scheduler.py 120 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import datetime
17
import faulthandler
18
import logging
19
import os
20
import signal
21
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
22
import threading
23
import time
24
from collections import defaultdict, deque
Lianmin Zheng's avatar
Lianmin Zheng committed
25
from concurrent import futures
26
from dataclasses import dataclass
27
from http import HTTPStatus
28
from pathlib import Path
29
from types import SimpleNamespace
30
from typing import Dict, List, Optional, Tuple, Union
31

32
import psutil
33
import setproctitle
34
import torch
35
import zmq
36
from torch.distributed import barrier
37

38
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
39
from sglang.srt.configs.model_config import ModelConfig
40
from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS
41
42
43
44
from sglang.srt.constrained.base_grammar_backend import (
    INVALID_GRAMMAR_OBJ,
    create_grammar_backend,
)
Byron Hsu's avatar
Byron Hsu committed
45
46
47
48
49
from sglang.srt.disaggregation.decode import (
    DecodePreallocQueue,
    DecodeTransferQueue,
    SchedulerDisaggregationDecodeMixin,
)
50
from sglang.srt.disaggregation.kv_events import EventPublisherFactory, KVEventBatch
Byron Hsu's avatar
Byron Hsu committed
51
52
53
54
55
56
from sglang.srt.disaggregation.prefill import (
    PrefillBootstrapQueue,
    SchedulerDisaggregationPrefillMixin,
)
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
57
    MetadataBuffers,
Byron Hsu's avatar
Byron Hsu committed
58
    ReqToMetadataIdxAllocator,
59
    TransferBackend,
60
    prepare_abort,
Byron Hsu's avatar
Byron Hsu committed
61
)
62
from sglang.srt.distributed import get_pp_group, get_world_group
fzyzcjy's avatar
fzyzcjy committed
63
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
xm:D's avatar
xm:D committed
64
65
66
67
68
from sglang.srt.hf_transformers_utils import (
    get_processor,
    get_tokenizer,
    get_tokenizer_from_processor,
)
69
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
70
71
72
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.managers.io_struct import (
    AbortReq,
73
    CloseSessionReqInput,
74
    ExpertDistributionReq,
75
    ExpertDistributionReqOutput,
76
77
    FlushCacheReqInput,
    FlushCacheReqOutput,
78
79
    GetInternalStateReq,
    GetInternalStateReqOutput,
80
81
    GetWeightsByNameReqInput,
    GetWeightsByNameReqOutput,
82
    HealthCheckOutput,
83
84
    InitWeightsUpdateGroupReqInput,
    InitWeightsUpdateGroupReqOutput,
85
86
    LoadLoRAAdapterReqInput,
    LoadLoRAAdapterReqOutput,
87
88
    OpenSessionReqInput,
    OpenSessionReqOutput,
89
    ProfileReq,
90
91
    ProfileReqOutput,
    ProfileReqType,
92
93
94
95
    ReleaseMemoryOccupationReqInput,
    ReleaseMemoryOccupationReqOutput,
    ResumeMemoryOccupationReqInput,
    ResumeMemoryOccupationReqOutput,
96
97
    RpcReqInput,
    RpcReqOutput,
98
99
    SetInternalStateReq,
    SetInternalStateReqOutput,
100
101
    SlowDownReqInput,
    SlowDownReqOutput,
102
103
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
104
105
    UnloadLoRAAdapterReqInput,
    UnloadLoRAAdapterReqOutput,
Chayenne's avatar
Chayenne committed
106
107
    UpdateWeightFromDiskReqInput,
    UpdateWeightFromDiskReqOutput,
108
109
    UpdateWeightsFromDistributedReqInput,
    UpdateWeightsFromDistributedReqOutput,
110
111
    UpdateWeightsFromTensorReqInput,
    UpdateWeightsFromTensorReqOutput,
112
)
113
from sglang.srt.managers.mm_utils import init_embedding_cache
114
115
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
Mick's avatar
Mick committed
116
    MultimodalInputs,
117
118
    Req,
    ScheduleBatch,
119
    global_server_args_dict,
120
)
121
122
123
124
125
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
126
127
128
from sglang.srt.managers.scheduler_output_processor_mixin import (
    SchedulerOutputProcessorMixin,
)
129
from sglang.srt.managers.session_controller import Session
130
from sglang.srt.managers.tp_worker import TpModelWorker
131
from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient
132
from sglang.srt.managers.utils import validate_input_length
tarinkk's avatar
tarinkk committed
133
from sglang.srt.mem_cache.chunk_cache import ChunkCache, SWAChunkCache
134
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
135
from sglang.srt.mem_cache.radix_cache import RadixCache
Hanming Lu's avatar
Hanming Lu committed
136
from sglang.srt.mem_cache.swa_radix_cache import SWARadixCache
137
from sglang.srt.metrics.collector import SchedulerMetricsCollector, SchedulerStats
Lianmin Zheng's avatar
Lianmin Zheng committed
138
from sglang.srt.model_executor.forward_batch_info import ForwardMode, PPProxyTensors
139
from sglang.srt.reasoning_parser import ReasoningParser
140
from sglang.srt.server_args import PortArgs, ServerArgs
141
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
142
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
143
from sglang.srt.two_batch_overlap import TboDPAttentionPreparer
144
from sglang.srt.utils import (
145
    DeepEPMode,
146
    DynamicGradMode,
147
    broadcast_pyobj,
fzyzcjy's avatar
fzyzcjy committed
148
    configure_gc_logger,
149
    configure_logger,
Lianmin Zheng's avatar
Lianmin Zheng committed
150
    disable_request_logging,
151
    get_available_gpu_memory,
152
    get_bool_env_var,
153
    get_zmq_socket,
154
    is_cpu,
Lianmin Zheng's avatar
Lianmin Zheng committed
155
    kill_itself_when_parent_died,
156
    point_to_point_pyobj,
157
    pyspy_dump_schedulers,
158
159
    require_mlp_sync,
    require_mlp_tp_gather,
160
    set_gpu_proc_affinity,
161
162
163
    set_random_seed,
    suppress_other_loggers,
)
164
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
165
166
167

logger = logging.getLogger(__name__)

168
# Test retract decode for debugging purposes
169
170
TEST_RETRACT = get_bool_env_var("SGLANG_TEST_RETRACT")
RECORD_STEP_TIME = get_bool_env_var("SGLANG_RECORD_STEP_TIME")
171
GRAMMAR_TIMEOUT = float(os.environ.get("SGLANG_GRAMMAR_TIMEOUT", 300))
172

173
174
_is_cpu = is_cpu()

175

176
177
@dataclass
class GenerationBatchResult:
178
179
180
    logits_output: Optional[LogitsProcessorOutput]
    pp_hidden_states_proxy_tensors: Optional[torch.Tensor]
    next_token_ids: Optional[List[int]]
181
182
    extend_input_len_per_req: List[int]
    extend_logprob_start_len_per_req: List[int]
183
    bid: int
184
    can_run_cuda_graph: bool
185
186
187
188
189
190
191
192


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor
    bid: int


193
194
195
196
197
198
199
200
201
202
203
204
class KvMetrics:
    def __init__(self):
        self.request_active_slots = None
        self.request_total_slots = None
        self.kv_active_blocks = None
        self.kv_total_blocks = None
        self.num_requests_waiting = None
        self.gpu_cache_usage_perc = None
        self.gpu_prefix_cache_hit_rate = None
        self.data_parallel_rank = None


205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
class IdleSleeper:
    """
    In setups which have long inactivity periods it is desirable to reduce
    system power consumption when sglang does nothing. This would lead not only
    to power savings, but also to more CPU thermal headroom when a request
    eventually comes. This is important in cases when multiple GPUs are connected
    as each GPU would otherwise pin one thread at 100% CPU usage.

    The simplest solution is to use zmq.Poller on all sockets that may receive
    data that needs handling immediately.
    """

    def __init__(self, sockets):
        self.poller = zmq.Poller()
        for s in sockets:
            self.poller.register(s, zmq.POLLIN)

    def maybe_sleep(self):
        self.poller.poll(1000)


Byron Hsu's avatar
Byron Hsu committed
226
227
228
229
230
class Scheduler(
    SchedulerOutputProcessorMixin,
    SchedulerDisaggregationDecodeMixin,
    SchedulerDisaggregationPrefillMixin,
):
231
232
233
234
235
236
237
238
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
239
        pp_rank: int,
240
        dp_rank: Optional[int],
241
242
    ):
        # Parse args
243
        self.server_args = server_args
244
        self.tp_rank = tp_rank
245
        self.pp_rank = pp_rank
246
        self.dp_rank = dp_rank
247
        self.tp_size = server_args.tp_size
248
249
        self.pp_size = server_args.pp_size
        self.dp_size = server_args.dp_size
250
        self.schedule_policy = server_args.schedule_policy
251
        self.enable_lora = server_args.enable_lora
252
        self.max_loras_per_batch = server_args.max_loras_per_batch
253
        self.enable_overlap = not server_args.disable_overlap_schedule
254
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
255
        self.enable_metrics = server_args.enable_metrics
256
257
258
        self.enable_metrics_for_all_schedulers = (
            server_args.enable_metrics_for_all_schedulers
        )
259
        self.enable_kv_cache_events = server_args.kv_events_config is not None
260
        self.stream_interval = server_args.stream_interval
261
262
263
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
264
265
        self.gpu_id = gpu_id
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
266
        self.enable_hicache_storage = server_args.hicache_storage_backend is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
267
        self.page_size = server_args.page_size
268
269
        self.dp_size = server_args.dp_size
        self.attn_tp_rank, self.attn_tp_size, self.attn_dp_rank = (
270
271
272
273
274
275
276
277
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

278
279
        # Init inter-process communication
        context = zmq.Context(2)
280
281
        self.idle_sleeper = None

282
        if self.pp_rank == 0 and self.attn_tp_rank == 0:
283
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
284
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
285
            )
286
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
287
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
288
            )
289

290
            if server_args.skip_tokenizer_init:
291
                # Directly send to the TokenizerManager
292
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
293
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
294
295
                )
            else:
296
                # Send to the DetokenizerManager
297
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
298
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
299
                )
300
301
302
303

            self.recv_from_rpc = get_zmq_socket(
                context, zmq.DEALER, port_args.rpc_ipc_name, False
            )
304
305
306
307
308
309
310
            if self.server_args.sleep_on_idle:
                self.idle_sleeper = IdleSleeper(
                    [
                        self.recv_from_tokenizer,
                        self.recv_from_rpc,
                    ]
                )
311
        else:
312
            self.recv_from_tokenizer = None
313
            self.recv_from_rpc = None
314
315
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
316

317
318
319
320
321
        if self.current_scheduler_metrics_enabled():
            self.send_metrics_from_scheduler = get_zmq_socket(
                context, zmq.PUSH, port_args.metrics_ipc_name, False
            )

322
        # Init tokenizer
323
        self.init_tokenizer()
324

325
326
327
328
329
330
331
332
333
        # Set reasoning_parser and think_end_id if --reasoning_parser is enabled
        if self.server_args.reasoning_parser and self.tokenizer:
            reasoning_parser = ReasoningParser(
                model_type=self.server_args.reasoning_parser, stream_reasoning=False
            )
            self.tokenizer.think_end_id = self.tokenizer.encode(
                reasoning_parser.detector.think_end_token, add_special_tokens=False
            )[0]

334
335
336
337
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
338

339
        # Launch a tensor parallel worker
340
        if self.enable_overlap:
341
            TpWorkerClass = TpModelWorkerClient
342
343
        else:
            TpWorkerClass = TpModelWorker
344

345
        self.tp_worker = TpWorkerClass(
346
            server_args=server_args,
347
348
            gpu_id=gpu_id,
            tp_rank=tp_rank,
349
            pp_rank=pp_rank,
350
            dp_rank=dp_rank,
351
            nccl_port=port_args.nccl_port,
352
        )
353

354
        # Launch a draft worker for speculative decoding
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        else:
            self.draft_worker = None

369
        # Get token and memory info from the model worker
370
371
372
373
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
374
            self.max_queued_requests,
375
            self.max_req_len,
376
377
            self.max_req_input_len,
            self.random_seed,
378
            self.device,
379
380
381
382
383
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
384
385
386
387
388
389
390
391
        if global_server_args_dict["max_micro_batch_size"] is None:
            global_server_args_dict["max_micro_batch_size"] = max(
                self.max_running_requests // server_args.pp_size, 1
            )

        self.tp_group = self.tp_worker.get_tp_group()
        self.tp_cpu_group = self.tp_group.cpu_group
        self.attn_tp_group = self.tp_worker.get_attention_tp_group()
392
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
393
394
395
        self.pp_group = get_pp_group()
        self.world_group = get_world_group()

396
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
397
        global_server_args_dict.update(worker_global_server_args_dict)
398
        set_random_seed(self.random_seed)
399

Hanming Lu's avatar
Hanming Lu committed
400
401
402
403
404
405
406
407
        # Hybrid
        self.is_hybrid = self.tp_worker.is_hybrid
        if self.is_hybrid:
            self.sliding_window_size = self.tp_worker.sliding_window_size
            self.full_tokens_per_layer, self.swa_tokens_per_layer = (
                self.tp_worker.get_tokens_per_layer_info()
            )

408
        # Print debug info
409
        if tp_rank == 0:
410
411
412
            avail_mem = get_available_gpu_memory(
                self.device, self.gpu_id, empty_cache=False
            )
413
414
415
416
417
            logger.info(
                f"max_total_num_tokens={self.max_total_num_tokens}, "
                f"chunked_prefill_size={server_args.chunked_prefill_size}, "
                f"max_prefill_tokens={self.max_prefill_tokens}, "
                f"max_running_requests={self.max_running_requests}, "
418
419
                f"context_len={self.model_config.context_len}, "
                f"available_gpu_mem={avail_mem:.2f} GB"
420
            )
421

