deepseek_v2.py 85.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import logging
20
import os
21
from enum import IntEnum, auto
Liangsheng Yin's avatar
Liangsheng Yin committed
22
23
24
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
25
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
26
from torch import nn
27
from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
28
from transformers import PretrainedConfig
29
30

from sglang.srt.distributed import (
Liangsheng Yin's avatar
Liangsheng Yin committed
31
    get_tensor_model_parallel_world_size,
32
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
33
34
    tensor_model_parallel_all_reduce,
)
35
from sglang.srt.layers.activation import SiluAndMul
36
37
38
39
40
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
44
    get_local_attention_dp_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
45
)
46
from sglang.srt.layers.layernorm import RMSNorm
47
48
49
50
51
52
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
53
from sglang.srt.layers.logits_processor import LogitsProcessor
fzyzcjy's avatar
fzyzcjy committed
54
from sglang.srt.layers.moe.ep_moe.layer import get_moe_impl_class
Lianmin Zheng's avatar
Lianmin Zheng committed
55
from sglang.srt.layers.moe.ep_moe.token_dispatcher import DeepEPDispatcher
56
from sglang.srt.layers.moe.topk import select_experts
57
from sglang.srt.layers.quantization.base_config import QuantizationConfig
58
from sglang.srt.layers.quantization.deep_gemm import _ENABLE_JIT_DEEPGEMM
59
from sglang.srt.layers.quantization.fp8_kernel import (
60
    is_fp8_fnuz,
61
    per_tensor_quant_mla_fp8,
62
    per_token_group_quant_mla_deep_gemm_masked_fp8,
63
)
HandH1998's avatar
HandH1998 committed
64
from sglang.srt.layers.quantization.fp8_utils import (
65
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
66
    block_quant_to_tensor_quant,
67
    channel_quant_to_tensor_quant,
68
    normalize_e4m3fn_to_e4m3fnuz,
HandH1998's avatar
HandH1998 committed
69
)
70
71
72
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
73
from sglang.srt.layers.radix_attention import RadixAttention
74
from sglang.srt.layers.rotary_embedding import get_rope
75
76
77
78
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
79
80
81
82
from sglang.srt.managers.expert_distribution import (
    get_global_expert_distribution_recorder,
)
from sglang.srt.managers.expert_location import ModelConfigForExpertLocation
83
from sglang.srt.managers.expert_location_dispatch import ExpertLocationDispatchInfo
84
from sglang.srt.managers.schedule_batch import global_server_args_dict
85
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
86
from sglang.srt.model_loader.weight_utils import default_weight_loader
87
88
89
90
from sglang.srt.two_batch_overlap import (
    MaybeTboDeepEPDispatcher,
    model_forward_maybe_tbo,
)
91
92
93
from sglang.srt.utils import (
    BumpAllocator,
    DeepEPMode,
94
    LazyValue,
95
    add_prefix,
96
    bind_or_assign,
97
98
99
100
    get_bool_env_var,
    get_int_env_var,
    is_cuda,
    is_hip,
101
    is_non_idle_and_non_empty,
102
    log_info_on_rank0,
103
)
104

105
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
106
_is_cuda = is_cuda()
107
_is_fp8_fnuz = is_fp8_fnuz()
108
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
109

Yineng Zhang's avatar
Yineng Zhang committed
110
if _is_cuda:
111
    from sgl_kernel import awq_dequantize, bmm_fp8, merge_state_v2
112
113
114
115

    from sglang.srt.layers.quantization.deep_gemm import (
        grouped_gemm_nt_f8f8bf16_masked as deep_gemm_grouped_gemm_nt_f8f8bf16_masked,
    )
Yineng Zhang's avatar
Yineng Zhang committed
116
else:
Lianmin Zheng's avatar
Lianmin Zheng committed
117
    from vllm._custom_ops import awq_dequantize
Liangsheng Yin's avatar
Liangsheng Yin committed
118

119
120
121
122
123
if _is_hip:
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )

124
125
126
if _use_aiter:
    from aiter.rotary_embedding import get_rope

127
128
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
129

130
131
132
133
134
135
136
137
138
139
140
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()

141
142
143
    # Use MLA but with fused RoPE
    MLA_FUSED_ROPE = auto()

144

Liangsheng Yin's avatar
Liangsheng Yin committed
145
146
147
148
149
150
151
152
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
153
        prefix: str = "",
154
155
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
156
157
    ) -> None:
        super().__init__()
158
159
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
160
        self.gate_up_proj = MergedColumnParallelLinear(
161
162
163
164
165
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
166
167
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
168
169
170
171
172
173
174
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
175
            prefix=add_prefix("down_proj", prefix),
176
177
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
178
179
180
181
182
183
184
185
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

186
187
188
189
    def forward(self, x, forward_batch=None):
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

Liangsheng Yin's avatar
Liangsheng Yin committed
190
191
192
193
194
195
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


Ke Bao's avatar
Ke Bao committed
196
class MoEGate(nn.Module):
197
198
199
200
201
    def __init__(
        self,
        config,
        prefix: str = "",
    ):
Ke Bao's avatar
Ke Bao committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        super().__init__()
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None

    def forward(self, hidden_states):
        logits = F.linear(hidden_states, self.weight, None)
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
218
219
220
221
222
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
223
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
224
        quant_config: Optional[QuantizationConfig] = None,
225
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
226
227
228
229
230
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
231
232
233
234
235
        self.num_fused_shared_experts = (
            0
            if global_server_args_dict["disable_shared_experts_fusion"]
            else config.n_shared_experts
        )
236
        self.config = config
fzyzcjy's avatar
fzyzcjy committed
237
        self.layer_id = layer_id
238

Liangsheng Yin's avatar
Liangsheng Yin committed
239
240
241
242
243
244
245
246
247
248
249
250
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

