
1868
1869
        )

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )

        hidden_states, residual = self.layer_communicator.prepare_mlp(
            hidden_states, residual, forward_batch
        )

1881
        should_allreduce_fusion = (
1882
            self._should_fuse_mlp_allreduce_with_next_layer(forward_batch)
1883
1884
1885
            and not (
                is_dp_attention_enabled() and self.speculative_algorithm.is_eagle()
            )
1886
            and not self.is_nextn
1887
1888
        )

1889
1890
1891
1892
1893
        # For DP with padding, reduce scatter can be used instead of all-reduce.
        use_reduce_scatter = self.layer_communicator.should_use_reduce_scatter(
            forward_batch
        )
        hidden_states = self.mlp(
1894
            hidden_states, forward_batch, should_allreduce_fusion, use_reduce_scatter
1895
        )
1896

1897
        if should_allreduce_fusion:
1898
1899
            hidden_states._sglang_needs_allreduce_fusion = True

1900
        if not should_allreduce_fusion:
1901
1902
1903
1904
            hidden_states, residual = self.layer_communicator.postprocess_layer(
                hidden_states, residual, forward_batch
            )

1905
1906
        return hidden_states, residual

1907
1908
1909
1910
1911
1912
1913
1914
    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
1915
        tbo_subbatch_index: Optional[int] = None,
1916
1917
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
1918
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
1919
1920
1921
1922
1923
1924
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
1925
                tbo_subbatch_index=tbo_subbatch_index,
1926
            )
1927
        )
1928

1929
1930
1931
1932
1933
1934
1935
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
1936
        )
1937

1938
1939
1940
1941
1942
1943
1944
1945
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
1946
                hidden_states, state.forward_batch
1947
1948
1949
            )
        else:
            state.hidden_states_mlp_output = hidden_states
1950

1951
    def op_comm_postprocess_layer(self, state):
1952
        hidden_states, residual = self.layer_communicator.postprocess_layer(
1953
1954
1955
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
1956
        )
1957

1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
        output = dict(
            positions=state.positions,
            hidden_states=hidden_states,
            residual=residual,
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
            tbo_subbatch_index=state.tbo_subbatch_index,
        )

        state.clear(
            expect_keys={
                "positions",
                "forward_batch",
                "zero_allocator",
                "tbo_subbatch_index",
            }
        )
        return output
1976

1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
    def _build_fuse_allreduce_lookup_table(self):
        static_conditions_met = (
            self.layer_id != self.config.num_hidden_layers - 1
            and get_tensor_model_parallel_world_size() > 1
            and global_server_args_dict.get("enable_flashinfer_allreduce_fusion", False)
            and _is_sm100_supported
            and _is_flashinfer_available
        )

        if not static_conditions_met:
            return {}

        lookup_table = {}
        for batch_size in range(129):  # 0 to 128
            is_last_layer = self.layer_id == self.config.num_hidden_layers - 1
            should_fuse = batch_size > 0 and batch_size <= 128 and not is_last_layer
            lookup_table[batch_size] = should_fuse

        return lookup_table

Liangsheng Yin's avatar
Liangsheng Yin committed
1997
1998
1999
2000
2001
2002
2003
2004

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
2005
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
2006
2007
2008
2009
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size
2010
        self.first_k_dense_replace = config.first_k_dense_replace
Liangsheng Yin's avatar
Liangsheng Yin committed
2011
2012
2013
2014

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
2015
            enable_tp=not is_dp_attention_enabled(),
Liangsheng Yin's avatar
Liangsheng Yin committed
2016
        )
2017
        self.alt_stream = torch.cuda.Stream() if _is_cuda else None
Liangsheng Yin's avatar
Liangsheng Yin committed
2018
2019
2020
2021
2022
2023
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
2024
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
2025
                    alt_stream=self.alt_stream,
Liangsheng Yin's avatar
Liangsheng Yin committed
2026
2027
2028
2029
2030
2031
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

2032
2033
2034
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
2035
2036
2037
2038
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
2039
        forward_batch: ForwardBatch,
2040
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2041
    ) -> torch.Tensor:
2042
2043
        total_num_layers = len(self.layers)
        device = input_embeds.device if input_embeds is not None else input_ids.device
2044
        zero_allocator = BumpAllocator(
2045
            buffer_size=total_num_layers * 2 * (2 if forward_batch.can_run_tbo else 1),
2046
            dtype=torch.float32,
2047
            device=device,
2048
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2049