Lianmin Zheng's avatar
Lianmin Zheng committed
422
        # Init memory pool and cache
423
        self.init_memory_pool_and_cache()
424
425
426

        # Init running status
        self.waiting_queue: List[Req] = []
427
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
428
        self.running_batch: ScheduleBatch = ScheduleBatch(reqs=[], batch_is_full=False)
429
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
430
        self.cur_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
431
        # The last forward batch
432
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
433
434
        self.forward_ct = 0
        self.forward_ct_decode = 0
435
        self.num_generated_tokens = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
436
        self.last_prefill_tokens = 0
437
438
        self.last_decode_stats_tic = time.perf_counter()
        self.last_prefill_stats_tic = time.perf_counter()
439
        self.return_health_check_ct = 0
440
441
442
443
444
        self.num_retracted_reqs: int = 0
        self.num_paused_reqs: int = 0
        self.kv_transfer_speed_gb_s: float = 0.0
        self.kv_transfer_latency_ms: float = 0.0
        self.sessions: Dict[str, Session] = {}
445
        self.current_stream = torch.get_device_module(self.device).current_stream()
446
447
        if self.device == "cpu":
            self.current_stream.synchronize = lambda: None  # No-op for CPU
448
        self.forward_sleep_time = None
449

450
451
        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
452
453
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
454
        self.chunked_req = None
455
456
457
458
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
459
        # Init the grammar backend for constrained generation
460
        self.grammar_queue: List[Req] = []
461
        if not server_args.skip_tokenizer_init:
462
            self.grammar_backend = create_grammar_backend(
463
464
465
466
                server_args,
                self.tokenizer,
                self.model_config.vocab_size,
                self.model_config.hf_eos_token_id,
467
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
468
469
        else:
            self.grammar_backend = None
470

471
        # Init schedule policy and new token estimation
472
        self.policy = SchedulePolicy(
Lianmin Zheng's avatar
Lianmin Zheng committed
473
474
475
            self.schedule_policy,
            self.tree_cache,
            self.enable_hierarchical_cache,
476
        )
477
478
479
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
480
481
        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
482
483
            * server_args.schedule_conservativeness,
            1.0,
484
        )
485
486
487
488
489
490
491
492
493
494
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
495
496
497
498
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
499
        self.parent_process = psutil.Process().parent()
500
501

        # Init memory saver, profiler and metric stats
502
503
504
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )
505
        self.init_profier()
506
507

        # Init metrics stats
508
        self.init_metrics(tp_rank, pp_rank, dp_rank)
509
        self.init_kv_events(server_args.kv_events_config)
510

511
512
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
513
514
515
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
516
                (FlushCacheReqInput, self.flush_cache_wrapped),
517
                (AbortReq, self.abort_request),
518
519
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
520
521
522
523
524
525
526
527
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
528
529
                (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
                (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
530
                (SlowDownReqInput, self.slow_down),
531
                (ProfileReq, self.profile),
532
                (GetInternalStateReq, self.get_internal_state),
533
                (SetInternalStateReq, self.set_internal_state),
534
                (RpcReqInput, self.handle_rpc_request),
535
                (ExpertDistributionReq, self.expert_distribution_handle),
536
537
                (LoadLoRAAdapterReqInput, self.load_lora_adapter),
                (UnloadLoRAAdapterReqInput, self.unload_lora_adapter),
538
539
540
            ]
        )

541
        # Init disaggregation
Byron Hsu's avatar
Byron Hsu committed
542
543
544
545
546
        self.disaggregation_mode = DisaggregationMode(
            self.server_args.disaggregation_mode
        )
        self.init_disaggregation()

fzyzcjy's avatar
fzyzcjy committed
547
548
549
        if get_bool_env_var("SGLANG_GC_LOG"):
            configure_gc_logger()

550
551
552
    def current_scheduler_metrics_enabled(self):
        return self.attn_tp_rank == 0 or self.enable_metrics_for_all_schedulers

553
554
555
556
    def maybe_sleep_on_idle(self):
        if self.idle_sleeper is not None:
            self.idle_sleeper.maybe_sleep()

557
558
    def init_tokenizer(self):
        server_args = self.server_args
Lianmin Zheng's avatar
Lianmin Zheng committed
559

560
        self.model_config = ModelConfig.from_server_args(server_args)
561
        self.is_generation = self.model_config.is_generation
562

563
564
565
566
567
568
569
570
571
        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if self.model_config.is_multimodal:
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
572
                    use_fast=not server_args.disable_fast_image_processor,
573
                )
xm:D's avatar
xm:D committed
574
                self.tokenizer = get_tokenizer_from_processor(self.processor)
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )

    def init_memory_pool_and_cache(self):
        server_args = self.server_args

        self.req_to_token_pool, self.token_to_kv_pool_allocator = (
            self.tp_worker.get_memory_pool()
        )

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
Hanming Lu's avatar
Hanming Lu committed
594
            if self.is_hybrid:
tarinkk's avatar
tarinkk committed
595
596
597
598
                ChunkCacheClass = SWAChunkCache
            else:
                ChunkCacheClass = ChunkCache
            self.tree_cache = ChunkCacheClass(
599
600
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
601
                page_size=self.page_size,
602
603
604
605
606
607
            )
        else:
            if self.enable_hierarchical_cache:
                self.tree_cache = HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
608
609
610
611
612
                    tp_cache_group=(
                        self.attn_tp_cpu_group
                        if self.server_args.enable_dp_attention
                        else self.tp_cpu_group
                    ),
613
                    page_size=self.page_size,
614
                    hicache_ratio=server_args.hicache_ratio,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
615
616
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
617
618
619
620
621
622
                    hicache_io_backend=(
                        "direct"
                        if server_args.attention_backend
                        == "fa3"  # hot fix for incompatibility
                        else server_args.hicache_io_backend
                    ),
623
                    hicache_storage_backend=server_args.hicache_storage_backend,
624
                )
625
626
627
                self.tp_worker.register_hicache_layer_transfer_counter(
                    self.tree_cache.cache_controller.layer_done_counter
                )
Hanming Lu's avatar
Hanming Lu committed
628
629
630
631
632
633
634
635
636
637
638
            elif self.is_hybrid:
                assert (
                    self.server_args.disaggregation_mode == "null"
                ), "Hybrid mode does not support disaggregation yet"
                self.tree_cache = SWARadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    sliding_window_size=self.sliding_window_size,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                )
639

640
641
642
643
            else:
                self.tree_cache = RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
644
                    page_size=self.page_size,
645
                    disable=server_args.disable_radix_cache,
646
                    enable_kv_cache_events=self.enable_kv_cache_events,
647
648
649
650
651
652
653
654
655
656
657
658
                )

        self.decode_mem_cache_buf_multiplier = (
            1
            if self.spec_algorithm.is_none()
            else (
                server_args.speculative_num_draft_tokens
                + (
                    server_args.speculative_eagle_topk
                    * server_args.speculative_num_steps
                )
            )
659
        )
660

661
662
663
        embedding_cache_size = int(os.environ.get("SGLANG_VLM_CACHE_SIZE_MB", "100"))
        init_embedding_cache(embedding_cache_size * 1024 * 1024)

664
665
666
667
668
    def init_profier(self):
        self.torch_profiler = None
        self.torch_profiler_output_dir: Optional[str] = None
        self.profiler_activities: Optional[List[str]] = None
        self.profile_id: Optional[str] = None
669
        self.profiler_start_forward_ct: Optional[int] = None
670
671
672
673
674
675
676
677
678
679
        self.profiler_target_forward_ct: Optional[int] = None
        self.profiler_target_prefill_ct: Optional[int] = None
        self.profiler_target_decode_ct: Optional[int] = None
        self.profiler_prefill_ct: Optional[int] = None
        self.profiler_decode_ct: Optional[int] = None
        self.profile_by_stage: bool = False
        self.profile_steps: Optional[int] = None
        self.profile_in_progress: bool = False
        self.rpd_profiler = None

680
    def init_metrics(self, tp_rank: int, pp_rank: int, dp_rank: Optional[int]):
681
        self.last_gen_throughput: float = 0.0
Lianmin Zheng's avatar
Lianmin Zheng committed
682
        self.last_input_throughput: float = 0.0
683
684
685
686
687
        self.step_time_dict = defaultdict(list)  # Dict[batch size -> step time]
        self.spec_num_total_accepted_tokens = 0
        self.spec_num_total_forward_ct = 0
        self.cum_spec_accept_length = 0
        self.cum_spec_accept_count = 0
688
        self.total_retracted_reqs = 0
689
690
691
        self.stats = SchedulerStats()
        if self.enable_metrics:
            engine_type = "unified"
692
693
694
695
696
697
698
699
700
            labels = {
                "model_name": self.server_args.served_model_name,
                "engine_type": engine_type,
                "tp_rank": tp_rank,
                "pp_rank": pp_rank,
            }
            if dp_rank is not None:
                labels["dp_rank"] = dp_rank
            self.metrics_collector = SchedulerMetricsCollector(labels=labels)
Lianmin Zheng's avatar
Lianmin Zheng committed
701

702
703
    def init_kv_events(self, kv_events_config: Optional[str]):
        if self.enable_kv_cache_events:
704
705
706
            self.kv_event_publisher = EventPublisherFactory.create(
                kv_events_config, self.attn_dp_rank
            )
707

Byron Hsu's avatar
Byron Hsu committed
708
    def init_disaggregation(self):
709
710
711
712
        self.transfer_backend = TransferBackend(
            self.server_args.disaggregation_transfer_backend
        )

Byron Hsu's avatar
Byron Hsu committed
713
714
715
716
        if (
            self.disaggregation_mode == DisaggregationMode.DECODE
        ):  # *2 for the headroom.
            buffer_size = (self.req_to_token_pool.size) * 2
Byron Hsu's avatar
Byron Hsu committed
717
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
718
719
                buffer_size
            )
720
721
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
722
723
                hidden_size=self.model_config.hf_text_config.hidden_size,
                dtype=self.model_config.dtype,
724
725
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
726
727
728

            # The decode requests polling kv cache
            self.disagg_decode_transfer_queue = DecodeTransferQueue(
729
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
730
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
731
                tp_rank=self.tp_rank,
732
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
733
734
                scheduler=self,
                tree_cache=self.tree_cache,
Byron Hsu's avatar
Byron Hsu committed
735
736
737
738
739
740
            )

            # The decode requests pending for pre-allocation
            self.disagg_decode_prealloc_queue = DecodePreallocQueue(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Byron Hsu's avatar
Byron Hsu committed
741
742
743
744
745
                draft_token_to_kv_pool=(
                    None
                    if self.draft_worker is None
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
746
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
747
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
748
749
750
                scheduler=self,
                transfer_queue=self.disagg_decode_transfer_queue,
                tree_cache=self.tree_cache,
751
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
752
753
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
754
755
                dp_size=self.server_args.dp_size,
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
756
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
757
758
                max_total_num_tokens=self.max_total_num_tokens,
                prefill_pp_size=self.server_args.disaggregation_prefill_pp,
759
                num_reserved_decode_tokens=self.server_args.num_reserved_decode_tokens,
760
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
761
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
762

Byron Hsu's avatar
Byron Hsu committed
763
764
765
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            # *2 for the headroom.
            buffer_size = self.max_running_requests * 2
Byron Hsu's avatar
Byron Hsu committed
766
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
767
768
                buffer_size
            )
769
770
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
771
772
                hidden_size=self.model_config.hf_text_config.hidden_size,
                dtype=self.model_config.dtype,
773
774
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
775

Liangsheng Yin's avatar
Liangsheng Yin committed
776
            self.disagg_prefill_bootstrap_queue = PrefillBootstrapQueue(
Byron Hsu's avatar
Byron Hsu committed
777
                token_to_kv_pool=self.token_to_kv_pool_allocator.get_kvcache(),
Byron Hsu's avatar
Byron Hsu committed
778
779
780
781
782
                draft_token_to_kv_pool=(
                    None
                    if self.draft_worker is None
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
783
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
784
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
785
786
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
Byron Hsu's avatar
Byron Hsu committed
787
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
788
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
789
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
790
791
792
                max_total_num_tokens=self.max_total_num_tokens,
                decode_tp_size=self.server_args.disaggregation_decode_tp,
                decode_dp_size=self.server_args.disaggregation_decode_dp,
793
                scheduler=self,
Byron Hsu's avatar
Byron Hsu committed
794
795
796
                pp_rank=self.pp_rank,
                pp_size=self.pp_size,
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
797
798
            )
            # The prefill requests that are in the middle of kv sending
799
            self.disagg_prefill_inflight_queue: List[Req] = []
Byron Hsu's avatar
Byron Hsu committed
800

801
    @DynamicGradMode()
802
    def event_loop_normal(self):
803
        """A normal scheduler loop."""
804
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
805
806
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
807

808
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
809
            self.cur_batch = batch
810
811
812
813

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
814
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
815
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
816
                self.check_memory()
Hanming Lu's avatar
Hanming Lu committed
817
                self.check_tree_cache()
818
                self.new_token_ratio = self.init_new_token_ratio
819
                self.maybe_sleep_on_idle()
820
821

            self.last_batch = batch
822

823
    @DynamicGradMode()
Lianmin Zheng's avatar
Lianmin Zheng committed
824
    def event_loop_overlap(self):
825
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
826
        self.result_queue = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
827
828
829
830
831
832
833

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
834

Lianmin Zheng's avatar
Lianmin Zheng committed
835
            if batch:
836
                batch.launch_done = threading.Event()
Lianmin Zheng's avatar
Lianmin Zheng committed
837
                result = self.run_batch(batch)
838
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
839

840
                if self.last_batch is None:
841
                    # Create a dummy first batch to start the pipeline for overlap schedule.
842
843
844
845
846
847
                    # It is now used for triggering the sampling_info_done event.
                    tmp_batch = ScheduleBatch(
                        reqs=None,
                        forward_mode=ForwardMode.DUMMY_FIRST,
                        next_batch_sampling_info=self.tp_worker.cur_sampling_info,
                    )
848
                    self.process_batch_result(tmp_batch, None, batch.launch_done)
849

