scheduler.py 78.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import faulthandler
17
import logging
18
import os
19
import signal
20
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
21
import threading
22
23
import time
import warnings
24
from collections import defaultdict, deque
Lianmin Zheng's avatar
Lianmin Zheng committed
25
from concurrent import futures
26
from dataclasses import dataclass
27
from http import HTTPStatus
28
from types import SimpleNamespace
29
from typing import Dict, List, Optional, Tuple, Union
30

31
import psutil
32
import setproctitle
33
import torch
34
import zmq
35
from torch.distributed import barrier
36

37
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
38
from sglang.srt.configs.model_config import ModelConfig
39
from sglang.srt.constrained.base_grammar_backend import create_grammar_backend
Byron Hsu's avatar
Byron Hsu committed
40
41
42
43
44
45
46
47
48
49
50
51
from sglang.srt.disaggregation.decode import (
    DecodePreallocQueue,
    DecodeTransferQueue,
    SchedulerDisaggregationDecodeMixin,
)
from sglang.srt.disaggregation.prefill import (
    PrefillBootstrapQueue,
    SchedulerDisaggregationPrefillMixin,
)
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
    ReqToMetadataIdxAllocator,
52
    TransferBackend,
Byron Hsu's avatar
Byron Hsu committed
53
)
54
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
55
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
56
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
57
from sglang.srt.managers.expert_distribution import ExpertDistributionRecorder
58
59
from sglang.srt.managers.io_struct import (
    AbortReq,
60
    CloseSessionReqInput,
61
    ExpertDistributionReq,
62
    ExpertDistributionReqOutput,
63
64
    FlushCacheReqInput,
    FlushCacheReqOutput,
65
66
    GetInternalStateReq,
    GetInternalStateReqOutput,
67
68
    GetWeightsByNameReqInput,
    GetWeightsByNameReqOutput,
69
    HealthCheckOutput,
70
71
    InitWeightsUpdateGroupReqInput,
    InitWeightsUpdateGroupReqOutput,
72
73
    OpenSessionReqInput,
    OpenSessionReqOutput,
74
    ProfileReq,
75
76
    ProfileReqOutput,
    ProfileReqType,
77
78
79
80
    ReleaseMemoryOccupationReqInput,
    ReleaseMemoryOccupationReqOutput,
    ResumeMemoryOccupationReqInput,
    ResumeMemoryOccupationReqOutput,
81
82
    RpcReqInput,
    RpcReqOutput,
83
84
    SetInternalStateReq,
    SetInternalStateReqOutput,
85
86
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
Chayenne's avatar
Chayenne committed
87
88
    UpdateWeightFromDiskReqInput,
    UpdateWeightFromDiskReqOutput,
89
90
    UpdateWeightsFromDistributedReqInput,
    UpdateWeightsFromDistributedReqOutput,
91
92
    UpdateWeightsFromTensorReqInput,
    UpdateWeightsFromTensorReqOutput,
93
94
95
)
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
Mick's avatar
Mick committed
96
    MultimodalInputs,
97
98
    Req,
    ScheduleBatch,
99
    global_server_args_dict,
100
)
101
102
103
104
105
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
106
107
108
from sglang.srt.managers.scheduler_output_processor_mixin import (
    SchedulerOutputProcessorMixin,
)
109
from sglang.srt.managers.session_controller import Session
110
from sglang.srt.managers.tp_worker import TpModelWorker
111
from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient
112
from sglang.srt.managers.utils import validate_input_length
113
from sglang.srt.mem_cache.chunk_cache import ChunkCache
114
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
115
from sglang.srt.mem_cache.radix_cache import RadixCache
116
from sglang.srt.metrics.collector import SchedulerMetricsCollector, SchedulerStats
Mick's avatar
Mick committed
117
from sglang.srt.model_executor.forward_batch_info import ForwardMode
118
from sglang.srt.reasoning_parser import ReasoningParser
119
from sglang.srt.server_args import PortArgs, ServerArgs
120
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
121
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
122
from sglang.srt.utils import (
123
    DynamicGradMode,
124
125
    broadcast_pyobj,
    configure_logger,
126
    crash_on_warnings,
127
    get_bool_env_var,
128
    get_zmq_socket,
Lianmin Zheng's avatar
Lianmin Zheng committed
129
    kill_itself_when_parent_died,
130
    pyspy_dump_schedulers,
131
    set_gpu_proc_affinity,
132
133
134
    set_random_seed,
    suppress_other_loggers,
)
135
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
136

137
138
expert_distribution_recorder = ExpertDistributionRecorder()

139
140
logger = logging.getLogger(__name__)

141
# Test retract decode for debugging purposes
142
143
TEST_RETRACT = get_bool_env_var("SGLANG_TEST_RETRACT")
RECORD_STEP_TIME = get_bool_env_var("SGLANG_RECORD_STEP_TIME")
144