2050
2051
2052
2053
2054
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
2055
        residual = None
2056
2057
2058
2059
2060
2061
2062

        normal_num_layers = (
            self.first_k_dense_replace
            if forward_batch.can_run_tbo
            else total_num_layers
        )
        for i in range(normal_num_layers):
2063
2064
2065
2066
2067
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
                    positions, hidden_states, forward_batch, residual, zero_allocator
                )
2068
2069
2070
2071
2072
2073
2074
2075
2076

        if normal_num_layers != total_num_layers:
            hidden_states, residual = model_forward_maybe_tbo(
                layers=self.layers[normal_num_layers:],
                enable_tbo=True,
                positions=positions,
                forward_batch=forward_batch,
                hidden_states=hidden_states,
                residual=residual,
2077
2078
2079
                input_data_scatter_mode=self.layers[
                    normal_num_layers - 1
                ].layer_scatter_modes.layer_output_mode,
2080
2081
2082
                zero_allocator=zero_allocator,
            )

Ke Bao's avatar
Ke Bao committed
2083
        if not forward_batch.forward_mode.is_idle():
2084
2085
2086
2087
            if residual is None:
                hidden_states = self.norm(hidden_states)
            else:
                hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
2088
2089
2090
2091
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):
2092
2093
    # for quark model load
    packed_modules_mapping = {}
Liangsheng Yin's avatar
Liangsheng Yin committed
2094
2095
2096
2097
2098

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
2099
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
2100
2101
    ) -> None:
        super().__init__()
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113

        # for quark model load
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        self.fuse_qkv_a_proj = (
            hasattr(config, "q_lora_rank") and config.q_lora_rank is not None
        )
        if self.fuse_qkv_a_proj:
            self.packed_modules_mapping["fused_qkv_a_proj_with_mqa"] = [
                "q_a_proj",
                "kv_a_proj_with_mqa",
            ]

Liangsheng Yin's avatar
Liangsheng Yin committed
2114
        self.config = config
2115
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
2116
        self.quant_config = quant_config
2117
        self.determine_num_fused_shared_experts()
2118
2119
2120
2121
2122
2123
2124
2125
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
2126
            use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
2127
2128
2129
        )
        self.logits_processor = LogitsProcessor(config)

2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
        self._routed_experts_weights_of_layer = LazyValue(
            lambda: {
                layer_id: layer.mlp.get_moe_weights()
                for layer_id, layer in enumerate(self.model.layers)
                if isinstance(layer.mlp, DeepseekV2MoE)
            }
        )

    @property
    def routed_experts_weights_of_layer(self):
        return self._routed_experts_weights_of_layer.value

2142
    def determine_num_fused_shared_experts(
2143
2144
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
2145
2146
2147
2148
2149
2150
2151
2152
        self.num_fused_shared_experts = 0
        if global_server_args_dict["disable_shared_experts_fusion"]:
            return

        # Only Deepseek V3/R1 can use shared experts fusion optimization now.
        disable_reason = None
        if (
            not _is_cuda
2153
            or torch.cuda.get_device_capability("cuda") < (8, 0)
2154
2155
2156
2157
            or self.config.architectures[0] != architecture
            or self.config.n_routed_experts != 256
            or self.config.n_shared_experts != 1
        ):
2158
            disable_reason = "Only Deepseek V3/R1 on NV-platform with capability >= 80 can use shared experts fusion optimization."
2159
2160
        elif get_moe_expert_parallel_world_size() > 1:
            disable_reason = "Deepseek V3/R1 can not use shared experts fusion optimization under expert parallelism."
2161
2162
2163

        if disable_reason is not None:
            global_server_args_dict["disable_shared_experts_fusion"] = True
Cheng Wan's avatar
Cheng Wan committed
2164
            self.num_fused_shared_experts = 0
2165
2166
2167
2168
2169
2170
2171
            log_info_on_rank0(
                logger,
                f"{disable_reason} Shared experts fusion optimization is disabled.",
            )
            return

        self.num_fused_shared_experts = self.config.n_shared_experts
2172

Mick's avatar
Mick committed
2173
2174
2175
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

2176
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
2177
2178
2179
2180
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
2181
        forward_batch: ForwardBatch,
2182
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2183
    ) -> torch.Tensor:
2184
        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
2185

2186
2187
2188
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
2189

2190
    def post_load_weights(self, is_nextn=False, weight_names=None):
inkcherry's avatar
inkcherry committed
2191
2192