Lianmin Zheng's avatar
Lianmin Zheng committed
850
            if self.last_batch:
851
                # Process the results of the last batch
852
                tmp_batch, tmp_result = self.result_queue.popleft()
853
854
855
                tmp_batch.next_batch_sampling_info = (
                    self.tp_worker.cur_sampling_info if batch else None
                )
856
857
858
859
                # NOTE: we should use current launched batch's launch_done event Instead of the last batch's
                self.process_batch_result(
                    tmp_batch, tmp_result, batch.launch_done if batch else None
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
860
            elif batch is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
861
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
862
                self.check_memory()
Hanming Lu's avatar
Hanming Lu committed
863
                self.check_tree_cache()
864
                self.new_token_ratio = self.init_new_token_ratio
865
                self.maybe_sleep_on_idle()
Lianmin Zheng's avatar
Lianmin Zheng committed
866
867
868

            self.last_batch = batch

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
    @DynamicGradMode()
    def event_loop_pp(self):
        """A non-overlap scheduler loop for pipeline parallelism."""
        mbs = [None] * self.pp_size
        last_mbs = [None] * self.pp_size
        self.running_mbs = [
            ScheduleBatch(reqs=[], batch_is_full=False) for _ in range(self.pp_size)
        ]
        bids = [None] * self.pp_size
        pp_outputs: Optional[PPProxyTensors] = None
        while True:
            server_is_idle = True
            for mb_id in range(self.pp_size):
                self.running_batch = self.running_mbs[mb_id]
                self.last_batch = last_mbs[mb_id]

                recv_reqs = self.recv_requests()
                self.process_input_requests(recv_reqs)
                mbs[mb_id] = self.get_next_batch_to_run()
                self.running_mbs[mb_id] = self.running_batch

                self.cur_batch = mbs[mb_id]
                if self.cur_batch:
                    server_is_idle = False
                    result = self.run_batch(self.cur_batch)

895
                # (last rank) send the outputs to the next step
896
897
898
899
900
901
                if self.pp_group.is_last_rank:
                    if self.cur_batch:
                        next_token_ids, bids[mb_id] = (
                            result.next_token_ids,
                            result.bid,
                        )
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
                        if self.cur_batch.return_logprob:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                    "extend_input_len_per_req": result.extend_input_len_per_req,
                                    "extend_logprob_start_len_per_req": result.extend_logprob_start_len_per_req,
                                }
                                | (
                                    {
                                        f"logits_output.{k}": v
                                        for k, v in result.logits_output.__dict__.items()
                                    }
                                    if result.logits_output is not None
                                    else {}
                                )
                            )
                        else:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                }
                            )
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
                        # send the output from the last round to let the next stage worker run post processing
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                # receive outputs and post-process (filter finished reqs) the coming microbatch
                next_mb_id = (mb_id + 1) % self.pp_size
                next_pp_outputs = None
                if mbs[next_mb_id] is not None:
                    next_pp_outputs: Optional[PPProxyTensors] = PPProxyTensors(
                        self.pp_group.recv_tensor_dict(
                            all_gather_group=self.attn_tp_group
                        )
                    )
                    mbs[next_mb_id].output_ids = next_pp_outputs["next_token_ids"]
940
941
942
943
944
945
946
947
948
                    logits_output_args = {
                        k[len("logits_output.") :]: v
                        for k, v in next_pp_outputs.tensors.items()
                        if k.startswith("logits_output.")
                    }
                    if len(logits_output_args) > 0:
                        logits_output = LogitsProcessorOutput(**logits_output_args)
                    else:
                        logits_output = None
949
                    output_result = GenerationBatchResult(
950
                        logits_output=logits_output,
951
952
                        pp_hidden_states_proxy_tensors=None,
                        next_token_ids=next_pp_outputs["next_token_ids"],
953
954
955
956
957
958
                        extend_input_len_per_req=next_pp_outputs.tensors.get(
                            "extend_input_len_per_req", None
                        ),
                        extend_logprob_start_len_per_req=next_pp_outputs.tensors.get(
                            "extend_logprob_start_len_per_req", None
                        ),
959
                        bid=bids[next_mb_id],
960
                        can_run_cuda_graph=result.can_run_cuda_graph,
961
962
963
964
                    )
                    self.process_batch_result(mbs[next_mb_id], output_result)
                    last_mbs[next_mb_id] = mbs[next_mb_id]

965
                # (not last rank)
966
967
968
                if not self.pp_group.is_last_rank:
                    if self.cur_batch:
                        bids[mb_id] = result.bid
969
970
                    # carry the outputs to the next stage
                    # send the outputs from the last round to let the next stage worker run post processing
971
972
973
974
975
976
977
                    if pp_outputs:
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                    # send out reqs to the next stage
978
                    dp_offset = self.attn_dp_rank * self.attn_tp_size
979
980
981
982
                    if self.attn_tp_rank == 0:
                        point_to_point_pyobj(
                            recv_reqs,
                            self.pp_rank * self.tp_size + dp_offset,
983
                            self.world_group.device_group,
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
                            self.pp_rank * self.tp_size + dp_offset,
                            (self.pp_rank + 1) * self.tp_size + dp_offset,
                        )

                    # send out proxy tensors to the next stage
                    if self.cur_batch:
                        self.pp_group.send_tensor_dict(
                            result.pp_hidden_states_proxy_tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                pp_outputs = next_pp_outputs

            # When the server is idle, self-check and re-init some states
            if server_is_idle:
                self.check_memory()
Hanming Lu's avatar
Hanming Lu committed
1000
                self.check_tree_cache()
1001
                self.new_token_ratio = self.init_new_token_ratio
1002
                self.maybe_sleep_on_idle()
1003

1004
1005
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
        if self.pp_rank == 0:
            if self.attn_tp_rank == 0:
                recv_reqs = []

                while True:
                    try:
                        recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_req)

                while True:
                    try:
                        recv_rpc = self.recv_from_rpc.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_rpc)
            else:
                recv_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1025
        else:
1026
            if self.attn_tp_rank == 0:
1027
                dp_offset = self.attn_dp_rank * self.attn_tp_size
1028
1029
1030
                recv_reqs = point_to_point_pyobj(
                    [],
                    self.pp_rank * self.tp_size + dp_offset,
1031
                    self.world_group.device_group,
1032
1033
1034
1035
1036
                    (self.pp_rank - 1) * self.tp_size + dp_offset,
                    self.pp_rank * self.tp_size + dp_offset,
                )
            else:
                recv_reqs = None
1037

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                work_reqs = broadcast_pyobj(
                    work_reqs,
1061
                    self.attn_tp_group.rank,
1062
                    self.attn_tp_cpu_group,
1063
                    src=self.attn_tp_group.ranks[0],
1064
1065
1066
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
1067
1068
1069
1070
                    control_reqs,
                    self.tp_group.rank,
                    self.tp_cpu_group,
                    src=self.tp_group.ranks[0],
1071
1072
1073
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
1074
1075
1076
1077
1078
1079
            recv_reqs = broadcast_pyobj(
                recv_reqs,
                self.tp_group.rank,
                self.tp_cpu_group,
                src=self.tp_group.ranks[0],
            )
1080
1081
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
1082
    def process_input_requests(self, recv_reqs: List):
1083
        for recv_req in recv_reqs:
1084
1085
            # If it is a health check generation request and there are running requests, ignore it.
            if is_health_check_generate_req(recv_req) and (
Lianmin Zheng's avatar
Lianmin Zheng committed
1086
                self.chunked_req is not None or not self.running_batch.is_empty()
1087
1088
1089
1090
            ):
                self.return_health_check_ct += 1
                continue

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
            # If it is a work request, accept or reject the request based on the request queue size.
            if is_work_request(recv_req):
                if len(self.waiting_queue) + 1 > self.max_queued_requests:
                    abort_req = AbortReq(
                        recv_req.rid,
                        finished_reason={
                            "type": "abort",
                            "status_code": HTTPStatus.SERVICE_UNAVAILABLE,
                            "message": "The request queue is full.",
                        },
                    )
                    self.send_to_tokenizer.send_pyobj(abort_req)
                    continue
1104
            output = self._request_dispatcher(recv_req)
1105
            if output is not None:
1106
1107
1108
1109
1110
                if isinstance(output, RpcReqOutput):
                    if self.recv_from_rpc is not None:
                        self.recv_from_rpc.send_pyobj(output)
                else:
                    self.send_to_tokenizer.send_pyobj(output)
1111
1112
1113
1114
1115

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
1116
        # Create a new request
1117
1118
1119
1120
1121
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
Rin Intachuen's avatar
Rin Intachuen committed
1122
1123
1124
1125
1126
1127
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

1128
1129
1130
1131
            if recv_req.bootstrap_port is None:
                # Use default bootstrap port
                recv_req.bootstrap_port = self.server_args.disaggregation_bootstrap_port

1132
1133
1134
1135
1136
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
1137
1138
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
1139
                token_ids_logprob=recv_req.token_ids_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
1140
                stream=recv_req.stream,
1141
                lora_path=recv_req.lora_path,
Rin Intachuen's avatar
Rin Intachuen committed
1142
                input_embeds=recv_req.input_embeds,
Lianmin Zheng's avatar
Lianmin Zheng committed
1143
                custom_logit_processor=recv_req.custom_logit_processor,
1144
                return_hidden_states=recv_req.return_hidden_states,
1145
                eos_token_ids=self.model_config.hf_eos_token_id,
1146
                bootstrap_host=recv_req.bootstrap_host,
1147
                bootstrap_port=recv_req.bootstrap_port,
1148
                bootstrap_room=recv_req.bootstrap_room,
1149
                data_parallel_rank=recv_req.data_parallel_rank,
1150
                vocab_size=self.model_config.vocab_size,
1151
1152
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1153

1154
1155
1156
            if self.disaggregation_mode != DisaggregationMode.NULL:
                # Invalid request for disaggregated mode
                if recv_req.bootstrap_room is None:
1157
                    error_msg = (
1158
1159
1160
                        f"Invalid request: Disaggregated request received without "
                        f"boostrap room id. {req.rid=}"
                    )
1161
1162
                    logger.error(error_msg)
                    prepare_abort(req, error_msg)
1163
1164
1165
                    self.stream_output([req], req.return_logprob)
                    return

1166
1167
1168
1169
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
1170
                req.set_finish_with_abort(
1171
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
1172
                )
1173
                self._add_request_to_queue(req)
1174
1175
                return
        else:
1176
1177
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
1178
            req = session.create_req(recv_req, self.tokenizer)
1179
            if isinstance(req.finished_reason, FINISH_ABORT):
1180
                self._add_request_to_queue(req)
1181
                return
1182

1183
        # Handle multimodal inputs
Mick's avatar
Mick committed
1184
1185
        if recv_req.mm_inputs is not None:
            image_inputs = MultimodalInputs.from_dict(recv_req.mm_inputs)
1186
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
1187
            req.origin_input_ids = self.pad_input_ids_func(
1188
                req.origin_input_ids, image_inputs
1189
            )
1190
            req.extend_image_inputs(image_inputs)
1191

1192
            if len(req.origin_input_ids) >= self.max_req_input_len:
1193
1194
1195
1196
1197
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1198
                )
1199
                self._add_request_to_queue(req)
1200
1201
                return

1202
        # Validate prompt length
1203
1204
1205
1206
1207
1208
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
1209
            req.set_finish_with_abort(error_msg)
1210
            self._add_request_to_queue(req)
1211
            return
1212

1213
        # Copy more attributes
1214
        if recv_req.logprob_start_len == -1 or not recv_req.return_logprob:
1215
1216
1217
1218
1219
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(req.origin_input_ids) - 1
        else:
            req.logprob_start_len = recv_req.logprob_start_len

1220
        if req.logprob_start_len >= len(req.origin_input_ids):
1221
            error_msg = f"{req.logprob_start_len=} is higher than the number of input tokens {len(req.origin_input_ids)=}. Please use a smaller logprob_start_len."
1222
            req.logprob_start_len = len(req.origin_input_ids) - 1
1223
            req.set_finish_with_abort(error_msg)
1224
1225
1226
            self._add_request_to_queue(req)
            return

1227
1228
1229
1230
1231
1232
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
1233
            self.max_req_len - len(req.origin_input_ids) - 1,
1234
1235
        )

1236
1237
1238
1239
1240
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
1241
            or req.sampling_params.ebnf is not None
1242
            or req.sampling_params.structural_tag is not None
1243
1244
1245
1246
1247
1248
        ):
            assert self.grammar_backend is not None
            if req.sampling_params.json_schema is not None:
                key = ("json", req.sampling_params.json_schema)
            elif req.sampling_params.regex is not None:
                key = ("regex", req.sampling_params.regex)
1249
1250
            elif req.sampling_params.ebnf is not None:
                key = ("ebnf", req.sampling_params.ebnf)
1251
1252
            elif req.sampling_params.structural_tag:
                key = ("structural_tag", req.sampling_params.structural_tag)
1253