145

146
147
148
149
@dataclass
class GenerationBatchResult:
    logits_output: LogitsProcessorOutput
    next_token_ids: List[int]
150
151
    extend_input_len_per_req: List[int]
    extend_logprob_start_len_per_req: List[int]
152
153
154
155
156
157
158
159
160
    bid: int


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor
    bid: int


Byron Hsu's avatar
Byron Hsu committed
161
162
163
164
165
class Scheduler(
    SchedulerOutputProcessorMixin,
    SchedulerDisaggregationDecodeMixin,
    SchedulerDisaggregationPrefillMixin,
):
166
167
168
169
170
171
172
173
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
174
        dp_rank: Optional[int],
175
176
    ):
        # Parse args
177
        self.server_args = server_args
178
179
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
180
181
182
        self.schedule_policy = server_args.schedule_policy
        self.lora_paths = server_args.lora_paths
        self.max_loras_per_batch = server_args.max_loras_per_batch
183
        self.enable_overlap = not server_args.disable_overlap_schedule
184
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
185
        self.enable_metrics = server_args.enable_metrics
186
        self.stream_interval = server_args.stream_interval
187
188
189
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
190
191
        self.gpu_id = gpu_id
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
Lianmin Zheng's avatar
Lianmin Zheng committed
192
        self.page_size = server_args.page_size
193

194
        # Distributed rank info
195
196
197
198
199
200
201
202
203
204
        self.dp_size = server_args.dp_size
        self.attn_tp_rank, self.attn_tp_size, self.dp_rank = (
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

205
206
        # Init inter-process communication
        context = zmq.Context(2)
207
        if self.attn_tp_rank == 0:
208
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
209
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
210
            )
211
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
212
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
213
            )
214

215
            if server_args.skip_tokenizer_init:
216
                # Directly send to the TokenizerManager
217
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
218
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
219
220
                )
            else:
221
                # Send to the DetokenizerManager
222
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
223
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
224
                )
225
226
227
228

            self.recv_from_rpc = get_zmq_socket(
                context, zmq.DEALER, port_args.rpc_ipc_name, False
            )
229
        else:
230
            self.recv_from_tokenizer = None
231
            self.recv_from_rpc = None
232
233
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
234
235

        # Init tokenizer
236
        self.init_tokenizer()
237

238
239
240
241
242
243
244
245
246
        # Set reasoning_parser and think_end_id if --reasoning_parser is enabled
        if self.server_args.reasoning_parser and self.tokenizer:
            reasoning_parser = ReasoningParser(
                model_type=self.server_args.reasoning_parser, stream_reasoning=False
            )
            self.tokenizer.think_end_id = self.tokenizer.encode(
                reasoning_parser.detector.think_end_token, add_special_tokens=False
            )[0]

247
248
249
250
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
251
252
253
254
        if self.model_config.is_multimodal:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for multimodal models.")

255
        # Launch a tensor parallel worker
256
        if self.enable_overlap:
257
            TpWorkerClass = TpModelWorkerClient
258
259
        else:
            TpWorkerClass = TpModelWorker
260

261
        self.tp_worker = TpWorkerClass(
262
            server_args=server_args,
263
264
            gpu_id=gpu_id,
            tp_rank=tp_rank,
265
            dp_rank=dp_rank,
266
            nccl_port=port_args.nccl_port,
267
        )
268

269
        # Launch a draft worker for speculative decoding
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        else:
            self.draft_worker = None

284
        # Get token and memory info from the model worker
285
286
287
288
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
289
            self.max_req_len,
290
291
            self.max_req_input_len,
            self.random_seed,
292
            self.device,
293
294
295
296
297
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
298
        self.tp_cpu_group = self.tp_worker.get_tp_cpu_group()
299
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
300
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
301
        global_server_args_dict.update(worker_global_server_args_dict)
302
        set_random_seed(self.random_seed)
303

304
305
306
        # Print debug info
        logger.info(
            f"max_total_num_tokens={self.max_total_num_tokens}, "
307
            f"chunked_prefill_size={server_args.chunked_prefill_size}, "
308
309
310
311
312
            f"max_prefill_tokens={self.max_prefill_tokens}, "
            f"max_running_requests={self.max_running_requests}, "
            f"context_len={self.model_config.context_len}"
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
313
        # Init memory pool and cache
314
        self.init_memory_pool_and_cache()
315
316
317