        # Perform post-processing after loading weights
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
        if is_nextn:
            layer_ids = [self.config.num_hidden_layers]
        else:
            if weight_names is None:
                layer_ids = range(self.config.num_hidden_layers)
            else:
                layer_ids = set()
                for name in weight_names:
                    if "kv_b_proj" in name:
                        layer_id = int(name.split(".")[2])
2203
                        if layer_id < self.config.num_hidden_layers:
2204
2205
                            layer_ids.add(layer_id)

2206
2207
2208
2209
2210
2211
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
2212
2213
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
2214
                if _is_cuda or _is_hip:
Baizhou Zhang's avatar
Baizhou Zhang committed
2215
2216
2217
2218
2219
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
2220
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
2233
2234
2235
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False

Baizhou Zhang's avatar
Baizhou Zhang committed
2236
2237
2238
2239
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
2240
2241
2242
2243
                if (
                    hasattr(self.quant_config, "weight_block_size")
                    and self.quant_config.weight_block_size is not None
                ):
Baizhou Zhang's avatar
Baizhou Zhang committed
2244
                    weight_block_size = self.quant_config.weight_block_size
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
                    assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv

                    if (
                        _is_cuda
                        and weight_block_size[0] == 128
                        and weight_block_size[1] == 128
                    ):
2261
2262
2263
2264
                        if (
                            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
                            and not deep_gemm_wrapper.DEEPGEMM_BLACKWELL
                            and get_bool_env_var("SGL_USE_DEEPGEMM_BMM", "false")
2265
                        ):
2266
2267
                            block_scale = weight_scale
                            use_deep_gemm_bmm = True
2268
                        else:
2269
2270
2271
2272
                            w = block_quant_dequant(
                                weight,
                                weight_scale,
                                weight_block_size,
2273
                                torch.bfloat16,
2274
                            )
2275
2276
2277
2278
2279
                    else:
                        w, scale = block_quant_to_tensor_quant(
                            weight, weight_scale, weight_block_size
                        )
                        self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
2280
                else:
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale

Baizhou Zhang's avatar
Baizhou Zhang committed
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
2310

Baizhou Zhang's avatar
Baizhou Zhang committed
2311
2312
2313
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
2314
            if not use_deep_gemm_bmm:
2315
2316
2317
2318
2319
2320
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                )
                self_attn.w_vc = bind_or_assign(
                    self_attn.w_vc, w_vc.contiguous().transpose(1, 2)
                )
2321
2322
2323
2324
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
2325
2326
2327
                    self_attn.w_scale = bind_or_assign(
                        self_attn.w_scale, self_attn.kv_b_proj.weight_scale
                    )
2328
2329
                    if _is_hip:
                        self_attn.w_scale *= 2.0
2330
2331
2332
2333
2334
2335
2336
2337
                # TODO: remove this after adding FP8 support in bmm cpu kernel
                if _is_cpu and _is_cpu_amx_available and w.dtype == torch.float8_e4m3fn:
                    self_attn.w_kc = (
                        self_attn.w_kc.to(torch.bfloat16) * self_attn.w_scale
                    )
                    self_attn.w_vc = (
                        self_attn.w_vc.to(torch.bfloat16) * self_attn.w_scale
                    )
2338
2339
2340
2341
2342
2343
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
                self_attn.w_scale_k = bind_or_assign(
                    self_attn.w_scale_k, ws_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_scale_v = bind_or_assign(
                    self_attn.w_scale_v, ws_vc.contiguous()
                )
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_vc = bind_or_assign(self_attn.w_vc, w_vc.contiguous())
2354
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
2355

2356
2357
2358
        if (
            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
            and deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
2359
2360
            and hasattr(self.quant_config, "weight_block_size")
            and self.quant_config.weight_block_size is not None
2361
        ):
2362
            self._weight_requant_ue8m0(is_nextn)
2363

2364
    def _weight_requant_ue8m0(self, is_nextn=False):
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
        weight_block_size = self.quant_config.weight_block_size

        moe_layers = list(
            range(
                self.config.first_k_dense_replace,
                self.config.num_hidden_layers,
                self.config.moe_layer_freq,
            )
        )

2375
2376
2377
2378
2379
2380
        num_hidden_layers = 1 if is_nextn else self.config.num_hidden_layers
        for layer_id in range(num_hidden_layers):
            if is_nextn:
                layer = self.model.decoder
            else:
                layer = self.model.layers[layer_id]
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391

            for module in [
                layer.self_attn.fused_qkv_a_proj_with_mqa,
                layer.self_attn.q_b_proj,
                layer.self_attn.kv_b_proj,
                layer.self_attn.o_proj,
            ]:
                requant_weight_ue8m0_inplace(
                    module.weight, module.weight_scale_inv, weight_block_size
                )