1254
1255
1256
1257
1258
            value, cache_hit = self.grammar_backend.get_cached_or_future_value(key)
            req.grammar = value

            if not cache_hit:
                req.grammar_key = key
1259
                add_to_grammar_queue = True
1260
1261
1262
1263
            else:
                if value is INVALID_GRAMMAR_OBJ:  # We hit a cached invalid grammar.
                    error_msg = f"Invalid grammar request with cache hit: {key=}"
                    req.set_finish_with_abort(error_msg)
1264
1265

        if add_to_grammar_queue:
1266
            req.queue_time_start = time.perf_counter()
1267
1268
            self.grammar_queue.append(req)
        else:
1269
1270
1271
            self._add_request_to_queue(req)

    def _add_request_to_queue(self, req: Req):
1272
        req.queue_time_start = time.perf_counter()
Byron Hsu's avatar
Byron Hsu committed
1273
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
Byron Hsu's avatar
Byron Hsu committed
1274
1275
1276
            self.disagg_prefill_bootstrap_queue.add(
                req, self.model_config.num_key_value_heads
            )
Byron Hsu's avatar
Byron Hsu committed
1277
1278
1279
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            self.disagg_decode_prealloc_queue.add(req)
        else:
1280
1281
1282
1283
1284
1285
1286
1287
1288
            if self.enable_hicache_storage:
                req.init_next_round_input(self.tree_cache)
                last_hash = req.last_host_node.get_last_hash_value()
                matched_len = len(req.prefix_indices) + req.host_hit_length
                if (matched_len > 0 and last_hash is not None) or matched_len == 0:
                    new_input_tokens = req.fill_ids[matched_len:]
                    self.tree_cache.prefetch_from_storage(
                        req.rid, req.last_host_node, new_input_tokens, last_hash
                    )
Byron Hsu's avatar
Byron Hsu committed
1289
1290
            self.waiting_queue.append(req)

1291
    def _extend_requests_to_queue(self, reqs: List[Req], is_retracted: bool = False):
1292
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
Byron Hsu's avatar
Byron Hsu committed
1293
1294
1295
            self.disagg_prefill_bootstrap_queue.extend(
                reqs, self.model_config.num_key_value_heads
            )
1296
1297
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # If this is a decode server, we put the request to the decode pending prealloc queue
1298
            self.disagg_decode_prealloc_queue.extend(reqs, is_retracted)
Byron Hsu's avatar
Byron Hsu committed
1299
1300
        else:
            self.waiting_queue.extend(reqs)
1301
1302
1303

    def handle_embedding_request(
        self,
1304
        recv_req: TokenizedEmbeddingReqInput,
1305
1306
1307
1308
1309
1310
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
woodx's avatar
woodx committed
1311
            token_type_ids=recv_req.token_type_ids,
1312
1313
1314
        )
        req.tokenizer = self.tokenizer

1315
1316
        # Handle multimodal inputs
        if recv_req.image_inputs is not None:
Mick's avatar
Mick committed
1317
            image_inputs = MultimodalInputs.from_dict(recv_req.image_inputs)
1318
1319
1320
1321
1322
1323
1324
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
            req.origin_input_ids = self.pad_input_ids_func(
                req.origin_input_ids, image_inputs
            )
            req.extend_image_inputs(image_inputs)

            if len(req.origin_input_ids) >= self.max_req_input_len:
1325
1326
1327
1328
1329
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1330
                )
1331
                self._add_request_to_queue(req)
1332
1333
                return

1334
        # Validate prompts length
1335
        error_msg = validate_input_length(
1336
1337
1338
1339
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
1340
        if error_msg:
1341
            self._add_request_to_queue(req)
1342
            return
1343

1344
1345
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
1346
        self._add_request_to_queue(req)
1347

1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
    def _emit_kv_metrics(self):
        kv_metrics = KvMetrics()
        kv_metrics.request_active_slots = self.stats.num_running_reqs
        kv_metrics.request_total_slots = self.max_running_requests
        kv_metrics.kv_active_blocks = int(
            self.stats.token_usage * self.max_total_num_tokens
        )
        kv_metrics.kv_total_blocks = self.max_total_num_tokens
        kv_metrics.num_requests_waiting = self.stats.num_queue_reqs
        kv_metrics.gpu_cache_usage_perc = self.stats.token_usage
        kv_metrics.gpu_prefix_cache_hit_rate = self.stats.cache_hit_rate
        kv_metrics.data_parallel_rank = self.dp_rank if self.dp_rank is not None else 0

        if not self.send_metrics_from_scheduler.closed:
            self.send_metrics_from_scheduler.send_pyobj(kv_metrics)

1364
1365
1366
1367
    def log_prefill_stats(
        self,
        adder: PrefillAdder,
        can_run_list: List[Req],
1368
        running_bs: int,
1369
    ):
1370
1371
        gap_latency = time.perf_counter() - self.last_prefill_stats_tic
        self.last_prefill_stats_tic = time.perf_counter()
Liangsheng Yin's avatar
Liangsheng Yin committed
1372
1373
        self.last_input_throughput = self.last_prefill_tokens / gap_latency
        self.last_prefill_tokens = adder.log_input_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
1374

Hanming Lu's avatar
Hanming Lu committed
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
        if self.is_hybrid:
            (
                full_num_used,
                swa_num_used,
                full_token_usage,
                swa_token_usage,
                _,
                _,
                _,
                _,
            ) = self._get_swa_token_info()
            num_used = max(full_num_used, swa_num_used)
            token_usage = max(full_token_usage, swa_token_usage)
            token_msg = (
                f"full token usage: {full_token_usage:.2f}, "
                f"swa token usage: {swa_token_usage:.2f}, "
            )
        else:
            num_used, token_usage, _, _ = self._get_token_info()
            token_msg = f"token usage: {token_usage:.2f}, "
1395

1396
        num_new_seq = len(can_run_list)
1397
        f = (
1398
            f"Prefill batch. "
1399
            f"#new-seq: {num_new_seq}, "
1400
1401
            f"#new-token: {adder.log_input_tokens}, "
            f"#cached-token: {adder.log_hit_tokens}, "
Hanming Lu's avatar
Hanming Lu committed
1402
            f"{token_msg}"
1403
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
1404
1405
1406
1407

        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            f += f"#unbootstrapped-req: {len(self.disagg_prefill_bootstrap_queue.queue)}, "
            f += f"#queue-req: {len(self.waiting_queue)}, "
fzyzcjy's avatar
fzyzcjy committed
1408
            f += f"#transferring-req: {len(self.disagg_prefill_inflight_queue)}, "
1409
            f += f"input throughput (token/s): {self.last_input_throughput:.2f}, "
Liangsheng Yin's avatar
Liangsheng Yin committed
1410
        else:
Liangsheng Yin's avatar
Liangsheng Yin committed
1411
            f += f"#running-req: {running_bs}, "
1412
1413
            f += f"#queue-req: {len(self.waiting_queue)}, "

1414
        logger.info(f)
1415
1416

        if self.enable_metrics:
1417
1418
1419
1420
            total_tokens = adder.log_input_tokens + adder.log_hit_tokens

            cache_hit_rate = (
                adder.log_hit_tokens / total_tokens if total_tokens > 0 else 0.0
1421
            )
1422
1423
            self.stats.num_running_reqs = running_bs
            self.stats.num_used_tokens = num_used
Hanming Lu's avatar
Hanming Lu committed
1424
            self.stats.token_usage = round(token_usage, 2)
1425
1426
            self.stats.num_queue_reqs = len(self.waiting_queue)
            self.stats.cache_hit_rate = cache_hit_rate
1427
1428
1429
1430
1431
1432

            total_queue_latency = 0
            for req in can_run_list:
                total_queue_latency += req.queue_time_end - req.queue_time_start
            self.stats.avg_request_queue_latency = total_queue_latency / num_new_seq

1433
            self.metrics_collector.log_stats(self.stats)
1434
            self._emit_kv_metrics()
1435
        self._publish_kv_events()
1436

1437
1438
1439
    def log_decode_stats(
        self, can_run_cuda_graph: bool, running_batch: ScheduleBatch = None
    ):
1440
1441
        batch = running_batch or self.running_batch

1442
1443
        gap_latency = time.perf_counter() - self.last_decode_stats_tic
        self.last_decode_stats_tic = time.perf_counter()
1444
1445
        self.last_gen_throughput = self.num_generated_tokens / gap_latency
        self.num_generated_tokens = 0
1446
        num_running_reqs = len(batch.reqs)
Hanming Lu's avatar
Hanming Lu committed
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
        if self.is_hybrid:
            (
                full_num_used,
                swa_num_used,
                full_token_usage,
                swa_token_usage,
                _,
                _,
                _,
                _,
            ) = self._get_swa_token_info()
            num_used = max(full_num_used, swa_num_used)
            token_usage = max(full_token_usage, swa_token_usage)
            token_msg = (
                f"#full token: {full_num_used}, "
                f"full token usage: {full_token_usage:.2f}, "
                f"#swa token: {swa_num_used}, "
                f"swa token usage: {swa_token_usage:.2f}, "
            )
        else:
            num_used, token_usage, _, _ = self._get_token_info()
            token_msg = f"#token: {num_used}, " f"token usage: {token_usage:.2f}, "
1469
1470
1471
1472
1473

        if RECORD_STEP_TIME:
            self.step_time_dict[num_running_reqs].append(
                gap_latency / self.server_args.decode_log_interval
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1474

Hanming Lu's avatar
Hanming Lu committed
1475
        msg = f"Decode batch. #running-req: {num_running_reqs}, {token_msg}"
Liangsheng Yin's avatar
Liangsheng Yin committed
1476

1477
        if self.spec_algorithm.is_none():
1478
            spec_accept_length = 0
1479
        else:
1480
            spec_accept_length = (
1481
1482
                self.spec_num_total_accepted_tokens / self.spec_num_total_forward_ct
            )
1483
1484
            self.cum_spec_accept_length += self.spec_num_total_accepted_tokens
            self.cum_spec_accept_count += self.spec_num_total_forward_ct
1485
            self.spec_num_total_accepted_tokens = self.spec_num_total_forward_ct = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
1486
1487
1488
            msg += f"accept len: {spec_accept_length:.2f}, "

        if self.disaggregation_mode == DisaggregationMode.DECODE:
1489
            msg += f"pre-allocated usage: {self.disagg_decode_prealloc_queue.num_tokens_pre_allocated / self.max_total_num_tokens:.2f}, "
1490
            msg += f"#retracted-req: {len(self.disagg_decode_prealloc_queue.retracted_queue)}, "
Liangsheng Yin's avatar
Liangsheng Yin committed
1491
1492

        msg += (
1493
            f"cuda graph: {can_run_cuda_graph}, "
Liangsheng Yin's avatar
Liangsheng Yin committed
1494
            f"gen throughput (token/s): {self.last_gen_throughput:.2f}, "
1495
            f"#queue-req: {len(self.waiting_queue)}, "
Liangsheng Yin's avatar
Liangsheng Yin committed
1496
        )
1497
1498

        logger.info(msg)
1499
1500
1501
        if self.enable_metrics:
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
Hanming Lu's avatar
Hanming Lu committed
1502
            self.stats.token_usage = round(token_usage, 2)
1503
1504
            self.stats.cache_hit_rate = 0.0
            self.stats.gen_throughput = self.last_gen_throughput
1505
            self.stats.num_queue_reqs = len(self.waiting_queue)
1506
            self.stats.num_grammar_queue_reqs = len(self.grammar_queue)
1507
            self.stats.spec_accept_length = spec_accept_length
1508
            self.stats.total_retracted_reqs = self.total_retracted_reqs
1509
            self.metrics_collector.log_stats(self.stats)
1510
            self._emit_kv_metrics()
1511
        self._publish_kv_events()
1512

Lianmin Zheng's avatar
Lianmin Zheng committed
1513
    def check_memory(self):
Hanming Lu's avatar
Hanming Lu committed
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
        if self.is_hybrid:
            (
                full_num_used,
                swa_num_used,
                _,
                _,
                full_available_size,
                full_evictable_size,
                swa_available_size,
                swa_evictable_size,
            ) = self._get_swa_token_info()
            memory_leak = full_num_used != 0 or swa_num_used != 0
            token_msg = (
                f"{self.full_tokens_per_layer=}, {full_available_size=}, {full_evictable_size=}, {self.tree_cache.full_protected_size()=}\n"
                f"{self.swa_tokens_per_layer=}, {swa_available_size=}, {swa_evictable_size=}, {self.tree_cache.swa_protected_size()=}\n"
            )
tarinkk's avatar
tarinkk committed
1530
        else:
Hanming Lu's avatar
Hanming Lu committed
1531
1532
1533
1534
1535
1536
            _, _, available_size, evictable_size = self._get_token_info()
            protected_size = self.tree_cache.protected_size()
            memory_leak = (available_size + evictable_size) != (
                self.max_total_num_tokens
                if not self.enable_hierarchical_cache
                else self.max_total_num_tokens - protected_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1537
            )
Hanming Lu's avatar
Hanming Lu committed
1538
1539
1540
1541
            token_msg = f"{self.max_total_num_tokens=}, {available_size=}, {evictable_size=}, {protected_size=}\n"

        if memory_leak:
            msg = "token_to_kv_pool_allocator memory leak detected! " f"{token_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1542
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1543

1544
1545
1546
1547
1548
1549
1550
1551
        if self.disaggregation_mode == DisaggregationMode.DECODE:
            req_total_size = (
                self.req_to_token_pool.size + self.req_to_token_pool.pre_alloc_size
            )
        else:
            req_total_size = self.req_to_token_pool.size

        if len(self.req_to_token_pool.free_slots) != req_total_size:
1552
            msg = (
1553
                "req_to_token_pool memory leak detected!"
1554
1555
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1556
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1557
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1558

1559
1560
        if (
            self.enable_metrics
1561
            and self.current_scheduler_metrics_enabled()
1562
            and time.perf_counter() > self.metrics_collector.last_log_time + 30
1563
1564
        ):
            # During idle time, also collect metrics every 30 seconds.
Hanming Lu's avatar
Hanming Lu committed
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
            if self.is_hybrid:
                (
                    full_num_used,
                    swa_num_used,
                    full_token_usage,
                    swa_token_usage,
                    _,
                    _,
                    _,
                    _,
                ) = self._get_swa_token_info()
                num_used = max(full_num_used, swa_num_used)
                token_usage = max(full_token_usage, swa_token_usage)
            else:
                num_used, token_usage, _, _ = self._get_token_info()
Lianmin Zheng's avatar
Lianmin Zheng committed
1580
            num_running_reqs = len(self.running_batch.reqs)
1581
1582
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
Hanming Lu's avatar
Hanming Lu committed
1583
            self.stats.token_usage = round(token_usage, 2)
1584
1585
            self.stats.gen_throughput = 0
            self.stats.num_queue_reqs = len(self.waiting_queue)
1586
            self.stats.num_grammar_queue_reqs = len(self.grammar_queue)
1587
            self.metrics_collector.log_stats(self.stats)
1588
        self._publish_kv_events()
1589