        # Init running status
        self.waiting_queue: List[Req] = []
318
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
319
        self.running_batch: ScheduleBatch = ScheduleBatch(reqs=[], batch_is_full=False)
320
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
321
        self.cur_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
322
        # The last forward batch
323
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
324
325
        self.forward_ct = 0
        self.forward_ct_decode = 0
326
        self.num_generated_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
327
        self.num_prefill_tokens = 0
328
        self.last_decode_stats_tic = time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
329
        self.last_prefill_stats_tic = time.time()
330
        self.return_health_check_ct = 0
331
        self.current_stream = torch.get_device_module(self.device).current_stream()
332
333
        if self.device == "cpu":
            self.current_stream.synchronize = lambda: None  # No-op for CPU
334

335
        # Init session info
336
        self.sessions: Dict[str, Session] = {}
337
338
339

        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
340
341
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
342
        self.chunked_req = None
343
344
345
346
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
347
        # Init the grammar backend for constrained generation
348
        self.grammar_queue: List[Req] = []
349
        if not server_args.skip_tokenizer_init:
350
351
352
            self.grammar_backend = create_grammar_backend(
                server_args, self.tokenizer, self.model_config.vocab_size
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
353
354
        else:
            self.grammar_backend = None
355

356
        # Init schedule policy and new token estimation
357
        self.policy = SchedulePolicy(
Lianmin Zheng's avatar
Lianmin Zheng committed
358
359
360
            self.schedule_policy,
            self.tree_cache,
            self.enable_hierarchical_cache,
361
        )
362
363
364
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
365
366
        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
367
368
            * server_args.schedule_conservativeness,
            1.0,
369
        )
370
371
372
373
374
375
376
377
378
379
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
380
381
382
383
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
384
        self.parent_process = psutil.Process().parent()
Lianmin Zheng's avatar
Lianmin Zheng committed
385

386
        # Init memory saver
387
388
389
390
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )

391
        # Init profiler
392
393
        self.torch_profiler = None
        self.torch_profiler_output_dir: Optional[str] = None
394
        self.profiler_activities: Optional[List[str]] = None
395
        self.profiler_id: Optional[str] = None
396
        self.profiler_target_forward_ct: Optional[int] = None
397

398
        # Init metrics stats
399
        self.init_metrics()
400

401
402
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
403
404
405
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
406
                (FlushCacheReqInput, self.flush_cache_wrapped),
407
                (AbortReq, self.abort_request),
408
409
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
410
411
412
413
414
415
416
417
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
418
419
                (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
                (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
420
                (ProfileReq, self.profile),
421
                (GetInternalStateReq, self.get_internal_state),
422
                (SetInternalStateReq, self.set_internal_state),
423
                (RpcReqInput, self.handle_rpc_request),
424
                (ExpertDistributionReq, self.expert_distribution_handle),
425
426
427
            ]
        )

Byron Hsu's avatar
Byron Hsu committed
428
429
430
431
432
        self.disaggregation_mode = DisaggregationMode(
            self.server_args.disaggregation_mode
        )
        self.init_disaggregation()

433
434
    def init_tokenizer(self):
        server_args = self.server_args
Lianmin Zheng's avatar
Lianmin Zheng committed
435

436
437
438
439
440
441
442
        self.model_config = ModelConfig(
            server_args.model_path,
            trust_remote_code=server_args.trust_remote_code,
            revision=server_args.revision,
            context_length=server_args.context_length,
            model_override_args=server_args.json_model_override_args,
            is_embedding=server_args.is_embedding,
443
            enable_multimodal=server_args.enable_multimodal,
444
445
446
447
            dtype=server_args.dtype,
            quantization=server_args.quantization,
        )
        self.is_generation = self.model_config.is_generation
448

449
450
451
452
453
454
455
456
457
        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if self.model_config.is_multimodal:
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
458
                    use_fast=not server_args.disable_fast_image_processor,
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
                )
                self.tokenizer = self.processor.tokenizer
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )

    def init_memory_pool_and_cache(self):
        server_args = self.server_args

        self.req_to_token_pool, self.token_to_kv_pool_allocator = (
            self.tp_worker.get_memory_pool()
        )

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
            self.tree_cache = ChunkCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
            )
        else:
            if self.enable_hierarchical_cache:
                self.tree_cache = HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
489
                    tp_cache_group=self.tp_cpu_group,
490
                    page_size=self.page_size,
491
                    hicache_ratio=server_args.hicache_ratio,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
492
493
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
494
495
496
497
498
                )
            else:
                self.tree_cache = RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
499
                    page_size=self.page_size,
500
501
502
503
504
505
506
507
508
509
510
511
512
                    disable=server_args.disable_radix_cache,
                )

        self.decode_mem_cache_buf_multiplier = (
            1
            if self.spec_algorithm.is_none()
            else (
                server_args.speculative_num_draft_tokens
                + (
                    server_args.speculative_eagle_topk
                    * server_args.speculative_num_steps
                )
            )
513
        )
514
515
516
517
518
519
520