2392
            if layer_id in moe_layers or is_nextn:
2393
2394
2395
2396
2397
2398
2399
2400
2401
                shared_experts = getattr(layer.mlp, "shared_experts", None)
                if shared_experts is not None:
                    for module in [
                        shared_experts.gate_up_proj,
                        shared_experts.down_proj,
                    ]:
                        requant_weight_ue8m0_inplace(
                            module.weight, module.weight_scale_inv, weight_block_size
                        )
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420

                experts = layer.mlp.experts
                if isinstance(experts, DeepEPMoE):
                    for w in [
                        experts.w13_weight_fp8,
                        experts.w2_weight_fp8,
                    ]:
                        requant_weight_ue8m0_inplace(w[0], w[1], weight_block_size)
            else:
                mlp = layer.mlp
                assert isinstance(mlp, DeepseekV2MLP)
                for module in [
                    mlp.gate_up_proj,
                    mlp.down_proj,
                ]:
                    requant_weight_ue8m0_inplace(
                        module.weight, module.weight_scale_inv, weight_block_size
                    )

2421
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
2422

2423
2424
2425
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
2426
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
2427
2428
2429
2430
2431
2432
2433
2434
2435
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

Liangsheng Yin's avatar
Liangsheng Yin committed
2436
2437
2438
2439
2440
2441
2442
2443
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
2444
        expert_params_mapping = FusedMoE.make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
2445
2446
2447
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
2448
            num_experts=self.config.n_routed_experts + self.num_fused_shared_experts,
Liangsheng Yin's avatar
Liangsheng Yin committed
2449
        )
2450
        if self.quant_config and self.quant_config.get_name() == "w4afp8":
2451
2452
            expert_params_mapping += FusedMoE.make_expert_input_scale_params_mapping(
                num_experts=self.config.n_routed_experts
2453
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
2454

2455
2456
2457
2458
2459
2460
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

2461
2462
2463
2464
2465
2466
2467
2468
2469
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

2470
2471
        if self.num_fused_shared_experts > 0:
            assert self.num_fused_shared_experts == 1
2472
            log_info_on_rank0(logger, "Shared experts fusion optimization enabled.")
2473

2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = []
            params_dict = dict(self.named_parameters())
            weight_names = []
            for name, loaded_weight in weights:
                if self.num_fused_shared_experts > 0 and "mlp.shared_experts" in name:
                    name = name.replace(
                        "mlp.shared_experts",
                        f"mlp.experts.{self.config.n_routed_experts}",
                    )
2484

2485
                weight_names.append(name)
2486

2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
                if not is_nextn:
                    if hasattr(self.config, "num_nextn_predict_layers"):
                        num_nextn_layers = self.config.num_nextn_predict_layers
                        if num_nextn_layers > 0 and name.startswith("model.layers"):
                            name_list = name.split(".")
                            if (
                                len(name_list) >= 3
                                and int(name_list[2]) >= self.config.num_hidden_layers
                            ):
                                continue
                else:
                    if not name.startswith(nextn_layer_prefix):
                        continue
2500

2501
2502
2503
                    # Use shared head and embed weights from target model
                    if "shared_head.head" in name or "embed_tokens" in name:
                        continue
2504

2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
                    is_decoder = True
                    # For nextn specific weights
                    for weight_name in nextn_spec_weight_names:
                        if weight_name in name:
                            name = name.replace(nextn_layer_prefix, "model")
                            is_decoder = False
                            break
                    # For decoder layer weights
                    if is_decoder:
                        name = name.replace(nextn_layer_prefix, "model.decoder")