Hanming Lu's avatar
Hanming Lu committed
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
    def check_tree_cache(self):
        if self.is_hybrid and isinstance(self.tree_cache, SWARadixCache):
            self.tree_cache.sanity_check()

    def _get_token_info(self):
        available_size = self.token_to_kv_pool_allocator.available_size()
        evictable_size = self.tree_cache.evictable_size()
        num_used = self.max_total_num_tokens - (available_size + evictable_size)
        token_usage = num_used / self.max_total_num_tokens
        return num_used, token_usage, available_size, evictable_size

    def _get_swa_token_info(self):
        full_available_size = self.token_to_kv_pool_allocator.full_available_size()
        full_evictable_size = self.tree_cache.full_evictable_size()
        swa_available_size = self.token_to_kv_pool_allocator.swa_available_size()
        swa_evictable_size = self.tree_cache.swa_evictable_size()
        full_num_used = self.full_tokens_per_layer - (
            full_available_size + full_evictable_size
        )
        swa_num_used = self.swa_tokens_per_layer - (
            swa_available_size + swa_evictable_size
        )
        full_token_usage = full_num_used / self.full_tokens_per_layer
        swa_token_usage = swa_num_used / self.swa_tokens_per_layer
        return (
            full_num_used,
            swa_num_used,
            full_token_usage,
            swa_token_usage,
            full_available_size,
            full_evictable_size,
            swa_available_size,
            swa_evictable_size,
        )

1625
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
1626
        # Merge the prefill batch into the running batch
1627
1628
1629
1630
1631
1632
1633
1634
        chunked_req_to_exclude = set()
        if self.chunked_req:
            # Move the chunked request out of the batch so that we can merge
            # only finished requests to running_batch.
            chunked_req_to_exclude.add(self.chunked_req)
            self.tree_cache.cache_unfinished_req(self.chunked_req)
            # chunked request keeps its rid but will get a new req_pool_idx
            self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
Lianmin Zheng's avatar
Lianmin Zheng committed
1635
        if self.last_batch and self.last_batch.forward_mode.is_extend():
1636
1637
1638
1639
            if self.last_batch.chunked_req is not None:
                # In the context pipeline parallelism, after the last chunk, the current microbatch still track outdated chunked_req.
                # We need to discard it.
                chunked_req_to_exclude.add(self.last_batch.chunked_req)
Lianmin Zheng's avatar
Lianmin Zheng committed
1640

1641
            # Filter batch
1642
            last_bs = self.last_batch.batch_size()
1643
1644
1645
            self.last_batch.filter_batch(
                chunked_req_to_exclude=list(chunked_req_to_exclude)
            )
1646
            if self.last_batch.batch_size() < last_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1647
                self.running_batch.batch_is_full = False
1648

1649
            # Merge the new batch into the running batch
1650
            if not self.last_batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1651
                if self.running_batch.is_empty():
1652
1653
                    self.running_batch = self.last_batch
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1654
                    # Merge running_batch with prefill batch
1655
                    self.running_batch.merge_batch(self.last_batch)
1656

1657
        new_batch = self.get_new_batch_prefill()
1658

1659
1660
1661
1662
1663
        need_dp_attn_preparation = require_mlp_sync(self.server_args)

        if need_dp_attn_preparation and not self.spec_algorithm.is_none():
            # In speculative decoding, prefill batches and decode batches cannot be processed in the same DP attention group.
            # We prepare idle batches in advance to skip preparing decode batches when there are prefill batches in the group.
1664
            new_batch = self.prepare_mlp_sync_batch(new_batch)
1665
1666
1667
            need_dp_attn_preparation = new_batch is None

        if new_batch is not None:
1668
1669
1670
1671
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
Lianmin Zheng's avatar
Lianmin Zheng committed
1672
            if not self.running_batch.is_empty():
1673
                self.running_batch = self.update_running_batch(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1674
1675
1676
                ret = self.running_batch if not self.running_batch.is_empty() else None
            else:
                ret = None
1677

1678
1679
        # Handle DP attention
        if need_dp_attn_preparation:
1680
            ret = self.prepare_mlp_sync_batch(ret)
1681
1682

        return ret
1683

1684
1685
1686
1687
1688
1689
    def get_num_allocatable_reqs(self, running_bs):
        res = global_server_args_dict["max_micro_batch_size"] - running_bs
        if self.pp_size > 1:
            res = min(res, self.req_to_token_pool.available_size())
        return res

Lianmin Zheng's avatar
Lianmin Zheng committed
1690
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
1691
        # Check if the grammar is ready in the grammar queue
1692
        if self.grammar_queue:
1693
            self.move_ready_grammar_requests()
1694

Lianmin Zheng's avatar
Lianmin Zheng committed
1695
1696
        # Handle the cases where prefill is not allowed
        if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1697
            self.running_batch.batch_is_full or len(self.waiting_queue) == 0
1698
        ) and self.chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1699
1700
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
1701
        running_bs = len(self.running_batch.reqs)
1702
        # Ignore the check if self.chunked_req is not None.
1703
1704
1705
1706
1707
        # In the non-PP case, when self.chunked_req is not None, num_allocatable_reqs should always be greater than 0,
        # as the space for the chunked request has just been released.
        # In PP case, a chunked req can start in one microbatch and end in another microbatch, so the max_running_requests per microbatch should not be strict.
        # Instead, we should always allow chunked request to be added, otherwise, there will be a memory leak.
        if self.get_num_allocatable_reqs(running_bs) <= 0 and not self.chunked_req:
Lianmin Zheng's avatar
Lianmin Zheng committed
1708
            self.running_batch.batch_is_full = True
1709
1710
            return None

1711
        if self.enable_hierarchical_cache:
1712
            self.tree_cache.check_hicache_events()
1713

1714
        # Get priority queue
1715
        self.policy.calc_priority(self.waiting_queue)
1716

Lianmin Zheng's avatar
Lianmin Zheng committed
1717
        # Prefill policy
1718
        adder = PrefillAdder(
1719
            self.page_size,
1720
            self.tree_cache,
1721
            self.token_to_kv_pool_allocator,
1722
1723
1724
1725
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
1726
            running_bs if self.is_mixed_chunk else 0,
1727
1728
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1729
        if self.chunked_req is not None:
1730
1731
            self.chunked_req.init_next_round_input()
            self.chunked_req = adder.add_chunked_req(self.chunked_req)
1732

1733
        if self.enable_lora:
Lianmin Zheng's avatar
Lianmin Zheng committed
1734
1735
            lora_set = set([req.lora_path for req in self.running_batch.reqs])

1736
        # Get requests from the waiting queue to a new prefill batch
1737
1738
        for req in self.waiting_queue:
            if (
1739
                self.enable_lora
1740
1741
1742
1743
1744
1745
1746
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1747
                self.running_batch.batch_is_full = True
1748
1749
                break

1750
            if len(adder.can_run_list) >= self.get_num_allocatable_reqs(running_bs):
Lianmin Zheng's avatar
Lianmin Zheng committed
1751
                self.running_batch.batch_is_full = True
1752
                break
1753

Byron Hsu's avatar
Byron Hsu committed
1754
1755
1756
1757
1758
1759
1760
            if self.disaggregation_mode == DisaggregationMode.PREFILL:
                # In prefill mode, prealloc queue and transfer queue can also take memory,
                # so we need to check if the available size for the actual available size.
                if len(adder.can_run_list) >= self.req_to_token_pool.available_size():
                    self.running_batch.batch_is_full = True
                    break

1761
1762
1763
            if self.enable_hicache_storage:
                self.tree_cache.check_prefetch_progress(req.rid)

1764
1765
            req.init_next_round_input(self.tree_cache)
            res = adder.add_one_req(req, has_chunked_req=(self.chunked_req is not None))
1766

1767
1768
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
1769
1770
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
Lianmin Zheng's avatar
Lianmin Zheng committed
1771
1772
                        self.running_batch.batch_is_full = len(
                            adder.can_run_list
1773
                        ) > 0 or (not self.running_batch.is_empty())
1774
                    else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1775
                        self.running_batch.batch_is_full = True
1776
1777
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1778
        # Update waiting queue
1779
        can_run_list: List[Req] = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1780
1781
        if len(can_run_list) == 0:
            return None
1782
1783
1784
1785

        if self.enable_metrics:
            # only record queue time when enable_metrics is True to avoid overhead
            for req in can_run_list:
1786
                req.queue_time_end = time.perf_counter()
1787

Lianmin Zheng's avatar
Lianmin Zheng committed
1788
1789
1790
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1791

1792
1793
1794
        if adder.new_chunked_req is not None:
            assert self.chunked_req is None
            self.chunked_req = adder.new_chunked_req
1795

1796
1797
        if self.chunked_req:
            self.chunked_req.is_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1798

1799
        # Print stats
1800
        if self.current_scheduler_metrics_enabled():
1801
            self.log_prefill_stats(adder, can_run_list, running_bs)
1802

Lianmin Zheng's avatar
Lianmin Zheng committed
1803
        # Create a new batch
1804
1805
1806
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
1807
            self.token_to_kv_pool_allocator,
1808
            self.tree_cache,
1809
            self.model_config,
1810
            self.enable_overlap,
1811
            self.spec_algorithm,
1812
            self.server_args.enable_custom_logit_processor,
1813
            chunked_req=self.chunked_req,
1814
        )
1815
1816
        if self.enable_hierarchical_cache:
            # todo (zhiqiang): disable cuda graph execution if hicache loading triggered
1817
1818
1819
            new_batch.hicache_consumer_index = (
                self.tree_cache.ready_to_load_host_cache()
            )
1820

1821
        new_batch.prepare_for_extend()
1822

Lianmin Zheng's avatar
Lianmin Zheng committed
1823
        # Mixed-style chunked prefill
1824
1825
        if (
            self.is_mixed_chunk
Lianmin Zheng's avatar
Lianmin Zheng committed
1826
            and not self.running_batch.is_empty()
1827
1828
1829
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
1830
1831
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
1832
                self.running_batch.prepare_for_decode()
1833
1834
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1835
1836
1837
            self.running_batch = ScheduleBatch(
                reqs=[], batch_is_full=self.running_batch.batch_is_full
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1838
1839
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1840
1841
1842

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
1843
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
1844
        """Update the current running decoding batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1845
        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1846

1847
1848
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1849
1850
            batch.batch_is_full = False
            return batch
1851

Lianmin Zheng's avatar
Lianmin Zheng committed
1852
        # Check if decode out of memory
1853
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
1854
            TEST_RETRACT and batch.batch_size() > 10
1855
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1856
1857
            old_ratio = self.new_token_ratio

1858
            retracted_reqs, new_token_ratio = batch.retract_decode(self.server_args)
1859
            num_retracted_reqs = len(retracted_reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1860
            self.new_token_ratio = new_token_ratio
1861

Lianmin Zheng's avatar
Lianmin Zheng committed
1862
            logger.info(
1863
                "KV cache pool is full. Retract requests. "
1864
                f"#retracted_reqs: {num_retracted_reqs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
1865
1866
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
1867

1868
            self._extend_requests_to_queue(retracted_reqs, is_retracted=True)
1869
            self.total_retracted_reqs += num_retracted_reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1870
1871
        else:
            self.new_token_ratio = max(
1872
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
1873
1874
1875
                self.min_new_token_ratio,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1876
        if batch.batch_size() < initial_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1877
            batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1878
1879

        # Update batch tensors
1880
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1881
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1882

1883
1884
1885
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
1886
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1887
1888
        self.forward_ct += 1

1889
1890
        # Whether to run the profiler
        self._profile_batch_predicate(batch)
1891
1892
1893
1894
        if self.forward_sleep_time is not None:
            logger.info(f"Scheduler.run_batch sleep {self.forward_sleep_time}s")
            time.sleep(self.forward_sleep_time)

1895
        # Run forward
1896
        if self.is_generation:
1897
1898
            if self.spec_algorithm.is_none():
                model_worker_batch = batch.get_model_worker_batch()
1899
1900
1901
1902
1903

                # update the consumer index of hicache to the running batch
                self.tp_worker.set_hicache_consumer(
                    model_worker_batch.hicache_consumer_index
                )
1904
                if self.pp_group.is_last_rank:
1905
                    logits_output, next_token_ids, can_run_cuda_graph = (
1906
1907
1908
                        self.tp_worker.forward_batch_generation(model_worker_batch)
                    )
                else:
1909
                    pp_hidden_states_proxy_tensors, _, can_run_cuda_graph = (
1910
1911
                        self.tp_worker.forward_batch_generation(model_worker_batch)
                    )
1912
                bid = model_worker_batch.bid
Lianmin Zheng's avatar
Lianmin Zheng committed
1913
            else:
1914
1915
1916
                (
                    logits_output,
                    next_token_ids,
1917
                    bid,
1918
                    num_accepted_tokens,
1919
                    can_run_cuda_graph,
1920
                ) = self.draft_worker.forward_batch_speculative_generation(batch)
1921
1922
1923
                bs = batch.batch_size()
                self.spec_num_total_accepted_tokens += num_accepted_tokens + bs
                self.spec_num_total_forward_ct += bs
1924
                self.num_generated_tokens += num_accepted_tokens
1925
1926
1927

            if self.pp_group.is_last_rank:
                batch.output_ids = next_token_ids
1928

1929
1930
1931
            # These 2 values are needed for processing the output, but the values can be
            # modified by overlap schedule. So we have to copy them here so that
            # we can use the correct values in output processing.
1932
            if batch.return_logprob or self.spec_algorithm.is_eagle():
1933
                extend_input_len_per_req = [req.extend_input_len for req in batch.reqs]
1934
1935
1936
            else:
                extend_input_len_per_req = None
            if batch.return_logprob:
1937
1938
1939
1940
1941
1942
                extend_logprob_start_len_per_req = [
                    req.extend_logprob_start_len for req in batch.reqs
                ]
            else:
                extend_logprob_start_len_per_req = None