    def init_metrics(self):
        # The largest prefill length of a single request
        self._largest_prefill_len: int = 0
        # The largest context length (prefill + generation) of a single request
        self._largest_prefill_decode_len: int = 0
        self.last_gen_throughput: float = 0.0
Lianmin Zheng's avatar
Lianmin Zheng committed
521
        self.last_input_throughput: float = 0.0
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        self.step_time_dict = defaultdict(list)  # Dict[batch size -> step time]
        self.spec_num_total_accepted_tokens = 0
        self.spec_num_total_forward_ct = 0
        self.cum_spec_accept_length = 0
        self.cum_spec_accept_count = 0
        self.stats = SchedulerStats()
        if self.enable_metrics:
            engine_type = "unified"
            self.metrics_collector = SchedulerMetricsCollector(
                labels={
                    "model_name": self.server_args.served_model_name,
                    "engine_type": engine_type,
                },
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
536

Byron Hsu's avatar
Byron Hsu committed
537
    def init_disaggregation(self):
538
539
540
541
        self.transfer_backend = TransferBackend(
            self.server_args.disaggregation_transfer_backend
        )

Byron Hsu's avatar
Byron Hsu committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        if (
            self.disaggregation_mode == DisaggregationMode.DECODE
        ):  # *2 for the headroom.
            buffer_size = (self.req_to_token_pool.size) * 2
            req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
                buffer_size
            )
            aux_dtype = torch.int32
            # A list of metadata buffers. The shape is (b, metadata_size) where
            # b corresponds to a max running requests. The last shape * dtype.itemsize
            # should be larger than 64 bytes to work with RDMA, so we pad it.
            output_id_buffer = torch.zeros(
                (buffer_size, 16), dtype=aux_dtype, device="cpu"
            )
            metadata_buffers = [output_id_buffer]

            # The decode requests polling kv cache
            self.disagg_decode_transfer_queue = DecodeTransferQueue(
560
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
                req_to_metadata_buffer_idx_allocator=req_to_metadata_buffer_idx_allocator,
                metadata_buffers=metadata_buffers,
            )

            # The decode requests pending for pre-allocation
            self.disagg_decode_prealloc_queue = DecodePreallocQueue(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                req_to_metadata_buffer_idx_allocator=req_to_metadata_buffer_idx_allocator,
                metadata_buffers=metadata_buffers,
                aux_dtype=aux_dtype,
                scheduler=self,
                transfer_queue=self.disagg_decode_transfer_queue,
                tree_cache=self.tree_cache,
575
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
576
577
578
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
579
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
            )
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            # *2 for the headroom.
            buffer_size = self.max_running_requests * 2
            req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
                buffer_size
            )
            aux_dtype = torch.int32
            # A list of metadata buffers. The shape is (b, metadata_size) where
            # b corresponds to a max running requests. The last shape * dtype.itemsize
            # should be larger than 64 bytes to work with RDMA, so we pad it.
            output_id_buffer = torch.zeros(
                (buffer_size, 16), dtype=aux_dtype, device="cpu"
            )
            metadata_buffers = [output_id_buffer]

            self.disagg_prefill_pending_queue = PrefillBootstrapQueue(
                token_to_kv_pool=self.token_to_kv_pool_allocator.get_kvcache(),
                req_to_metadata_buffer_idx_allocator=req_to_metadata_buffer_idx_allocator,
                metadata_buffers=metadata_buffers,
                aux_dtype=aux_dtype,
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
604
                gloo_group=self.attn_tp_cpu_group,
605
                transfer_backend=self.transfer_backend,
606
                scheduler=self,
Byron Hsu's avatar
Byron Hsu committed
607
608
            )
            # The prefill requests that are in the middle of kv sending
609
            self.disagg_prefill_inflight_queue: List[Req] = []
Byron Hsu's avatar
Byron Hsu committed
610

611
    @DynamicGradMode()
612
    def event_loop_normal(self):
613
        """A normal scheduler loop."""
614
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
615
616
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
617

618
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
619
            self.cur_batch = batch
620
621
622
623

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
624
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
625
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
626
                self.check_memory()
627
                self.new_token_ratio = self.init_new_token_ratio
628
629

            self.last_batch = batch
630

631
    @DynamicGradMode()
Lianmin Zheng's avatar
Lianmin Zheng committed
632
    def event_loop_overlap(self):
633
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
634
        self.result_queue = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
635
636
637
638
639
640
641

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
642

Lianmin Zheng's avatar
Lianmin Zheng committed
643
644
            if batch:
                result = self.run_batch(batch)
645
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
646