251
        self.gate = MoEGate(config=config, prefix=add_prefix("gate", prefix))
Ke Bao's avatar
Ke Bao committed
252

253
        self.experts = get_moe_impl_class()(
254
            num_experts=config.n_routed_experts
255
            + self.num_fused_shared_experts
256
            + global_server_args_dict["ep_num_redundant_experts"],
257
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
258
259
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
260
            layer_id=self.layer_id,
261
262
263
264
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
265
            num_fused_shared_experts=self.num_fused_shared_experts,
266
267
            topk_group=config.topk_group,
            correction_bias=self.gate.e_score_correction_bias,
268
            routed_scaling_factor=self.routed_scaling_factor,
269
270
271
272
273
274
275
            prefix=add_prefix("experts", prefix),
            **(
                dict(deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]])
                if global_server_args_dict["enable_deepep_moe"]
                else {}
            ),
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
276

277
        if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
278
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
279
            # disable tp for shared experts when enable deepep moe
280
281
282
283
284
285
286
287
288
289
290
291
292
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
                    if global_server_args_dict["enable_deepep_moe"]
                    else {}
                ),
            )
293

294
295
        self.top_k = config.num_experts_per_tok

296
        if global_server_args_dict["enable_deepep_moe"]:
297
298
            # TODO: we will support tp < ep in the future
            self.ep_size = get_tensor_model_parallel_world_size()
299
300
301
302
            self.num_experts = (
                config.n_routed_experts
                + global_server_args_dict["ep_num_redundant_experts"]
            )
303
304
305
306
307
308
309
310
311
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

312
            self.deepep_dispatcher = MaybeTboDeepEPDispatcher(
313
314
315
                group=parallel_state.get_tp_group().device_group,
                router_topk=self.top_k,
                permute_fusion=True,
316
                num_experts=self.num_experts,
317
                num_local_experts=config.n_routed_experts // self.tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
318
                hidden_size=config.hidden_size,
319
                params_dtype=config.torch_dtype,
320
                deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]],
321
                async_finish=True,
322
                return_recv_hook=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
323
324
            )

325
        self._enable_deepep_moe = global_server_args_dict["enable_deepep_moe"]
326

327
328
329
330
331
332
333
    def get_moe_weights(self):
        return [
            x.data
            for name, x in self.experts.named_parameters()
            if name not in ["correction_bias"]
        ]

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    def forward(
        self, hidden_states: torch.Tensor, forward_batch: Optional[ForwardBatch] = None
    ) -> torch.Tensor:
        if not self._enable_deepep_moe:
            return self.forward_normal(hidden_states)
        else:
            return self.forward_deepep(hidden_states, forward_batch)

    def forward_normal(self, hidden_states: torch.Tensor) -> torch.Tensor:
        shared_output = self._forward_shared_experts(hidden_states)
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
        final_hidden_states = self.experts(
            hidden_states=hidden_states, router_logits=router_logits
        )
349
350
        if not _is_cuda:
            final_hidden_states *= self.routed_scaling_factor
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

    def forward_deepep(
        self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        forward_mode = forward_batch.forward_mode
        shared_output = None
        if is_non_idle_and_non_empty(forward_mode, hidden_states):
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
            shared_output = self._forward_shared_experts(hidden_states)
            topk_weights, topk_idx = select_experts(
                hidden_states=hidden_states,
                router_logits=router_logits,
                top_k=self.top_k,
                use_grouped_topk=True,
                renormalize=self.renormalize,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
374
                num_fused_shared_experts=self.num_fused_shared_experts,
375
376
377
                correction_bias=self.correction_bias,
                routed_scaling_factor=self.routed_scaling_factor,
                num_token_non_padded=forward_batch.num_token_non_padded,
378
379
380
                expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                    layer_id=self.layer_id,
                ),
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
            )
        else:
            topk_idx = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            topk_weights = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
        if self.ep_size > 1:
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
            (
                hidden_states,
                topk_idx,
                topk_weights,
                reorder_topk_ids,
                num_recv_tokens_per_expert,
                seg_indptr,
                masked_m,
                expected_m,
            ) = self.deepep_dispatcher.dispatch(
                hidden_states=hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )
        final_hidden_states = self.experts(
            hidden_states=hidden_states,
            topk_idx=topk_idx,
            topk_weights=topk_weights,
            reorder_topk_ids=reorder_topk_ids,
            seg_indptr=seg_indptr,
            masked_m=masked_m,
            expected_m=expected_m,
            num_recv_tokens_per_expert=num_recv_tokens_per_expert,
            forward_mode=forward_mode,
        )
        if self.ep_size > 1:
            final_hidden_states = self.deepep_dispatcher.combine(
                hidden_states=final_hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )

        if shared_output is not None:
426
427
428
429
430
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
431
432
433
434

        return final_hidden_states

    def _forward_shared_experts(self, hidden_states):
435
        if self.num_fused_shared_experts == 0:
436
437
438
439
            return self.shared_experts(hidden_states)
        else:
            return None

440
    def op_gate(self, state):
441
        if is_non_idle_and_non_empty(
442
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
443
        ):
444
            # router_logits: (num_tokens, n_experts)
445
            state.router_logits = self.gate(state.hidden_states_mlp_input)
446
        else:
447
            state.router_logits = None
448

449
    def op_shared_experts(self, state):
450
        hidden_states_mlp_input = state.pop("hidden_states_mlp_input")
451
        if (self.num_fused_shared_experts == 0) and is_non_idle_and_non_empty(
452
            state.forward_batch.forward_mode, hidden_states_mlp_input
453
        ):
454
            state.shared_output = self.shared_experts(hidden_states_mlp_input)
455
        else:
456
            state.shared_output = None
457