1943
            ret = GenerationBatchResult(
1944
1945
1946
1947
1948
1949
1950
                logits_output=logits_output if self.pp_group.is_last_rank else None,
                pp_hidden_states_proxy_tensors=(
                    pp_hidden_states_proxy_tensors
                    if not self.pp_group.is_last_rank
                    else None
                ),
                next_token_ids=next_token_ids if self.pp_group.is_last_rank else None,
1951
1952
                extend_input_len_per_req=extend_input_len_per_req,
                extend_logprob_start_len_per_req=extend_logprob_start_len_per_req,
1953
                bid=bid,
1954
                can_run_cuda_graph=can_run_cuda_graph,
1955
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1956
1957
1958
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
1959
1960
1961
            ret = EmbeddingBatchResult(
                embeddings=embeddings, bid=model_worker_batch.bid
            )
1962
        return ret
Chayenne's avatar
Chayenne committed
1963

1964
1965
1966
1967
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
1968
        launch_done: Optional[threading.Event] = None,
1969
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1970
        if batch.forward_mode.is_decode():
1971
            self.process_batch_result_decode(batch, result, launch_done)
1972
        elif batch.forward_mode.is_extend():
1973
            self.process_batch_result_prefill(batch, result, launch_done)
1974
1975
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
1976
                self.tp_worker.resolve_last_batch_result(launch_done)
1977
                self.set_next_batch_sampling_info_done(batch)
1978
        elif batch.forward_mode.is_dummy_first():
1979
            self.set_next_batch_sampling_info_done(batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1980

1981
1982
1983
1984
1985
1986
1987
        if self.return_health_check_ct:
            # Return some signal for the health check.
            # This is used to prevent the health check signal being blocked by long context prefill.
            # However, one minor issue is that this code path does not check the status of detokenizer manager.
            self.return_health_check_ct -= 1
            self.send_to_tokenizer.send_pyobj(HealthCheckOutput())

1988
1989
    def prepare_mlp_sync_batch(self, local_batch: ScheduleBatch):
        return self.prepare_mlp_sync_batch_raw(
1990
1991
1992
            local_batch,
            dp_size=self.server_args.dp_size,
            attn_tp_size=self.attn_tp_size,
1993
            tp_group=self.tp_group,
1994
1995
1996
1997
            get_idle_batch=self.get_idle_batch,
            disable_cuda_graph=self.server_args.disable_cuda_graph,
            spec_algorithm=self.spec_algorithm,
            speculative_num_draft_tokens=self.server_args.speculative_num_draft_tokens,
1998
1999
2000
            enable_two_batch_overlap=self.server_args.enable_two_batch_overlap,
            enable_deepep_moe=self.server_args.enable_deepep_moe,
            deepep_mode=DeepEPMode[self.server_args.deepep_mode],
2001
            require_mlp_tp_gather=require_mlp_tp_gather(self.server_args),
2002
            disable_overlap_schedule=self.server_args.disable_overlap_schedule,
2003
2004
2005
        )

    @staticmethod
2006
    def prepare_mlp_sync_batch_raw(
2007
2008
2009
        local_batch: ScheduleBatch,
        dp_size,
        attn_tp_size: int,
2010
        tp_group,
2011
2012
2013
2014
        get_idle_batch,
        disable_cuda_graph: bool,
        spec_algorithm,
        speculative_num_draft_tokens,
2015
2016
2017
        enable_two_batch_overlap: bool,
        enable_deepep_moe: bool,
        deepep_mode: DeepEPMode,
2018
        require_mlp_tp_gather: bool,
2019
        disable_overlap_schedule: bool,
2020
    ):
2021
2022
2023
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
2024
            num_tokens_for_logprob = 0
2025
2026
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
2027
            num_tokens_for_logprob = num_tokens
2028
2029
        else:
            num_tokens = local_batch.extend_num_tokens
2030
            num_tokens_for_logprob = sum(
Lianmin Zheng's avatar
Lianmin Zheng committed
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
                [
                    # We should have at least 1 token for sample in every case.
                    max(extend_len - logprob_start_len, 1)
                    for logprob_start_len, extend_len in zip(
                        local_batch.extend_logprob_start_lens, local_batch.extend_lens
                    )
                ]
            )

        if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
            can_cuda_graph = 1
        else:
            can_cuda_graph = 0

        is_extend_in_batch = (
            local_batch.forward_mode.is_extend() if local_batch else False
        )
2048
2049

        tbo_preparer = TboDPAttentionPreparer()
2050
2051
2052
2053
2054
2055
        if disable_overlap_schedule:
            group = tp_group.device_group
            device = tp_group.device
        else:
            group = tp_group.cpu_group
            device = "cpu"
2056

Lianmin Zheng's avatar
Lianmin Zheng committed
2057
2058
2059
2060
        local_info = torch.tensor(
            [
                num_tokens,
                can_cuda_graph,
2061
                num_tokens_for_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
2062
                is_extend_in_batch,
2063
2064
2065
2066
2067
2068
                *tbo_preparer.prepare_all_gather(
                    local_batch,
                    deepep_mode,
                    enable_deepep_moe,
                    enable_two_batch_overlap,
                ),
Lianmin Zheng's avatar
Lianmin Zheng committed
2069
2070
            ],
            dtype=torch.int64,
2071
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
2072
2073
        )
        global_info = torch.empty(
2074
            (dp_size, attn_tp_size, 6),
Lianmin Zheng's avatar
Lianmin Zheng committed
2075
            dtype=torch.int64,
2076
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
2077
        )
2078
        torch.distributed.all_gather_into_tensor(
Lianmin Zheng's avatar
Lianmin Zheng committed
2079
2080
            global_info.flatten(),
            local_info,
2081
            group=group,
2082
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2083
2084
2085
2086
        global_num_tokens = global_info[:, 0, 0].tolist()
        can_cuda_graph = min(global_info[:, 0, 1].tolist())
        global_num_tokens_for_logprob = global_info[:, 0, 2].tolist()
        is_extend_in_batch = global_info[:, 0, 3].tolist()
2087

2088
2089
2090
2091
        tbo_split_seq_index, global_forward_mode = tbo_preparer.compute_output(
            global_info[:, :, 4:6]
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2092
        if local_batch is None and max(global_num_tokens) > 0:
2093
            local_batch = get_idle_batch()
2094
2095

        if local_batch is not None:
2096
            # TODO: handle the case when moe_dense_tp_size != 1
2097
            if not require_mlp_tp_gather:
2098
2099
2100
2101
2102
2103
2104
                local_batch.global_num_tokens = [num_tokens]
                local_batch.global_num_tokens_for_logprob = [num_tokens_for_logprob]
            else:
                local_batch.global_num_tokens = global_num_tokens
                local_batch.global_num_tokens_for_logprob = (
                    global_num_tokens_for_logprob
                )
2105
            local_batch.is_extend_in_batch = any(is_extend_in_batch)
2106
2107
            local_batch.tbo_split_seq_index = tbo_split_seq_index
            local_batch.global_forward_mode = global_forward_mode
2108

2109
            # Check forward mode for cuda graph
2110
            if not disable_cuda_graph:
Lianmin Zheng's avatar
Lianmin Zheng committed
2111
                local_batch.can_run_dp_cuda_graph = can_cuda_graph
2112

2113
        return local_batch
2114
2115
2116
2117
2118

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
2119
            self.token_to_kv_pool_allocator,
2120
2121
2122
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
2123
            self.spec_algorithm,
2124
            self.server_args.enable_custom_logit_processor,
2125
2126
2127
2128
        )
        idle_batch.prepare_for_idle()
        return idle_batch

2129
2130
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
2131

2132
        num_ready_reqs = 0
2133
        num_timeout_reqs = 0
2134
2135
        for req in self.grammar_queue:
            try:
2136
2137
2138
                if req.finished():  # It is aborted by AbortReq
                    num_ready_reqs += 1
                    continue
2139
                req.grammar = req.grammar.result(timeout=0.03)
2140
2141
2142
2143
2144
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
                    req.set_finish_with_abort(
                        f"Invalid grammar request: {req.grammar_key=}"
                    )
2145
2146
                num_ready_reqs += 1
            except futures._base.TimeoutError:
2147
                req.grammar_wait_ct += 1
2148
2149
                # NOTE(lianmin): this timeout is the waiting time of the above line. It is
                # not the waiting time from it enters the grammar queue.
2150
                if req.grammar_wait_ct > GRAMMAR_TIMEOUT / 0.03:
2151
                    num_timeout_reqs = 1
2152
2153
                break

2154
        if self.server_args.enable_dp_attention:
2155
2156
            tp_size = self.attn_tp_size
            tp_group = self.attn_tp_cpu_group
2157
        else:
2158
2159
2160
2161
2162
            tp_size = self.tp_size
            tp_group = self.tp_cpu_group

        if tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
2163
            tensor = torch.tensor([num_ready_reqs, num_timeout_reqs], dtype=torch.int32)
2164
2165
2166
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=tp_group
            )
2167
            num_ready_reqs_max, num_timeout_reqs_max = tensor.tolist()
2168

2169
            for i in range(num_ready_reqs, num_ready_reqs_max):
2170
                req = self.grammar_queue[i]
2171
2172
                if req.finished():  # It is aborted by AbortReq
                    continue
2173
                req.grammar = req.grammar.result()
2174
2175
2176
2177
2178
2179
2180
2181
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
                    req.set_finish_with_abort(
                        f"Invalid grammar request: {req.grammar_key=}"
                    )
        else:
            num_ready_reqs_max = num_ready_reqs
            num_timeout_reqs_max = num_timeout_reqs
2182

2183
2184
2185
2186
2187
2188
2189
        for i in range(num_ready_reqs, num_ready_reqs + num_timeout_reqs_max):
            req = self.grammar_queue[i]
            req.grammar.cancel()
            error_msg = f"Grammar preprocessing timed out for {req.grammar_key=}"
            req.set_finish_with_abort(error_msg)
            self.grammar_backend.set_cache(req.grammar_key, INVALID_GRAMMAR_OBJ)
        num_ready_reqs = num_ready_reqs_max + num_timeout_reqs_max
2190

2191
        self._extend_requests_to_queue(self.grammar_queue[:num_ready_reqs])
2192
2193
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

2194
2195
2196
2197
2198
2199
2200
    def set_next_batch_sampling_info_done(self, batch: ScheduleBatch):
        if batch.next_batch_sampling_info:
            if batch.next_batch_sampling_info.grammars is not None:
                batch.next_batch_sampling_info.update_regex_vocab_mask()
                self.current_stream.synchronize()
            batch.next_batch_sampling_info.sampling_info_done.set()

2201
2202
2203
    def watchdog_thread(self):
        """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
        self.watchdog_last_forward_ct = 0
2204
        self.watchdog_last_time = time.perf_counter()
2205
2206

        while True:
2207
            current = time.perf_counter()
2208
2209
2210
2211
2212
2213
2214
2215
2216
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
                    if current > self.watchdog_last_time + self.watchdog_timeout:
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)

Lianmin Zheng's avatar
Lianmin Zheng committed
2217
2218
        if not disable_request_logging():
            # Print batch size and memory pool info to check whether there are de-sync issues.
Hanming Lu's avatar
Hanming Lu committed
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
            if self.is_hybrid:
                (
                    _,
                    _,
                    _,
                    _,
                    full_available_size,
                    full_evictable_size,
                    swa_available_size,
                    swa_evictable_size,
                ) = self._get_swa_token_info()
                info_msg = (
                    f"{full_available_size=}, "
                    f"{full_evictable_size=}, "
                    f"{swa_available_size=}, "
                    f"{swa_evictable_size=}, "
                )
            else:
                _, _, available_size, evictable_size = self._get_token_info()
                info_msg = f"{available_size=}, " f"{evictable_size=}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2239
2240
2241
            logger.error(
                f"{self.cur_batch.batch_size()=}, "
                f"{self.cur_batch.reqs=}, "
Hanming Lu's avatar
Hanming Lu committed
2242
                f"{info_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2243
2244
            )

2245
        pyspy_dump_schedulers()
Lianmin Zheng's avatar
Lianmin Zheng committed
2246
        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
2247
2248
        print(file=sys.stderr, flush=True)
        print(file=sys.stdout, flush=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
2249
2250

        # Wait for some time so that the parent process can print the error.
2251
2252
2253
        time.sleep(5)
        self.parent_process.send_signal(signal.SIGQUIT)

2254
2255
2256
    def flush_cache_wrapped(self, recv_req: FlushCacheReqInput):
        success = self.flush_cache()
        return FlushCacheReqOutput(success=success)
2257

2258
    def flush_cache(self):
2259
        """Flush the memory pool and cache."""
2260
2261
2262
2263
2264
        if (
            len(self.waiting_queue) == 0
            and self.running_batch.is_empty()
            and (self.pp_size == 1 or all(x.is_empty() for x in self.running_mbs))
        ):
2265
2266
            self.cur_batch = None
            self.last_batch = None
2267
            self.tree_cache.reset()
2268
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
2269
                self.grammar_backend.reset()
2270
            self.req_to_token_pool.clear()
2271
            self.token_to_kv_pool_allocator.clear()
2272
2273
2274

            if not self.spec_algorithm.is_none():
                self.draft_worker.model_runner.req_to_token_pool.clear()
2275
                self.draft_worker.model_runner.token_to_kv_pool_allocator.clear()
2276
2277
2278
2279
2280

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
2281
2282
            self.cum_spec_accept_length = 0
            self.cum_spec_accept_count = 0
2283
2284
2285
2286
2287
2288
2289
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2290
                f"#running-req: {len(self.running_batch.reqs)}"
2291
2292
2293
2294
            )
            if_success = False
        return if_success