                if "rotary_emb.inv_freq" in name:
Liangsheng Yin's avatar
Liangsheng Yin committed
2517
                    continue
2518
2519
                for param_name, weight_name, shard_id in stacked_params_mapping:
                    # Skip non-stacked layers and experts (experts handled below).
Liangsheng Yin's avatar
Liangsheng Yin committed
2520
2521
                    if weight_name not in name:
                        continue
2522
2523
2524
2525
2526
2527
2528
2529
                    # We have mlp.experts[0].gate_proj in the checkpoint.
                    # Since we handle the experts below in expert_params_mapping,
                    # we need to skip here BEFORE we update the name, otherwise
                    # name will be updated to mlp.experts[0].gate_up_proj, which
                    # will then be updated below in expert_params_mapping
                    # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                    if ("mlp.experts." in name) and name not in params_dict:
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
2530
                    name = name.replace(weight_name, param_name)
2531
2532
2533
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
2534
2535
                    param = params_dict[name]
                    weight_loader = param.weight_loader
2536
2537
                    futures.append(
                        executor.submit(weight_loader, param, loaded_weight, shard_id)
Liangsheng Yin's avatar
Liangsheng Yin committed
2538
2539
2540
                    )
                    break
                else:
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
                    for mapping in expert_params_mapping:
                        param_name, weight_name, expert_id, shard_id = mapping
                        if weight_name not in name:
                            continue
                        name = name.replace(weight_name, param_name)
                        param = params_dict[name]
                        weight_loader = param.weight_loader
                        futures.append(
                            executor.submit(
                                weight_loader,
                                param,
                                loaded_weight,
                                name,
                                shard_id=shard_id,
                                expert_id=expert_id,
                            )
2557
                        )
2558
2559
2560
2561
2562
2563
2564
                        break
                    else:
                        # Skip loading extra bias for GPTQ models.
                        if name.endswith(".bias") and name not in params_dict:
                            continue
                        if fuse_qkv_a_proj and (
                            "q_a_proj" in name or "kv_a_proj_with_mqa" in name
2565
                        ):
2566
2567
2568
                            cached_a_proj[name] = loaded_weight
                            q_a_proj_name = (
                                name
2569
                                if "q_a_proj" in name
2570
2571
2572
2573
2574
2575
                                else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                            )
                            kv_a_proj_name = (
                                name
                                if "kv_a_proj_with_mqa" in name
                                else name.replace("q_a_proj", "kv_a_proj_with_mqa")
2576
2577
                            )

2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
                            # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                            if (
                                q_a_proj_name in cached_a_proj
                                and kv_a_proj_name in cached_a_proj
                            ):
                                q_a_proj_weight = cached_a_proj[q_a_proj_name]
                                kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
                                cat_dim = 0
                                if self.quant_config is not None and (
                                    self.quant_config.get_name() == "awq"
2588
                                    or self.quant_config.get_name() == "awq_marlin"
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
                                    or self.quant_config.get_name() == "moe_wna16"
                                ):
                                    cat_dim = 1
                                fused_weight = torch.cat(
                                    [q_a_proj_weight, kv_a_proj_weight], dim=cat_dim
                                )
                                param_name = (
                                    name.replace(
                                        "q_a_proj", "fused_qkv_a_proj_with_mqa"
                                    )
                                    if "q_a_proj" in name
                                    else name.replace(
                                        "kv_a_proj_with_mqa",
                                        "fused_qkv_a_proj_with_mqa",
                                    )
                                )
                                param = params_dict[param_name]

                                weight_loader = getattr(
                                    param, "weight_loader", default_weight_loader
                                )
                                futures.append(
                                    executor.submit(weight_loader, param, fused_weight)
                                )
                                cached_a_proj.pop(q_a_proj_name)
                                cached_a_proj.pop(kv_a_proj_name)
                        else:
                            if (
                                "k_scale" in name or "v_scale" in name
                            ) and name not in params_dict:
                                # modelopt attn kv scale is named differently
                                for scale in ["k_scale", "v_scale"]:
                                    if scale in name:
                                        name = name.replace(
                                            f"{scale[0]}_proj", "attn_mqa"
                                        )
                                        break
                            if name not in params_dict:
                                # modelopt ckpt contains not needed weights for MTP module:
                                # model.decoder.self_attn.attn_mqa.v_scale and
                                # model.decoder.self_attn.attn_mqa.k_scale
                                logger.warning(f"{name} not found in params_dict.")
                                continue
                            param = params_dict[name]
2633
2634
2635
                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
2636
2637
2638
2639
2640
2641
2642
                            futures.append(
                                executor.submit(weight_loader, param, loaded_weight)
                            )

            # Wait for all tasks to complete and raise any exceptions.
            for future in concurrent.futures.as_completed(futures):
                future.result()
Liangsheng Yin's avatar
Liangsheng Yin committed
2643

2644
        self.post_load_weights(is_nextn=is_nextn, weight_names=weight_names)
Ke Bao's avatar
Ke Bao committed
2645

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

2657
2658
2659
2660
2661
2662
2663
2664
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
2665

HandH1998's avatar
HandH1998 committed
2666
2667
2668
2669
2670
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]