458
    def op_select_experts(self, state):
459
        router_logits = state.pop("router_logits")
460
461
        hidden_states = state.hidden_states_mlp_input

462
        if router_logits is not None:
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
                state.topk_weights_local, state.topk_idx_local = select_experts(
                    hidden_states=hidden_states,
                    router_logits=router_logits,
                    top_k=self.top_k,
                    use_grouped_topk=True,
                    renormalize=self.renormalize,
                    topk_group=self.topk_group,
                    num_expert_group=self.num_expert_group,
                    num_fused_shared_experts=self.num_fused_shared_experts,
                    correction_bias=self.correction_bias,
                    routed_scaling_factor=self.routed_scaling_factor,
                    num_token_non_padded=state.forward_batch.num_token_non_padded,
                    expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                        layer_id=self.layer_id,
                    ),
                )
482
483
484
485
486
487
488
        else:
            state.topk_idx_local = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            state.topk_weights_local = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
489

490
    def op_dispatch_a(self, state):
491
        if self.ep_size > 1:
492
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
493
            self.deepep_dispatcher.dispatch_a(
494
                hidden_states=state.hidden_states_mlp_input,
495
496
497
                topk_idx=state.pop("topk_idx_local"),
                topk_weights=state.pop("topk_weights_local"),
                forward_mode=state.forward_batch.forward_mode,
498
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
499
            )
500

501
    def op_dispatch_b(self, state):
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        if self.ep_size > 1:
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
                (
                    state.hidden_states_experts_input,
                    state.topk_idx_dispatched,
                    state.topk_weights_dispatched,
                    state.reorder_topk_ids,
                    state.num_recv_tokens_per_expert,
                    state.seg_indptr,
                    state.masked_m,
                    state.expected_m,
                ) = self.deepep_dispatcher.dispatch_b(
                    tbo_subbatch_index=state.get("tbo_subbatch_index"),
                )
518
519

    def op_experts(self, state):
520
521
522
523
524
525
526
527
528
529
530
        state.hidden_states_experts_output = self.experts(
            hidden_states=state.pop("hidden_states_experts_input"),
            topk_idx=state.topk_idx_dispatched,
            topk_weights=state.topk_weights_dispatched,
            reorder_topk_ids=state.pop("reorder_topk_ids"),
            seg_indptr=state.pop("seg_indptr"),
            masked_m=state.pop("masked_m"),
            expected_m=state.pop("expected_m"),
            num_recv_tokens_per_expert=state.pop("num_recv_tokens_per_expert"),
            forward_mode=state.forward_batch.forward_mode,
        )
531

532
    def op_combine_a(self, state):
533
        if self.ep_size > 1:
534
            self.deepep_dispatcher.combine_a(
535
                hidden_states=state.pop("hidden_states_experts_output"),
536
537
538
                topk_idx=state.pop("topk_idx_dispatched"),
                topk_weights=state.pop("topk_weights_dispatched"),
                forward_mode=state.forward_batch.forward_mode,
539
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
540
            )
541

542
    def op_combine_b(self, state):
543
544
545
546
        if self.ep_size > 1:
            state.hidden_states_after_combine = self.deepep_dispatcher.combine_b(
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
            )
547
548

    def op_output(self, state):
549
        final_hidden_states = state.pop("hidden_states_after_combine")
550
551
552
553
554
555
556

        if (shared_output := state.pop("shared_output")) is not None:
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
Liangsheng Yin's avatar
Liangsheng Yin committed
557

558
        state.hidden_states_mlp_output = final_hidden_states
559

Liangsheng Yin's avatar
Liangsheng Yin committed
560
561
562
563
564
565
566
567
568

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
585
586
        reduce_results: bool = True,
        layer_id: int = None,
587
        prefix: str = "",
588
        alt_stream: Optional[torch.cuda.Stream] = None,
589
590
591
592
593
594
595
596
597
598
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
599
600
601
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

602
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
603
604
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
605
606
607
608
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
609
610
        # For tensor parallel attention
        if self.q_lora_rank is not None:
611
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
612
                self.hidden_size,
613
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
614
615
                bias=False,
                quant_config=quant_config,
616
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
617
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
618
619
620
621
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
622
623
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
624
625
626
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
627
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
628
629
        else:
            self.q_proj = ColumnParallelLinear(
630
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
631
                self.num_heads * self.qk_head_dim,
632
633
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
634
635
636
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
637
            )
638
639
640
641
642
643
644
645
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
666
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
667
668
669
670

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

671
        self.rotary_emb = get_rope(
672
673
674
675
676
677
678
679
680
681
682
683
684
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
685
686
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
687

688
        self.attn_mqa = RadixAttention(
689
690
691
692
693
694
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
695
            quant_config=quant_config,
696
            prefix=add_prefix("attn_mqa", prefix),
697
698
        )

699
700
701
702
703
704
705
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
706
            quant_config=quant_config,
707
            prefix=add_prefix("attn_mha", prefix),
708
709
        )

710
        self.alt_stream = alt_stream
711
        self.attn_mha.kv_b_proj = None
712

Ke Bao's avatar
Ke Bao committed
713
714
        self.w_kc = None
        self.w_vc = None
715
        self.w_scale = 1.0
716

717
718
719
720
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

Lianmin Zheng's avatar
Lianmin Zheng committed
721
722
723
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
724
725
726
        self.disable_chunked_prefix_cache = global_server_args_dict[
            "disable_chunked_prefix_cache"
        ]
727
        self.attention_backend = global_server_args_dict["attention_backend"]
728
729
730
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
731

732
        # TODO: Design a finer way to determine the threshold
733
734
735
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
736
737
738
739