Liangsheng Yin's avatar
Liangsheng Yin committed
2295
2296
    def get_load(self):
        # TODO(lsyin): use dynamically maintained num_waiting_tokens
Hanming Lu's avatar
Hanming Lu committed
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
        if self.is_hybrid:
            load_full = (
                self.full_tokens_per_layer
                - self.token_to_kv_pool_allocator.full_available_size()
                - self.tree_cache.full_evictable_size()
            )
            load_swa = (
                self.swa_tokens_per_layer
                - self.token_to_kv_pool_allocator.swa_available_size()
                - self.tree_cache.swa_evictable_size()
            )
            load = max(load_full, load_swa)
        else:
            load = (
                self.max_total_num_tokens
                - self.token_to_kv_pool_allocator.available_size()
                - self.tree_cache.evictable_size()
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
        load += sum(len(req.origin_input_ids) for req in self.waiting_queue)
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            load += sum(
                len(req.origin_input_ids)
                for req in self.disagg_prefill_bootstrap_queue.queue
            )
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            load += sum(
                len(req.req.origin_input_ids)
                for req in self.disagg_decode_prealloc_queue.queue
            )

        return load

2329
2330
2331
    def get_internal_state(self, recv_req: GetInternalStateReq):
        ret = dict(global_server_args_dict)
        ret["last_gen_throughput"] = self.last_gen_throughput
2332
2333
2334
2335
2336
2337
2338
2339
2340
        ret["memory_usage"] = {
            "weight": round(
                self.tp_worker.worker.model_runner.weight_load_mem_usage, 2
            ),
            "kvcache": round(
                self.token_to_kv_pool_allocator.get_kvcache().mem_usage, 2
            ),
            "token_capacity": int(self.max_total_num_tokens),
        }
2341
2342
2343
2344
2345
2346

        if not _is_cpu:
            ret["memory_usage"]["cuda_graph"] = round(
                self.tp_worker.worker.model_runner.cuda_graph_mem_usage, 2
            )

2347
2348
2349
2350
2351
2352
        if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
            ret["avg_spec_accept_length"] = (
                self.cum_spec_accept_length / self.cum_spec_accept_count
            )
        if RECORD_STEP_TIME:
            ret["step_time_dict"] = self.step_time_dict
Liangsheng Yin's avatar
Liangsheng Yin committed
2353
2354
2355
2356

        ret["load"] = self.get_load()

        return GetInternalStateReqOutput(internal_state=ret)
2357
2358
2359
2360
2361

    def set_internal_state(self, recv_req: SetInternalStateReq):
        server_args_dict = recv_req.server_args
        args_allow_update = set(
            [
2362
                "max_micro_batch_size",
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
                "speculative_accept_threshold_single",
                "speculative_accept_threshold_acc",
            ]
        )
        if_success = True
        for k, v in server_args_dict.items():
            if k not in args_allow_update:
                logging.warning(f"Updating {k} is not supported.")
                if_success = False
                break
2373
2374
2375
2376
2377
2378
2379
2380
            elif k == "max_micro_batch_size" and (
                v > self.max_running_requests // self.pp_size or v < 1
            ):
                logging.warning(
                    f"Updating {k} to {v} is rejected because it is out of the valid range [1, {self.max_running_requests // self.pp_size}]."
                )
                if_success = False
                break
2381
2382
2383
2384
2385
2386
2387
2388
2389
        if if_success:
            if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
                avg_spec_accept_length = (
                    self.cum_spec_accept_length / self.cum_spec_accept_count
                )
                logger.info(f"{avg_spec_accept_length=}")
            self.cum_spec_accept_length = self.cum_spec_accept_count = 0
            for k, v in server_args_dict.items():
                global_server_args_dict[k] = v
2390
            logger.info(f"Global server args updated! {global_server_args_dict=}")
2391
2392
2393
2394
2395
        return SetInternalStateReqOutput(
            updated=True,
            server_args=global_server_args_dict,
        )

2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
    def handle_rpc_request(self, recv_req: RpcReqInput):
        # Handle RPC requests
        logger.info(
            f"handle_rpc_request: {recv_req.method}, param: {recv_req.parameters}"
        )

        success = True
        exec = None
        try:
            func = getattr(self, recv_req.method)
            func(recv_req.parameters)
        except Exception as e:
            success = False
            exec = e
            logger.error(f"Failed to call rpc {recv_req.method}: {str(e)}")

        barrier()
        return RpcReqOutput(success, "" if not exec else str(exec))

    def save_remote_model(self, params):
        url = params["url"]

2418
        worker = self.tp_worker.worker
2419
2420
2421
2422

        worker.model_runner.save_remote_model(url)

    def save_sharded_model(self, params):
2423
        worker = self.tp_worker.worker
2424
2425
2426
2427
2428
2429
2430

        worker.model_runner.save_sharded_model(
            path=params["path"],
            pattern=params["pattern"],
            max_size=params["max_size"],
        )

2431
2432
    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
Lianmin Zheng's avatar
Lianmin Zheng committed
2433
        to_del = []
2434
        for i, req in enumerate(self.waiting_queue):
2435
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
Lianmin Zheng's avatar
Lianmin Zheng committed
2436
                to_del.append(i)
2437

Lianmin Zheng's avatar
Lianmin Zheng committed
2438
        # Sort in reverse order to avoid index issues when deleting
Lianmin Zheng's avatar
Lianmin Zheng committed
2439
        for i in reversed(to_del):
2440
2441
2442
            # Abort method 1: directly pop from the queue
            # This only works for requests that have not started anything.
            # We still need to send something back to TokenizerManager to clean up the state.
Lianmin Zheng's avatar
Lianmin Zheng committed
2443
            req = self.waiting_queue.pop(i)
Lianmin Zheng's avatar
Lianmin Zheng committed
2444
            self.send_to_tokenizer.send_pyobj(AbortReq(req.rid))
2445
            logger.debug(f"Abort queued request. {req.rid=}")
2446

2447
2448
2449
2450
2451
        # Delete the requests in the grammar queue
        for req in self.grammar_queue:
            # Abort method 2: call `set_finish_with_abort`
            # The request will still run one prefill forward pass.
            # In this case, we change the input_ids to be only one token to make this prefill cheap.
2452
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
2453
                logger.debug(f"Abort grammar queue request. {req.rid=}")
2454
2455
                if req.grammar:
                    req.grammar.cancel()
2456
2457
                req.set_finish_with_abort("Aborted by AbortReq.")

2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
        # Delete requests not in the waiting queue when PD disaggregation is enabled
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            # Abort requests that have not yet been bootstrapped
            for i, req in enumerate(self.disagg_prefill_bootstrap_queue.queue):
                logger.debug(f"Abort bootstrap queue request. {req.rid=}")
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

            # Abort in-flight requests
            for i, req in enumerate(self.disagg_prefill_inflight_queue):
                logger.debug(f"Abort inflight queue request. {req.rid=}")
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # Abort requests that have not yet finished preallocation
            for i, decode_req in enumerate(self.disagg_decode_prealloc_queue.queue):
                logger.debug(f"Abort prealloc queue request. {decode_req.req.rid=}")
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

            # Abort requests waiting for kvcache to release tree cache
            for i, decode_req in enumerate(self.disagg_decode_transfer_queue.queue):
                logger.debug(f"Abort transfer queue request. {decode_req.req.rid=}")
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

2489
        # Delete requests in the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
2490
2491
2492
2493
2494
2495
        if self.cur_batch is self.running_batch or self.cur_batch is None:
            reqs = self.running_batch.reqs
        else:
            reqs = self.running_batch.reqs + self.cur_batch.reqs

        for req in reqs:
2496
2497
2498
            if not req.finished() and (
                recv_req.abort_all or req.rid.startswith(recv_req.rid)
            ):
2499
2500
2501
                # Abort method 3: set `to_abort=True`
                # The request will still run one decode forward pass.
                # Then we reuse all existing code to clean up the KV cache allocation.
Lianmin Zheng's avatar
Lianmin Zheng committed
2502
2503
                logger.debug(f"Abort running request. {req.rid=}")
                req.to_abort = True
2504

2505
2506
2507
    def _pause_engine(self) -> Tuple[List[Req], int]:
        raise NotImplementedError()

Chayenne's avatar
Chayenne committed
2508
2509
2510
    def update_weights_from_disk(self, recv_req: UpdateWeightFromDiskReqInput):
        """In-place update of the weights from disk."""
        success, message = self.tp_worker.update_weights_from_disk(recv_req)
2511
        if success:
Stefan He's avatar
Stefan He committed
2512
2513
            flush_cache_success = self.flush_cache()
            assert flush_cache_success, "Cache flush failed after updating weights"
2514
2515
        else:
            logger.error(message)
2516
        return UpdateWeightFromDiskReqOutput(success, message, 0)
2517

2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
    def load_lora_adapter(
        self, recv_req: LoadLoRAAdapterReqInput
    ) -> LoadLoRAAdapterReqOutput:
        """In-place loading a new lora adapter from disk or huggingface."""

        result = self.tp_worker.load_lora_adapter(recv_req)
        return result

    def unload_lora_adapter(
        self, recv_req: UnloadLoRAAdapterReqInput
    ) -> UnloadLoRAAdapterReqOutput:
        """Unload the lora adapter."""

        result = self.tp_worker.unload_lora_adapter(recv_req)
        return result

2534
2535
2536
    def init_weights_update_group(self, recv_req: InitWeightsUpdateGroupReqInput):
        """Initialize the online model parameter update group."""
        success, message = self.tp_worker.init_weights_update_group(recv_req)
2537
        return InitWeightsUpdateGroupReqOutput(success, message)
2538
2539

    def update_weights_from_distributed(
2540
2541
2542
        self,
        recv_req: UpdateWeightsFromDistributedReqInput,
    ) -> Tuple[bool, str]:
2543
2544
2545
        """Update the online model parameter."""
        success, message = self.tp_worker.update_weights_from_distributed(recv_req)
        if success:
2546
2547
2548
            if recv_req.flush_cache:
                flush_cache_success = self.flush_cache()
                assert flush_cache_success, "Cache flush failed after updating weights"
2549
2550
        else:
            logger.error(message)
2551
        return UpdateWeightsFromDistributedReqOutput(success, message)
2552

2553
2554
2555
2556
2557
    def update_weights_from_tensor(self, recv_req: UpdateWeightsFromTensorReqInput):
        """Update the online model parameter from tensors."""
        success, message = self.tp_worker.update_weights_from_tensor(recv_req)
        # TODO extract common code b/t update_weights_from_distributed and update_weights_from_tensor later
        if success:
2558
            if recv_req.flush_cache:
Stefan He's avatar
Stefan He committed
2559
2560
                flush_cache_success = self.flush_cache()
                assert flush_cache_success, "Cache flush failed after updating weights"
2561
2562
        else:
            logger.error(message)
2563
        barrier(group=self.tp_cpu_group)
2564
        return UpdateWeightsFromTensorReqOutput(success, message)
2565

2566
2567
    def get_weights_by_name(self, recv_req: GetWeightsByNameReqInput):
        parameter = self.tp_worker.get_weights_by_name(recv_req)
2568
        return GetWeightsByNameReqOutput(parameter)
2569

2570
    def release_memory_occupation(self, recv_req: ReleaseMemoryOccupationReqInput):
2571
2572
        tags = recv_req.tags

2573
        if tags is None or len(tags) == 0:
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
            tags = [GPU_MEMORY_TYPE_WEIGHTS, GPU_MEMORY_TYPE_KV_CACHE]

        if GPU_MEMORY_TYPE_KV_CACHE in tags:
            self.memory_saver_adapter.pause(GPU_MEMORY_TYPE_KV_CACHE)
            self.flush_cache()

        if GPU_MEMORY_TYPE_WEIGHTS in tags:
            self.stashed_model_static_state = _export_static_state(
                self.tp_worker.worker.model_runner.model
            )
2584
            torch.distributed.barrier(self.tp_cpu_group)
2585
2586
            self.memory_saver_adapter.pause(GPU_MEMORY_TYPE_WEIGHTS)

2587
        return ReleaseMemoryOccupationReqOutput()
2588

2589
    def resume_memory_occupation(self, recv_req: ResumeMemoryOccupationReqInput):
2590
        tags = recv_req.tags
2591

2592
2593
2594
2595
2596
        if tags is None or len(tags) == 0:
            tags = [GPU_MEMORY_TYPE_WEIGHTS, GPU_MEMORY_TYPE_KV_CACHE]

        if GPU_MEMORY_TYPE_WEIGHTS in tags:
            self.memory_saver_adapter.resume(GPU_MEMORY_TYPE_WEIGHTS)
2597
            torch.distributed.barrier(self.tp_cpu_group)
2598
2599
2600
2601
2602
2603
2604
2605
2606
            _import_static_state(
                self.tp_worker.worker.model_runner.model,
                self.stashed_model_static_state,
            )
            del self.stashed_model_static_state

        if GPU_MEMORY_TYPE_KV_CACHE in tags:
            self.memory_saver_adapter.resume(GPU_MEMORY_TYPE_KV_CACHE)

2607
2608
        return ResumeMemoryOccupationReqOutput()

2609
2610
2611
2612
2613
2614
2615
    def slow_down(self, recv_req: SlowDownReqInput):
        t = recv_req.forward_sleep_time
        if t is not None and t <= 0:
            t = None
        self.forward_sleep_time = t
        return SlowDownReqOutput()