647
                if self.last_batch is None:
648
                    # Create a dummy first batch to start the pipeline for overlap schedule.
649
650
651
652
653
654
655
656
                    # It is now used for triggering the sampling_info_done event.
                    tmp_batch = ScheduleBatch(
                        reqs=None,
                        forward_mode=ForwardMode.DUMMY_FIRST,
                        next_batch_sampling_info=self.tp_worker.cur_sampling_info,
                    )
                    self.process_batch_result(tmp_batch, None)

Lianmin Zheng's avatar
Lianmin Zheng committed
657
            if self.last_batch:
658
                # Process the results of the last batch
659
                tmp_batch, tmp_result = self.result_queue.popleft()
660
661
662
                tmp_batch.next_batch_sampling_info = (
                    self.tp_worker.cur_sampling_info if batch else None
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
663
664
                self.process_batch_result(tmp_batch, tmp_result)
            elif batch is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
665
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
666
                self.check_memory()
667
                self.new_token_ratio = self.init_new_token_ratio
Lianmin Zheng's avatar
Lianmin Zheng committed
668
669
670

            self.last_batch = batch

671
672
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
673
        if self.attn_tp_rank == 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
674
675
            recv_reqs = []

676
677
678
679
680
            while True:
                try:
                    recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
681
                recv_reqs.append(recv_req)
682
683
684
685
686
687
688

            while True:
                try:
                    recv_rpc = self.recv_from_rpc.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
                recv_reqs.append(recv_rpc)
Lianmin Zheng's avatar
Lianmin Zheng committed
689
690
        else:
            recv_reqs = None
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                attn_tp_rank_0 = self.dp_rank * self.attn_tp_size
                work_reqs = broadcast_pyobj(
                    work_reqs,
                    self.attn_tp_rank,
                    self.attn_tp_cpu_group,
                    src=attn_tp_rank_0,
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
                    control_reqs, self.tp_rank, self.tp_cpu_group
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
726
            recv_reqs = broadcast_pyobj(recv_reqs, self.tp_rank, self.tp_cpu_group)
727
728
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
729
    def process_input_requests(self, recv_reqs: List):
730
        for recv_req in recv_reqs:
731
732
            # If it is a health check generation request and there are running requests, ignore it.
            if is_health_check_generate_req(recv_req) and (
Lianmin Zheng's avatar
Lianmin Zheng committed
733
                self.chunked_req is not None or not self.running_batch.is_empty()
734
735
736
737
            ):
                self.return_health_check_ct += 1
                continue

738
            output = self._request_dispatcher(recv_req)
739
            if output is not None:
740
741
742
743
744
                if isinstance(output, RpcReqOutput):
                    if self.recv_from_rpc is not None:
                        self.recv_from_rpc.send_pyobj(output)
                else:
                    self.send_to_tokenizer.send_pyobj(output)
745
746
747
748
749

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
750
        # Create a new request
751
752
753
754
755
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
Rin Intachuen's avatar
Rin Intachuen committed
756
757
758
759
760
761
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

762
763
764
765
766
767
768
769
770
771
772
773
774
            # Handle custom logit processor passed to the request
            custom_logit_processor = recv_req.custom_logit_processor
            if (
                not self.server_args.enable_custom_logit_processor
                and custom_logit_processor is not None
            ):
                logger.warning(
                    "The SGLang server is not configured to enable custom logit processor."
                    "The custom logit processor passed in will be ignored."
                    "Please set --enable-custom-logits-processor to enable this feature."
                )
                custom_logit_processor = None

775
776
777
778
779
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
780
781
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
782
                token_ids_logprob=recv_req.token_ids_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
783
                stream=recv_req.stream,
784
                lora_path=recv_req.lora_path,
Rin Intachuen's avatar
Rin Intachuen committed
785
                input_embeds=recv_req.input_embeds,
786
                custom_logit_processor=custom_logit_processor,
787
                return_hidden_states=recv_req.return_hidden_states,
788
                eos_token_ids=self.model_config.hf_eos_token_id,
789
790
                bootstrap_host=recv_req.bootstrap_host,
                bootstrap_room=recv_req.bootstrap_room,
791
792
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
793

794
795
796
797
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
798
                req.finished_reason = FINISH_ABORT(
799
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
800
                )
801
                self._add_request_to_queue(req)
802
803
                return
        else:
804
805
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
806
            req = session.create_req(recv_req, self.tokenizer)
807
            if isinstance(req.finished_reason, FINISH_ABORT):
808
                self._add_request_to_queue(req)
809
                return
810

811
        # Handle multimodal inputs
Mick's avatar
Mick committed
812
813
        if recv_req.mm_inputs is not None:
            image_inputs = MultimodalInputs.from_dict(recv_req.mm_inputs)
814
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
815
            req.origin_input_ids = self.pad_input_ids_func(
816
                req.origin_input_ids, image_inputs
817
            )
818
            req.extend_image_inputs(image_inputs)
819