    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
740
741
742
743
744
745
746
747
748
749
750
751
        def _dispatch_mla_subtype():
            if _is_hip:
                if (
                    self.rocm_fused_decode_mla
                    and forward_batch.forward_mode.is_decode()
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE
                else:
                    return AttnForwardMethod.MLA
            else:
                return AttnForwardMethod.MLA

752
        if self.attention_backend == "flashinfer":
Lianmin Zheng's avatar
Lianmin Zheng committed
753
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
754
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
755
756
757
758
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
759
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
760
761
762
            ):
                return AttnForwardMethod.MHA
            else:
763
                return _dispatch_mla_subtype()
764
        elif self.attention_backend == "fa3":
765
            # Flash Attention: Use MHA with chunked KV cache when prefilling on long sequences.
766
767
            if forward_batch.extend_prefix_lens_cpu is not None:
                sum_extend_prefix_lens = sum(forward_batch.extend_prefix_lens_cpu)
768
769
770
771
772
            if (
                forward_batch.forward_mode.is_extend()
                and not self.disable_chunked_prefix_cache
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
773
774
775
776
                and (
                    sum_extend_prefix_lens >= self.chunked_prefix_cache_threshold
                    or sum_extend_prefix_lens == 0
                )
777
778
779
            ):
                return AttnForwardMethod.MHA_CHUNKED_KV
            else:
780
                return _dispatch_mla_subtype()
781
782
783
784
785
786
787
788
789
        elif self.attention_backend == "aiter":
            if (
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
            ):
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
Lianmin Zheng's avatar
Lianmin Zheng committed
790
791
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
792
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
793
794
795
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
796
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
797
798
799
            ):
                return AttnForwardMethod.MHA
            else:
800
                return _dispatch_mla_subtype()
Lianmin Zheng's avatar
Lianmin Zheng committed
801

802
803
804
805
806
807
808
809
810
811
812
813
814
    def op_prepare(self, state):
        state.attn_intermediate_state = self.forward_prepare(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
        )

    def op_core(self, state):
        state.hidden_states_after_attn = self.forward_core(
            state.pop("attn_intermediate_state")
        )

815
816
817
818
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
819
        forward_batch: ForwardBatch,
820
        zero_allocator: BumpAllocator,
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
    ):
        s = self.forward_prepare(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )
        return self.forward_core(s)

    def forward_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
837
838
839
        if self.attn_mha.kv_b_proj is None:
            self.attn_mha.kv_b_proj = self.kv_b_proj

Lianmin Zheng's avatar
Lianmin Zheng committed
840
841
842
843
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
844
            return hidden_states, None, forward_batch, None
845

846
847
848
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)

        if attn_forward_method == AttnForwardMethod.MHA:
849
850
851
            inner_state = self.forward_normal_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
852
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
853
854
            inner_state = self.forward_normal_chunked_kv_prepare(
                positions, hidden_states, forward_batch, zero_allocator
855
            )
856
        elif attn_forward_method == AttnForwardMethod.MLA:
857
            inner_state = self.forward_absorb_prepare(
858
859
860
                positions, hidden_states, forward_batch, zero_allocator
            )
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
861
862
            inner_state = self.forward_absorb_fused_mla_rope_prepare(
                positions, hidden_states, forward_batch, zero_allocator
863
            )
864
        else:
865
            raise NotImplementedError
866
        return None, attn_forward_method, forward_batch, inner_state
867

868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
    def forward_core(self, intermediate_state):
        hidden_states, attn_forward_method, forward_batch, inner_state = (
            intermediate_state
        )
        if inner_state is None:
            return hidden_states

        if attn_forward_method == AttnForwardMethod.MHA:
            return self.forward_normal_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA:
            return self.forward_absorb_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
            return self.forward_absorb_fused_mla_rope_core(*inner_state)
        else:
            raise NotImplementedError

    def forward_normal_prepare(
887
888
889
890
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
891
892
        zero_allocator: BumpAllocator,
    ):
893
        if self.q_lora_rank is not None:
894
895
896
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
897
898
899
900
901
902
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
903
904
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
927
928
929
930

        return q, k, v, forward_batch

    def forward_normal_core(self, q, k, v, forward_batch):
931
932
933
934
935
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

936
    def forward_absorb_prepare(
937
938
939
940
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
941
        zero_allocator: BumpAllocator,
942
    ):
943
944
        from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode

945
        if self.q_lora_rank is not None:
946
947
948
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
949
950
951
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
952
            if self.alt_stream is not None and get_is_capture_mode():
953
954
955
956
957
958
959
960
961
962
963
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                q = self.q_a_layernorm(q)
                k_nope = self.kv_a_layernorm(k_nope)

            k_nope = k_nope.unsqueeze(1)
964
965
966
967
968
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
969
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
970
971
972
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

973
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
974
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
975

976
977
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
978
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
979
980
981
982
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
983
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
984
985
986
987
988
989
990
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
991
992
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
993
994
995
996
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
997
        elif self.w_kc.dtype == torch.float8_e4m3fn:
998
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
999
                q_nope.transpose(0, 1),
1000
                zero_allocator.allocate(1),
1001
1002
1003
1004
1005
1006
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
1007
1008

        q_nope_out = q_nope_out.transpose(0, 1)
1009
1010
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