2616
    def profile(self, recv_req: ProfileReq):
2617
        if recv_req.type == ProfileReqType.START_PROFILE:
2618
            if recv_req.profile_by_stage or recv_req.start_step:
2619
2620
                return self.init_profile(
                    recv_req.output_dir,
2621
                    recv_req.start_step,
2622
2623
2624
2625
2626
                    recv_req.num_steps,
                    recv_req.activities,
                    recv_req.with_stack,
                    recv_req.record_shapes,
                    recv_req.profile_by_stage,
2627
                    recv_req.profile_id,
2628
2629
2630
2631
                )
            else:
                self.init_profile(
                    recv_req.output_dir,
2632
                    recv_req.start_step,
2633
2634
2635
2636
2637
                    recv_req.num_steps,
                    recv_req.activities,
                    recv_req.with_stack,
                    recv_req.record_shapes,
                    recv_req.profile_by_stage,
2638
                    recv_req.profile_id,
2639
2640
                )
                return self.start_profile(True)
2641
        else:
2642
2643
            return self.stop_profile()

2644
    def init_profile(
2645
2646
        self,
        output_dir: Optional[str],
2647
        start_step: Optional[int],
2648
2649
        num_steps: Optional[int],
        activities: Optional[List[str]],
2650
2651
        with_stack: Optional[bool],
        record_shapes: Optional[bool],
2652
        profile_by_stage: bool,
2653
        profile_id: str,
2654
2655
    ) -> ProfileReqOutput:
        if self.profile_in_progress:
2656
2657
2658
2659
2660
            return ProfileReqOutput(
                success=False,
                message="Profiling is already in progress. Call /stop_profile first.",
            )

2661
2662
        self.profile_by_stage = profile_by_stage

2663
2664
2665
2666
2667
2668
        if output_dir is None:
            output_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR", "/tmp")
        if activities is None:
            activities = ["CPU", "GPU"]

        self.torch_profiler_output_dir = output_dir
2669
2670
        self.torch_profiler_with_stack = with_stack
        self.torch_profiler_record_shapes = record_shapes
2671
        self.profiler_activities = activities
2672
        self.profile_id = profile_id
2673

2674
2675
2676
        if start_step:
            self.profiler_start_forward_ct = max(start_step, self.forward_ct + 1)

2677
2678
2679
2680
2681
2682
2683
        if num_steps:
            self.profile_steps = num_steps
            if self.profile_by_stage:
                self.profiler_target_prefill_ct = num_steps
                self.profiler_target_decode_ct = num_steps
                self.profiler_prefill_ct = 0
                self.profiler_decode_ct = 0
2684
2685
2686
2687
            elif start_step:
                self.profiler_target_forward_ct = (
                    self.profiler_start_forward_ct + num_steps
                )
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
            else:
                self.profiler_target_forward_ct = self.forward_ct + num_steps
            # The caller will be notified when reaching profiler_target_forward_ct
        else:
            self.profiler_target_forward_ct = None

        return ProfileReqOutput(success=True, message="Succeeded")

    def start_profile(
        self, stage: Optional[ForwardMode] = None
    ) -> ProfileReqOutput | None:
        stage_str = f" for {stage.__str__()}" if stage else ""
2700
        logger.info(
2701
            f"Profiling starts{stage_str}. Traces will be saved to: {self.torch_profiler_output_dir} (with profile id: {self.profile_id})",
2702
2703
        )

2704
2705
2706
2707
        activities = self.profiler_activities
        with_stack = self.torch_profiler_with_stack
        record_shapes = self.torch_profiler_record_shapes

2708
2709
2710
2711
2712
2713
2714
2715
        activity_map = {
            "CPU": torch.profiler.ProfilerActivity.CPU,
            "GPU": torch.profiler.ProfilerActivity.CUDA,
        }
        torchprof_activities = [
            activity_map[a] for a in activities if a in activity_map
        ]

2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
        if "RPD" in activities:
            from rpdTracerControl import rpdTracerControl

            rpdTracerControl.skipCreate()

            self.rpd_profile_path = os.path.join(
                self.torch_profiler_output_dir,
                "rpd-" + str(time.time()) + f"-TP-{self.tp_rank}" + ".trace.json.gz",
            )

            if self.tp_rank == 0:
                import sqlite3

                from rocpd.schema import RocpdSchema

                if os.path.exists("trace.rpd"):
                    os.unlink("trace.rpd")
                schema = RocpdSchema()
                connection = sqlite3.connect("trace.rpd")
                schema.writeSchema(connection)
                connection.commit()
                del connection
            torch.distributed.barrier(self.tp_cpu_group)

            self.rpd_profiler = rpdTracerControl()
            self.rpd_profiler.setPythonTrace(True)
            self.rpd_profiler.start()
            self.rpd_profiler.rangePush("", "rpd profile range", "")
            self.profile_in_progress = True
        elif torchprof_activities:
2746
2747
            self.torch_profiler = torch.profiler.profile(
                activities=torchprof_activities,
2748
2749
                with_stack=with_stack if with_stack is not None else True,
                record_shapes=record_shapes if record_shapes is not None else False,
2750
2751
            )
            self.torch_profiler.start()
2752
            self.profile_in_progress = True
2753
2754
2755

        if "MEM" in activities:
            torch.cuda.memory._record_memory_history(max_entries=100000)
2756
            self.profile_in_progress = True
2757

2758
2759
        if "CUDA_PROFILER" in activities:
            torch.cuda.cudart().cudaProfilerStart()
2760
            self.profile_in_progress = True
2761

2762
        return ProfileReqOutput(success=True, message="Succeeded")
2763

2764
2765
2766
2767
    def stop_profile(
        self, stage: Optional[ForwardMode] = None
    ) -> ProfileReqOutput | None:
        if not self.profile_in_progress:
2768
2769
2770
2771
            return ProfileReqOutput(
                success=False,
                message="Profiling is not in progress. Call /start_profile first.",
            )
2772

2773
2774
2775
        if not Path(self.torch_profiler_output_dir).exists():
            Path(self.torch_profiler_output_dir).mkdir(parents=True, exist_ok=True)

2776
2777
        stage_suffix = f"-{stage.__str__()}" if stage else ""
        logger.info("Stop profiling" + stage_suffix + "...")
2778
2779
2780
2781
2782
        if self.torch_profiler is not None:
            self.torch_profiler.stop()
            self.torch_profiler.export_chrome_trace(
                os.path.join(
                    self.torch_profiler_output_dir,
2783
                    self.profile_id
2784
2785
2786
                    + f"-TP-{self.tp_rank}"
                    + stage_suffix
                    + ".trace.json.gz",
2787
2788
                )
            )
2789
2790
2791
2792
2793
2794
            torch.distributed.barrier(self.tp_cpu_group)

        if self.rpd_profiler is not None:
            self.rpd_profiler.rangePop()
            self.rpd_profiler.stop()
            self.rpd_profiler.flush()
2795

2796
2797
2798
2799
2800
2801
2802
2803
2804
            torch.distributed.barrier(self.tp_cpu_group)
            if self.tp_rank == 0:
                from sglang.srt.utils import rpd_to_chrome_trace

                rpd_to_chrome_trace("trace.rpd", self.rpd_profile_path)
            self.rpd_profiler = None
            self.rpd_profiler_path = None

        if self.profiler_activities is not None and "MEM" in self.profiler_activities:
2805
            memory_profile_path = os.path.join(
2806
                self.torch_profiler_output_dir,
2807
2808
2809
2810
                str(time.time())
                + f"-TP-{self.tp_rank}-memory"
                + stage_suffix
                + ".pickle",
2811
2812
2813
2814
            )
            torch.cuda.memory._dump_snapshot(memory_profile_path)
            torch.cuda.memory._record_memory_history(enabled=None)

2815
2816
2817
        if "CUDA_PROFILER" in self.profiler_activities:
            torch.cuda.cudart().cudaProfilerStop()

2818
2819
2820
        logger.info(
            "Profiling done. Traces are saved to: %s",
            self.torch_profiler_output_dir,
2821
        )
2822
        self.torch_profiler = None
2823
        self.profile_in_progress = False
2824
        self.profiler_start_forward_ct = None
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846

        return ProfileReqOutput(success=True, message="Succeeded.")

    def _profile_batch_predicate(self, batch):
        if self.profile_by_stage:
            if batch.forward_mode.is_prefill():
                if self.profiler_prefill_ct == 0:
                    self.start_profile(batch.forward_mode)
                self.profiler_prefill_ct += 1
                if self.profiler_prefill_ct > self.profiler_target_prefill_ct:
                    if self.profile_in_progress:
                        self.stop_profile(stage=ForwardMode.EXTEND)
            elif batch.forward_mode.is_decode():
                if self.profiler_decode_ct == 0:
                    if self.profile_in_progress:
                        # force trace flush
                        self.stop_profile(ForwardMode.EXTEND)
                    self.start_profile(batch.forward_mode)
                self.profiler_decode_ct += 1
                if self.profiler_decode_ct > self.profiler_target_decode_ct:
                    if self.profile_in_progress:
                        self.stop_profile(stage=ForwardMode.DECODE)
2847
2848
            elif batch.forward_mode.is_idle():
                pass
2849
            else:
2850
                raise RuntimeError(f"unsupported profile stage: {batch.forward_mode}")
2851
2852
2853
2854
2855
2856
2857
        else:
            # Check profiler
            if (
                self.profiler_target_forward_ct
                and self.profiler_target_forward_ct <= self.forward_ct
            ):
                self.stop_profile()
2858
2859
2860
2861
2862
            if (
                self.profiler_start_forward_ct
                and self.profiler_start_forward_ct == self.forward_ct
            ):
                self.start_profile()
2863

2864
2865
    def expert_distribution_handle(self, recv_req: ExpertDistributionReq):
        if recv_req == ExpertDistributionReq.START_RECORD:
2866
            get_global_expert_distribution_recorder().start_record()
2867
        elif recv_req == ExpertDistributionReq.STOP_RECORD:
2868
            get_global_expert_distribution_recorder().stop_record()
2869
        elif recv_req == ExpertDistributionReq.DUMP_RECORD:
2870
            get_global_expert_distribution_recorder().dump_record()
2871
2872
        else:
            raise ValueError("Unrecognized ExpertDistributionReq value")
2873
        return ExpertDistributionReqOutput()
2874

2875
    def open_session(self, recv_req: OpenSessionReqInput):
2876
2877
2878
2879
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
2880
            return OpenSessionReqOutput(session_id, False)
2881
        elif session_id is None:
2882
            logger.warning("session id is None, cannot open.")
2883
            return OpenSessionReqOutput(session_id, False)
2884
2885
2886
2887
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
2888
            return OpenSessionReqOutput(session_id, True)
2889
2890
2891
2892
2893
2894
2895
2896
2897

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

2898
2899
    def get_print_prefix(self):
        prefix = ""
2900
2901
        if self.attn_dp_rank is not None:
            prefix += f" DP{self.attn_dp_rank}"
2902
2903
2904
2905
2906
2907
        if self.server_args.tp_size > 1:
            prefix += f" TP{self.tp_rank}"
        if self.pp_size > 1:
            prefix += f" PP{self.pp_rank}"
        return prefix

2908
2909
2910
2911
2912
2913
2914
    def _publish_kv_events(self):
        if self.enable_kv_cache_events:
            events = self.tree_cache.take_events()
            if events:
                batch = KVEventBatch(ts=time.time(), events=events)
                self.kv_event_publisher.publish(batch)

2915

2916
2917
2918
2919
def is_health_check_generate_req(recv_req):
    return getattr(recv_req, "rid", "").startswith("HEALTH_CHECK")


2920
2921
2922
2923
def is_work_request(recv_req):
    return isinstance(recv_req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput))


2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
def _export_static_state(model):
    return dict(
        buffers=[
            (name, buffer.detach().clone()) for name, buffer in model.named_buffers()
        ]
    )


def _import_static_state(model, static_params):
    self_named_buffers = dict(model.named_buffers())
    for name, tensor in static_params["buffers"]:
        self_named_buffers[name][...] = tensor


2938
2939
2940
2941
2942
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
2943
    pp_rank: int,
2944
    dp_rank: Optional[int],
2945
    pipe_writer,
2946
):
2947
    # Generate the prefix
2948
2949
2950
2951
2952
2953
2954
    prefix = ""
    if dp_rank is not None:
        prefix += f" DP{dp_rank}"
    if server_args.tp_size > 1:
        prefix += f" TP{tp_rank}"
    if server_args.pp_size > 1:
        prefix += f" PP{pp_rank}"
2955

2956
    # Config the process
2957
    setproctitle.setproctitle(f"sglang::scheduler{prefix.replace(' ', '_')}")
2958
    faulthandler.enable()
2959
    kill_itself_when_parent_died()
2960
    parent_process = psutil.Process().parent()
2961

2962
2963
2964
    # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
2965

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
2966
    # Configure the logger
2967
    configure_logger(server_args, prefix=prefix)
2968
    suppress_other_loggers()
2969

2970
    # Set cpu affinity to this gpu process
2971
2972
2973
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, gpu_id)

2974
    # Create a scheduler and run the event loop
2975
    try:
2976
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank, pp_rank, dp_rank)
2977
        pipe_writer.send(
Mick's avatar
Mick committed
2978
2979
2980
2981
2982
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
2983
        )
Byron Hsu's avatar
Byron Hsu committed
2984

2985
        disaggregation_mode: DisaggregationMode = scheduler.disaggregation_mode
Byron Hsu's avatar
Byron Hsu committed
2986
        if disaggregation_mode == DisaggregationMode.NULL:
2987
2988
2989
            if server_args.pp_size > 1:
                scheduler.event_loop_pp()
            elif scheduler.enable_overlap:
Byron Hsu's avatar
Byron Hsu committed
2990
2991
2992
2993
                scheduler.event_loop_overlap()
            else:
                scheduler.event_loop_normal()
        elif disaggregation_mode == DisaggregationMode.PREFILL:
2994
2995
2996
2997
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_prefill()
            else:
                scheduler.event_loop_normal_disagg_prefill()
2998

Byron Hsu's avatar
Byron Hsu committed
2999
        elif disaggregation_mode == DisaggregationMode.DECODE:
3000
3001
3002
3003
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_decode()
            else:
                scheduler.event_loop_normal_disagg_decode()
Byron Hsu's avatar
Byron Hsu committed
3004

3005
    except Exception:
3006
3007
3008
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)