820
            if len(req.origin_input_ids) >= self.max_req_input_len:
821
                error_msg = (
822
                    "Multimodal prompt is too long after expanding multimodal tokens. "
823
                    f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
824
                )
825
                logger.error(error_msg)
826
                req.origin_input_ids = [0]
Mick's avatar
Mick committed
827
                req.multimodal_inputs = None
828
                req.sampling_params.max_new_tokens = 0
829
                req.finished_reason = FINISH_ABORT(
830
                    error_msg, HTTPStatus.BAD_REQUEST, "BadRequestError"
831
                )
832
                self._add_request_to_queue(req)
833
834
                return

835
836
837
838
839
840
841
        # Validate prompts length
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
842
843
            req.origin_input_ids = [0]
            req.sampling_params.max_new_tokens = 0
844
            self._add_request_to_queue(req)
845
            return
846

847
        # Copy more attributes
848
        if recv_req.logprob_start_len == -1 or not recv_req.return_logprob:
849
850
851
852
853
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(req.origin_input_ids) - 1
        else:
            req.logprob_start_len = recv_req.logprob_start_len

854
855
856
857
858
859
860
861
862
863
        if req.logprob_start_len >= len(req.origin_input_ids):
            req.finished_reason = FINISH_ABORT(
                f"logprob_start_len, ({req.logprob_start_len}) is higher than the number of input tokens ({len(req.origin_input_ids)}). Request with a lower logprob_start_len.",
                HTTPStatus.BAD_REQUEST,
                "BadRequestError",
            )
            req.logprob_start_len = len(req.origin_input_ids) - 1
            self._add_request_to_queue(req)
            return

864
865
866
867
868
869
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
870
            self.max_req_len - len(req.origin_input_ids) - 1,
871
872
        )

873
874
875
876
877
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
878
            or req.sampling_params.ebnf is not None
879
            or req.sampling_params.structural_tag is not None
880
881
882
883
884
885
        ):
            assert self.grammar_backend is not None
            if req.sampling_params.json_schema is not None:
                key = ("json", req.sampling_params.json_schema)
            elif req.sampling_params.regex is not None:
                key = ("regex", req.sampling_params.regex)
886
887
            elif req.sampling_params.ebnf is not None:
                key = ("ebnf", req.sampling_params.ebnf)
888
889
            elif req.sampling_params.structural_tag:
                key = ("structural_tag", req.sampling_params.structural_tag)
890
891
892
893
894
895
896

            req.grammar = self.grammar_backend.get_cached_value(key)
            if not req.grammar:
                req.grammar = self.grammar_backend.get_future_value(key)
                add_to_grammar_queue = True

        if add_to_grammar_queue:
897
898
            self.grammar_queue.append(req)
        else:
899
900
901
            self._add_request_to_queue(req)

    def _add_request_to_queue(self, req: Req):
902
        req.queue_time_start = time.time()
Byron Hsu's avatar
Byron Hsu committed
903
904
905
906
907
908
909
910
911
912
913
914
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            self.disagg_prefill_pending_queue.add(req)
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            self.disagg_decode_prealloc_queue.add(req)
        else:
            self.waiting_queue.append(req)

    def _extend_requests_to_queue(self, reqs: List[Req], is_retracted: bool = False):
        if self.disaggregation_mode == DisaggregationMode.DECODE:
            self.disagg_decode_prealloc_queue.extend(reqs)
        else:
            self.waiting_queue.extend(reqs)
915
916
917

    def handle_embedding_request(
        self,
918
        recv_req: TokenizedEmbeddingReqInput,
919
920
921
922
923
924
925
926
927
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
        )
        req.tokenizer = self.tokenizer

928
929
        # Handle multimodal inputs
        if recv_req.image_inputs is not None:
Mick's avatar
Mick committed
930
            image_inputs = MultimodalInputs.from_dict(recv_req.image_inputs)
931
932
933
934
935
936
937
938
939
940
941
942
943
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
            req.origin_input_ids = self.pad_input_ids_func(
                req.origin_input_ids, image_inputs
            )
            req.extend_image_inputs(image_inputs)

            if len(req.origin_input_ids) >= self.max_req_input_len:
                error_msg = (
                    "Multimodal prompt is too long after expanding multimodal tokens. "
                    f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                )
                logger.error(error_msg)
                req.origin_input_ids = [0]
Mick's avatar
Mick committed
944
                req.multimodal_inputs = None
945
946
947
948
                req.sampling_params.max_new_tokens = 0
                req.finished_reason = FINISH_ABORT(
                    error_msg, HTTPStatus.BAD_REQUEST, "BadRequestError"
                )
949
                req.queue_time_start = time.time()
950
951
952
                self.waiting_queue.append(req)
                return