1011
1012
1013
1014
1015
        return q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator

    def forward_absorb_core(
        self, q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator
    ):
xu-yfei's avatar
xu-yfei committed
1016
        if self.attention_backend == "fa3" or self.attention_backend == "flashinfer":
1017
            attn_output = self.attn_mqa(
Ke Bao's avatar
Ke Bao committed
1018
                q_nope_out, k_nope, k_nope, forward_batch, q_rope=q_pe, k_rope=k_pe
1019
1020
1021
            )
        else:
            q = torch.cat([q_nope_out, q_pe], dim=-1)
Ke Bao's avatar
Ke Bao committed
1022
            k = torch.cat([k_nope, k_pe], dim=-1)
1023
            attn_output = self.attn_mqa(q, k, k_nope, forward_batch)
1024
1025
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1026
1027
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
1028
1029
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
1030
1031
1032
1033
1034
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
1035
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
1036
1037
1038
1039
1040
1041
1042
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
            attn_bmm_output = attn_bmm_output[:, :expected_m, :]
1043
1044
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1045
1046
1047
1048
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
1049
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1050
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1051
                attn_output.transpose(0, 1),
1052
                zero_allocator.allocate(1),
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
        output, _ = self.o_proj(attn_output)

        return output

1068
    def forward_absorb_fused_mla_rope_prepare(
1069
1070
1071
1072
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1073
        zero_allocator: BumpAllocator,
1074
    ):
1075
1076
1077
1078
1079
1080
1081
1082
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
1083
1084
1085
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1086
1087
1088
1089
1090
1091
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1092
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1093
1094
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

1095
1096
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1097
1098
1099
1100
1101
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1102
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
1103
1104
1105
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
        return (
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            enable_rope_fusion,
            k_input,
            forward_batch,
            zero_allocator,
        )

    def forward_absorb_fused_mla_rope_core(
        self,
        q_input,
        key_cache_buf,
        val_cache_buf,
        attn_output,
        kv_indptr,
        kv_indices,
        k_pe_output,
        cos_sin_cache,
        positions,
        attn_logits,
        num_kv_split,
        sm_scale,
        enable_rope_fusion,
        k_input,
        forward_batch,
        zero_allocator,
    ):
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1229
1230
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1231
1232
1233
1234
1235
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1236
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
1237
1238
1239
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1251
1252
1253
1254
        output, _ = self.o_proj(attn_output)

        return output

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
            latent_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
                self.attn_mha.layer_id
            )
            latent_cache = latent_cache_buf[
                forward_batch.prefix_chunk_kv_indices[i]
            ].contiguous()

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            lse = torch.transpose(lse, 0, 1).contiguous()
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse

        return accum_output

1307
    def forward_normal_chunked_kv_prepare(
1308
1309
1310
1311
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1312
1313
        zero_allocator: BumpAllocator,
    ):
1314
1315
1316
1317
1318
1319
1320
1321
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
        if self.q_lora_rank is not None:
1322
1323
1324
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1325
1326
1327
1328
1329
1330
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1331
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )

1356
1357
1358
        return q, k, v, forward_batch

    def forward_normal_chunked_kv_core(self, q, k, v, forward_batch):
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
        attn_output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        lse = torch.transpose(lse, 0, 1).contiguous()

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
        if any(forward_batch.extend_prefix_lens_cpu):
            # Only initialize the info once
            if forward_batch.num_prefix_chunks is None:
                forward_batch.prepare_chunked_prefix_cache_info(q.device)

            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1382

Liangsheng Yin's avatar
Liangsheng Yin committed
1383
1384
1385
1386
1387
1388
1389
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
1390
        is_nextn: bool = False,
1391
        prefix: str = "",
1392
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1393
1394
1395
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
1396
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
1397
1398
1399
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Lianmin Zheng's avatar
Lianmin Zheng committed
1400
1401
        self.enable_dp_attention = global_server_args_dict["enable_dp_attention"]
        self.layer_id = layer_id
Baizhou Zhang's avatar
Baizhou Zhang committed
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
1420
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
1421
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1422

1423
1424
1425
1426
1427
1428
1429
1430
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
            num_layers=config.num_hidden_layers,
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
1431
1432
        )

1433
        if self.is_layer_sparse:
1434
1435
1436
1437
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
1438
                layer_id=self.layer_id,
1439
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1440
        else:
1441
            if enable_moe_dense_fully_dp():
1442
1443
1444
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
1445
1446
1447
1448
1449
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
1450
                prefix=add_prefix("mlp", prefix),
1451
1452
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
1453
            )
1454

Liangsheng Yin's avatar
Liangsheng Yin committed
1455
1456
1457
1458
1459
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

1460
1461
1462
1463
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
1464
        )
1465
1466
1467
1468
1469
1470

    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
1471
1472
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
1473
1474
1475
1476
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1477
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
1478
        residual: Optional[torch.Tensor],
1479
        zero_allocator: BumpAllocator,
Liangsheng Yin's avatar
Liangsheng Yin committed
1480
    ) -> torch.Tensor:
1481
1482
        hidden_states, residual = self.layer_communicator.prepare_attn(
            hidden_states, residual, forward_batch
1483
1484
        )

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )

        hidden_states, residual = self.layer_communicator.prepare_mlp(
            hidden_states, residual, forward_batch
        )

        hidden_states = self.mlp(hidden_states, forward_batch)

        hidden_states, residual = self.layer_communicator.postprocess_layer(
            hidden_states, residual, forward_batch
        )

        return hidden_states, residual

1504
1505
1506
1507
1508
1509
1510
1511
    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
1512
        tbo_subbatch_index: Optional[int] = None,
1513
1514
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
1515
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
1516
1517
1518
1519
1520
1521
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
1522
                tbo_subbatch_index=tbo_subbatch_index,
1523
            )
1524
        )
1525

1526
1527
1528
1529
1530
1531
1532
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
1533
        )
1534

1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
                hidden_states, state.forward_batch.forward_mode
            )
        else:
            state.hidden_states_mlp_output = hidden_states
1547

1548
    def op_comm_postprocess_layer(self, state):
1549
        hidden_states, residual = self.layer_communicator.postprocess_layer(
1550
1551
1552
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
1553
        )
1554

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
        output = dict(
            positions=state.positions,
            hidden_states=hidden_states,
            residual=residual,
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
            tbo_subbatch_index=state.tbo_subbatch_index,
        )

        state.clear(
            expect_keys={
                "positions",
                "forward_batch",
                "zero_allocator",
                "tbo_subbatch_index",
            }
        )
        return output
1573

Liangsheng Yin's avatar
Liangsheng Yin committed
1574
1575
1576
1577
1578
1579
1580
1581

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1582
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1583
1584
1585
1586
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size
1587
        self.first_k_dense_replace = config.first_k_dense_replace
Liangsheng Yin's avatar
Liangsheng Yin committed
1588
1589
1590
1591

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
1592
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
1593
        )
1594
        self.alt_stream = torch.cuda.Stream() if _is_cuda else None
Liangsheng Yin's avatar
Liangsheng Yin committed
1595
1596
1597
1598
1599
1600
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
1601
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
1602
                    alt_stream=self.alt_stream,
Liangsheng Yin's avatar
Liangsheng Yin committed
1603
1604
1605
1606
1607
1608
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

1609
        self.dp_size = get_local_attention_dp_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1610

1611
1612
1613
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
1614
1615
1616
1617
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1618
        forward_batch: ForwardBatch,
1619
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1620
    ) -> torch.Tensor:
1621
1622
        total_num_layers = len(self.layers)
        device = input_embeds.device if input_embeds is not None else input_ids.device
1623
        zero_allocator = BumpAllocator(
1624
            buffer_size=total_num_layers * 2 * (2 if forward_batch.can_run_tbo else 1),
1625
            dtype=torch.float32,
1626
            device=device,
1627
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1628

1629
1630
1631
1632
1633
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
1634
        residual = None
1635
1636
1637
1638
1639
1640
1641

        normal_num_layers = (
            self.first_k_dense_replace
            if forward_batch.can_run_tbo
            else total_num_layers
        )
        for i in range(normal_num_layers):
1642
1643
1644
1645
1646
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
                    positions, hidden_states, forward_batch, residual, zero_allocator
                )
1647
1648
1649
1650
1651
1652
1653
1654
1655

        if normal_num_layers != total_num_layers:
            hidden_states, residual = model_forward_maybe_tbo(
                layers=self.layers[normal_num_layers:],
                enable_tbo=True,
                positions=positions,
                forward_batch=forward_batch,
                hidden_states=hidden_states,
                residual=residual,
1656
1657
1658
                input_data_scatter_mode=self.layers[
                    normal_num_layers - 1
                ].layer_scatter_modes.layer_output_mode,
1659
1660
1661
                zero_allocator=zero_allocator,
            )

Ke Bao's avatar
Ke Bao committed
1662
        if not forward_batch.forward_mode.is_idle():
1663
1664
1665
1666
            if residual is None:
                hidden_states = self.norm(hidden_states)
            else:
                hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
1667
1668
1669
1670
1671
1672
1673
1674
1675
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1676
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1677
1678
1679
    ) -> None:
        super().__init__()
        self.config = config
1680
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
1681
        self.quant_config = quant_config
1682
        self.determine_num_fused_shared_experts()
1683
1684
1685
1686
1687
1688
1689
1690
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
1691
            use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
1692
1693
        )
        self.logits_processor = LogitsProcessor(config)
1694
        self.dp_size = get_local_attention_dp_size()
1695

1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
        self._routed_experts_weights_of_layer = LazyValue(
            lambda: {
                layer_id: layer.mlp.get_moe_weights()
                for layer_id, layer in enumerate(self.model.layers)
                if isinstance(layer.mlp, DeepseekV2MoE)
            }
        )

    @property
    def routed_experts_weights_of_layer(self):
        return self._routed_experts_weights_of_layer.value

1708
    def determine_num_fused_shared_experts(
1709
1710
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
1711
1712
1713
1714
1715
        self.num_fused_shared_experts = (
            0
            if global_server_args_dict["disable_shared_experts_fusion"]
            else self.config.n_shared_experts
        )
1716
        if self.num_fused_shared_experts > 0:
1717
1718
            # Only Deepseek V3/R1 can use shared experts fusion optimization now.
            if (
1719
1720
                not _is_cuda
                or self.config.architectures[0] != architecture
1721
1722
                or self.config.n_routed_experts != 256
            ):
1723
                self.num_fused_shared_experts = 0
1724
                global_server_args_dict["disable_shared_experts_fusion"] = True
1725
1726
                log_info_on_rank0(
                    logger,
1727
                    "Only Deepseek V3/R1 on NV-platform can use shared experts fusion optimization. Shared experts fusion optimization is disabled.",
1728
                )
1729
1730
1731
1732
            elif (
                global_server_args_dict["enable_deepep_moe"]
                or global_server_args_dict["enable_ep_moe"]
            ):
1733
1734
1735
1736
1737
1738
                self.num_fused_shared_experts = 0
                global_server_args_dict["disable_shared_experts_fusion"] = True
                log_info_on_rank0(
                    logger,
                    "Deepseek V3/R1 can not use shared experts fusion optimization when in deepep_moe or ep_moe mode. Shared experts fusion optimization is disabled.",
                )
1739
        elif self.num_fused_shared_experts == 0:
1740
            if (
1741
1742
                _is_cuda
                and torch.cuda.get_device_capability("cuda") >= (9, 0)
1743
                and self.config.architectures[0] == architecture
1744
                and self.config.n_routed_experts == 256
1745
1746
1747
1748
1749
1750
                and (
                    not (
                        global_server_args_dict["enable_deepep_moe"]
                        or global_server_args_dict["enable_ep_moe"]
                    )
                )
1751
            ):
1752
                self.num_fused_shared_experts = self.config.n_shared_experts
1753
                global_server_args_dict["disable_shared_experts_fusion"] = False
1754
1755
                log_info_on_rank0(
                    logger,
1756
                    "Deepseek V3/R1 with fp8/fp4 can use shared experts fusion optimization when SM version >=90. Shared experts fusion optimization is enabled.",
1757
                )
1758