953
        # Validate prompts length
954
        error_msg = validate_input_length(
955
956
957
958
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
959
        if error_msg:
960
            self._add_request_to_queue(req)
961
            return
962

963
964
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
965
        self._add_request_to_queue(req)
966

967
968
969
970
    def log_prefill_stats(
        self,
        adder: PrefillAdder,
        can_run_list: List[Req],
971
        running_bs: int,
972
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
973
974
975
976
977
        gap_latency = time.time() - self.last_prefill_stats_tic
        self.last_prefill_stats_tic = time.time()
        self.last_input_throughput = self.num_prefill_tokens / gap_latency
        self.num_prefill_tokens = 0

978
        num_used = self.max_total_num_tokens - (
979
980
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
981
        )
982
983
984
        self._largest_prefill_len = max(
            self._largest_prefill_len, adder.log_input_tokens
        )
985

986
        num_new_seq = len(can_run_list)
987
        f = (
988
            f"Prefill batch. "
989
            f"#new-seq: {num_new_seq}, "
990
991
992
993
            f"#new-token: {adder.log_input_tokens}, "
            f"#cached-token: {adder.log_hit_tokens}, "
            f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
            f"#running-req: {running_bs}, "
994
            f"#queue-req: {len(self.waiting_queue)}, "
995
        )
996
        logger.info(f)
997
998

        if self.enable_metrics:
999
1000
1001
            cache_hit_rate = adder.log_hit_tokens / (
                adder.log_input_tokens + adder.log_hit_tokens
            )
1002
1003
1004
            self.stats.num_running_reqs = running_bs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = round(num_used / self.max_total_num_tokens, 2)
1005
1006
            self.stats.num_queue_reqs = len(self.waiting_queue)
            self.stats.cache_hit_rate = cache_hit_rate
1007
1008
1009
1010
1011
1012

            total_queue_latency = 0
            for req in can_run_list:
                total_queue_latency += req.queue_time_end - req.queue_time_start
            self.stats.avg_request_queue_latency = total_queue_latency / num_new_seq

1013
1014
1015
            self.metrics_collector.log_stats(self.stats)

    def log_decode_stats(self):
1016
1017
1018
1019
        gap_latency = time.time() - self.last_decode_stats_tic
        self.last_decode_stats_tic = time.time()
        self.last_gen_throughput = self.num_generated_tokens / gap_latency
        self.num_generated_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
1020
        num_running_reqs = len(self.running_batch.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1021
        num_used = self.max_total_num_tokens - (
1022
1023
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1024
        )
1025
1026
1027
1028
1029

        if RECORD_STEP_TIME:
            self.step_time_dict[num_running_reqs].append(
                gap_latency / self.server_args.decode_log_interval
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1030

1031
1032
1033
1034
1035
1036
        if self.spec_algorithm.is_none():
            msg = (
                f"Decode batch. "
                f"#running-req: {num_running_reqs}, "
                f"#token: {num_used}, "
                f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
1037
1038
                f"gen throughput (token/s): {self.last_gen_throughput:.2f}, "
                f"#queue-req: {len(self.waiting_queue)}, "
1039
            )
1040
            spec_accept_length = 0
1041
        else:
1042
            spec_accept_length = (
1043
1044
                self.spec_num_total_accepted_tokens / self.spec_num_total_forward_ct
            )
1045
1046
            self.cum_spec_accept_length += self.spec_num_total_accepted_tokens
            self.cum_spec_accept_count += self.spec_num_total_forward_ct
1047
1048
1049
1050
1051
1052
            self.spec_num_total_accepted_tokens = self.spec_num_total_forward_ct = 0
            msg = (
                f"Decode batch. "
                f"#running-req: {num_running_reqs}, "
                f"#token: {num_used}, "
                f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
1053
                f"accept len: {spec_accept_length:.2f}, "
1054
1055
                f"gen throughput (token/s): {self.last_gen_throughput:.2f}, "
                f"#queue-req: {len(self.waiting_queue)}, "
1056
1057
1058
            )

        logger.info(msg)
1059
1060
1061
1062
        if self.enable_metrics:
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = num_used / self.max_total_num_tokens
1063
1064
            self.stats.cache_hit_rate = 0.0
            self.stats.gen_throughput = self.last_gen_throughput
1065
            self.stats.num_queue_reqs = len(self.waiting_queue)
1066
            self.stats.spec_accept_length = spec_accept_length
1067
1068
            self.metrics_collector.log_stats(self.stats)