Mick's avatar
Mick committed
1759
1760
1761
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

1762
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
1763
1764
1765
1766
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1767
        forward_batch: ForwardBatch,
1768
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1769
    ) -> torch.Tensor:
1770
        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
1771

1772
1773
1774
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
1775

1776
    def post_load_weights(self, is_nextn=False, weight_names=None):
inkcherry's avatar
inkcherry committed
1777
1778

        # Perform post-processing after loading weights
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
        if is_nextn:
            layer_ids = [self.config.num_hidden_layers]
        else:
            if weight_names is None:
                layer_ids = range(self.config.num_hidden_layers)
            else:
                layer_ids = set()
                for name in weight_names:
                    if "kv_b_proj" in name:
                        layer_id = int(name.split(".")[2])
                        # filter the nextn layer.
                        if layer_id != self.config.num_hidden_layers:
                            layer_ids.add(layer_id)

1793
1794
1795
1796
1797
1798
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
1799
1800
1801
1802
1803
1804
1805
1806
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
                if _is_cuda:
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
1807
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
1820
1821
1822
1823
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False
            model_dtype = torch.get_default_dtype()

Baizhou Zhang's avatar
Baizhou Zhang committed
1824
1825
1826
1827
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
1828
1829
1830
1831
                if (
                    hasattr(self.quant_config, "weight_block_size")
                    and self.quant_config.weight_block_size is not None
                ):
Baizhou Zhang's avatar
Baizhou Zhang committed
1832
                    weight_block_size = self.quant_config.weight_block_size
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
                    assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv

                    if (
                        _is_cuda
                        and weight_block_size[0] == 128
                        and weight_block_size[1] == 128
                        and model_dtype == torch.bfloat16
                    ):
                        if _ENABLE_JIT_DEEPGEMM and get_bool_env_var(
                            "SGL_USE_DEEPGEMM_BMM", "false"
1852
                        ):
1853
1854
                            block_scale = weight_scale
                            use_deep_gemm_bmm = True
1855
                        else:
1856
1857
1858
1859
1860
                            w = block_quant_dequant(
                                weight,
                                weight_scale,
                                weight_block_size,
                                model_dtype,
1861
                            )
1862
1863
1864
1865
1866
                    else:
                        w, scale = block_quant_to_tensor_quant(
                            weight, weight_scale, weight_block_size
                        )
                        self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
1867
                else:
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale

Baizhou Zhang's avatar
Baizhou Zhang committed
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
1897

Baizhou Zhang's avatar
Baizhou Zhang committed
1898
1899
1900
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
1901
            if not use_deep_gemm_bmm:
1902
1903
1904
1905
1906
1907
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                )
                self_attn.w_vc = bind_or_assign(
                    self_attn.w_vc, w_vc.contiguous().transpose(1, 2)
                )
1908
1909
1910
1911
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
1912
1913
1914
                    self_attn.w_scale = bind_or_assign(
                        self_attn.w_scale, self_attn.kv_b_proj.weight_scale
                    )
1915
1916
1917
1918
1919
1920
1921
1922
                    if _is_hip:
                        self_attn.w_scale *= 2.0
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
                self_attn.w_scale_k = bind_or_assign(
                    self_attn.w_scale_k, ws_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_scale_v = bind_or_assign(
                    self_attn.w_scale_v, ws_vc.contiguous()
                )
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_vc = bind_or_assign(self_attn.w_vc, w_vc.contiguous())
1933
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
1934

1935
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
1936

1937
1938
1939
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
1940
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
1941
1942
1943
1944
1945
1946
1947
1948
1949
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

Liangsheng Yin's avatar
Liangsheng Yin committed
1950
1951
1952
1953
1954
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
1955
        if self.num_fused_shared_experts > 0:
1956
            assert self.num_fused_shared_experts == 1
1957
1958
            weights_list = list(weights)
            weights_dict = dict(weights_list)
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
            if self.quant_config is not None:
                if self.quant_config.get_name() == "w8a8_int8":
                    suffix_list = [
                        "down_proj.weight",
                        "down_proj.weight_scale",
                        "gate_proj.weight",
                        "gate_proj.weight_scale",
                        "up_proj.weight",
                        "up_proj.weight_scale",
                    ]
                elif (
                    self.quant_config.get_name() == "fp8"
                    or self.quant_config.get_name() == "blockwise_int8"
                ):
                    suffix_list = [
                        "down_proj.weight",
                        "down_proj.weight_scale_inv",
                        "gate_proj.weight",
                        "gate_proj.weight_scale_inv",
                        "up_proj.weight",
                        "up_proj.weight_scale_inv",
                    ]
                elif self.quant_config.get_name() == "awq":
                    suffix_list = [
                        "down_proj.qweight",
                        "down_proj.qzeros",
                        "down_proj.scales",
                        "gate_proj.qweight",
                        "gate_proj.qzeros",
                        "gate_proj.scales",
                        "up_proj.qweight",
                        "up_proj.qzeros",
                        "up_proj.scales",
                    ]
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
                elif self.quant_config.get_name() == "modelopt_fp4":
                    suffix_list = [
                        "down_proj.weight",
                        "down_proj.weight_scale",
                        "down_proj.weight_scale_2",
                        "down_proj.input_scale",
                        "gate_proj.weight",
                        "gate_proj.weight_scale",
                        "gate_proj.weight_scale_2",
                        "gate_proj.input_scale",
                        "up_proj.weight",
                        "up_proj.weight_scale",
                        "up_proj.weight_scale_2",
                        "up_proj.input_scale",
                    ]
2008
2009
2010
2011
                else:
                    raise ValueError(
                        f"Unsupported shared expert fusion for quantization: {self.quant_config.get_name()}."
                    )
2012
2013
2014
2015
2016
2017
            else:
                suffix_list = [
                    "down_proj.weight",
                    "gate_proj.weight",
                    "up_proj.weight",
                ]
2018
            names_to_remove = []
2019
2020

            moe_layers = (
2021
2022
2023
2024
                range(
                    self.config.first_k_dense_replace,
                    self.config.num_hidden_layers,
                    self.config.moe_layer_freq,
2025
2026
2027
2028
2029
2030
2031
                )
                if not is_nextn
                else [nextn_layer_id]
            )

            for moe_layer in tqdm(
                moe_layers,
2032
                desc=f"Cloning {self.num_fused_shared_experts} "
2033
                "shared expert into MoE",
2034
            ):
2035
2036
2037
2038
                for suffix in suffix_list:
                    shared_expert_weight_name = (
                        f"model.layers.{moe_layer}.mlp.shared_experts.{suffix}"
                    )
2039
2040
2041
2042
2043
2044
2045
                    weights_list.append(
                        (
                            f"model.layers.{moe_layer}."
                            f"mlp.experts."
                            f"{self.config.n_routed_experts + 0}"
                            f".{suffix}",
                            weights_dict[shared_expert_weight_name],
2046
                        )
2047
                    )
2048
                    names_to_remove += [shared_expert_weight_name]
2049
            weights = [w for w in weights_list if w[0] not in names_to_remove]
Liangsheng Yin's avatar
Liangsheng Yin committed
2050
2051
2052

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
2053
        expert_params_mapping = get_moe_impl_class().make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
2054
2055
2056
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
2057
            num_experts=self.config.n_routed_experts + self.num_fused_shared_experts,
Liangsheng Yin's avatar
Liangsheng Yin committed
2058
2059
        )

2060
2061
2062
2063
2064
2065
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

2066
2067
2068
2069
2070
2071
2072
2073
2074
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

Liangsheng Yin's avatar
Liangsheng Yin committed
2075
        params_dict = dict(self.named_parameters())
2076
        weight_names = []
Liangsheng Yin's avatar
Liangsheng Yin committed
2077
        for name, loaded_weight in weights:
2078
2079
            weight_names.append(name)

2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
            if not is_nextn:
                if hasattr(self.config, "num_nextn_predict_layers"):
                    num_nextn_layers = self.config.num_nextn_predict_layers
                    if num_nextn_layers > 0 and name.startswith("model.layers"):
                        name_list = name.split(".")
                        if (
                            len(name_list) >= 3
                            and int(name_list[2]) >= self.config.num_hidden_layers
                        ):
                            continue
            else:
                if not name.startswith(nextn_layer_prefix):
                    continue

                # Use shared head and embed weights from target model
                if "shared_head.head" in name or "embed_tokens" in name:
                    continue

                is_decoder = True
                # For nextn specific weights
                for weight_name in nextn_spec_weight_names:
                    if weight_name in name:
                        name = name.replace(nextn_layer_prefix, "model")
                        is_decoder = False
                        break
                # For decoder layer weights
                if is_decoder:
                    name = name.replace(nextn_layer_prefix, "model.decoder")

Liangsheng Yin's avatar
Liangsheng Yin committed
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
2142
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
2143
2144
2145
2146
2147
2148
2149
2150
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
                    if fuse_qkv_a_proj and (
                        "q_a_proj" in name or "kv_a_proj_with_mqa" in name
                    ):
                        cached_a_proj[name] = loaded_weight
                        q_a_proj_name = (
                            name
                            if "q_a_proj" in name
                            else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                        )
                        kv_a_proj_name = (
                            name
                            if "kv_a_proj_with_mqa" in name
                            else name.replace("q_a_proj", "kv_a_proj_with_mqa")
                        )

                        # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                        if (
                            q_a_proj_name in cached_a_proj
                            and kv_a_proj_name in cached_a_proj
                        ):
                            q_a_proj_weight = cached_a_proj[q_a_proj_name]
                            kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
                            fused_weight = torch.cat(
                                [q_a_proj_weight, kv_a_proj_weight], dim=0
                            )
2176
2177
2178
2179
2180
2181
                            param_name = (
                                name.replace("q_a_proj", "fused_qkv_a_proj_with_mqa")
                                if "q_a_proj" in name
                                else name.replace(
                                    "kv_a_proj_with_mqa", "fused_qkv_a_proj_with_mqa"
                                )
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
                            )
                            param = params_dict[param_name]

                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
                            weight_loader(param, fused_weight)
                            cached_a_proj.pop(q_a_proj_name)
                            cached_a_proj.pop(kv_a_proj_name)
                    else:
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
                        if (
                            "k_scale" in name or "v_scale" in name
                        ) and name not in params_dict:
                            # modelopt attn kv scale is named differently
                            if any(scale in name for scale in ["k_scale", "v_scale"]):
                                name = name.replace("_proj", "attn_mqa")
                            else:
                                logger.warning(
                                    f"Unknown scale found in checkpoint: {name}"
                                )
2202
2203
2204
2205
2206
                        param = params_dict[name]
                        weight_loader = getattr(
                            param, "weight_loader", default_weight_loader
                        )
                        weight_loader(param, loaded_weight)
Liangsheng Yin's avatar
Liangsheng Yin committed
2207

2208
        self.post_load_weights(is_nextn=is_nextn, weight_names=weight_names)
Ke Bao's avatar
Ke Bao committed
2209

2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

2221
2222
2223
2224
2225
2226
2227
2228
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
2229

HandH1998's avatar
HandH1998 committed
2230
2231
2232
2233
2234
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]