Lianmin Zheng's avatar
Lianmin Zheng committed
1069
1070
    def check_memory(self):
        available_size = (
1071
1072
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1073
        )
1074
1075
1076
1077
1078
1079
1080
        protected_size = self.tree_cache.protected_size()
        memory_leak = available_size != (
            self.max_total_num_tokens
            if not self.enable_hierarchical_cache
            else self.max_total_num_tokens - protected_size
        )
        if memory_leak:
1081
            msg = (
1082
                "token_to_kv_pool_allocator memory leak detected! "
1083
                f"{available_size=}, {protected_size=}, {self.max_total_num_tokens=}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1084
1085
                f"{self.token_to_kv_pool_allocator.available_size()=}\n"
                f"{self.tree_cache.evictable_size()=}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1086
            )
1087
1088
1089
            warnings.warn(msg)
            if crash_on_warnings():
                raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1090
1091

        if len(self.req_to_token_pool.free_slots) != self.req_to_token_pool.size:
1092
            msg = (
1093
                "req_to_token_pool memory leak detected!"
1094
1095
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1096
            )
1097
1098
1099
            warnings.warn(msg)
            if crash_on_warnings():
                raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1100

1101
1102
1103
1104
1105
1106
1107
        if (
            self.enable_metrics
            and self.attn_tp_rank == 0
            and time.time() > self.metrics_collector.last_log_time + 30
        ):
            # During idle time, also collect metrics every 30 seconds.
            num_used = self.max_total_num_tokens - (
1108
                self.token_to_kv_pool_allocator.available_size()
1109
1110
                + self.tree_cache.evictable_size()
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1111
            num_running_reqs = len(self.running_batch.reqs)
1112
1113
1114
1115
1116
1117
1118
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = num_used / self.max_total_num_tokens
            self.stats.gen_throughput = 0
            self.stats.num_queue_reqs = len(self.waiting_queue)
            self.metrics_collector.log_stats(self.stats)

1119
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
1120
        # Merge the prefill batch into the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1121
        if self.last_batch and self.last_batch.forward_mode.is_extend():
1122
1123
1124
1125
1126
1127
1128
            if self.chunked_req:
                # Move the chunked request out of the batch so that we can merge
                # only finished requests to running_batch.
                self.last_batch.filter_batch(chunked_req_to_exclude=self.chunked_req)
                self.tree_cache.cache_unfinished_req(self.chunked_req)
                # chunked request keeps its rid but will get a new req_pool_idx
                self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
Lianmin Zheng's avatar
Lianmin Zheng committed
1129
                self.running_batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1130

1131
            # Filter batch
1132
            last_bs = self.last_batch.batch_size()
1133
            self.last_batch.filter_batch()
1134
            if self.last_batch.batch_size() < last_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1135
                self.running_batch.batch_is_full = False
1136

1137
            # Merge the new batch into the running batch
1138
            if not self.last_batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1139
                if self.running_batch.is_empty():
1140
1141
                    self.running_batch = self.last_batch
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1142
                    # Merge running_batch with prefill batch
1143
                    self.running_batch.merge_batch(self.last_batch)
1144

1145
1146
        new_batch = self.get_new_batch_prefill()
        if new_batch is not None:
1147
1148
1149
1150
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
Lianmin Zheng's avatar
Lianmin Zheng committed
1151
            if not self.running_batch.is_empty():
1152
                self.running_batch = self.update_running_batch(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1153
1154
1155
                ret = self.running_batch if not self.running_batch.is_empty() else None
            else:
                ret = None
1156

1157
        # Handle DP attention
1158
        if self.server_args.enable_dp_attention or self.server_args.enable_sp_layernorm:
Lianmin Zheng's avatar
Lianmin Zheng committed
1159
            ret, _ = self.prepare_dp_attn_batch(ret)
1160
1161

        return ret
1162

Lianmin Zheng's avatar
Lianmin Zheng committed
1163
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
1164
        # Check if the grammar is ready in the grammar queue
1165
        if self.grammar_queue:
1166
            self.move_ready_grammar_requests()
1167

Lianmin Zheng's avatar
Lianmin Zheng committed
1168
1169
        # Handle the cases where prefill is not allowed
        if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1170
            self.running_batch.batch_is_full or len(self.waiting_queue) == 0
1171
        ) and self.chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1172
1173
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
1174
        running_bs = len(self.running_batch.reqs)
1175
        if running_bs >= self.max_running_requests:
Lianmin Zheng's avatar
Lianmin Zheng committed
1176
            self.running_batch.batch_is_full = True
1177
1178
            return None

1179
1180
1181
1182
1183
        if self.enable_hierarchical_cache:
            # check for completion of hierarchical cache activities to release memory
            self.tree_cache.writing_check()
            self.tree_cache.loading_check()

1184
1185
1186
        # Get priority queue
        prefix_computed = self.policy.calc_priority(self.waiting_queue)

Lianmin Zheng's avatar
Lianmin Zheng committed
1187
        # Prefill policy
1188
1189
        adder = PrefillAdder(
            self.tree_cache,
1190
            self.token_to_kv_pool_allocator,
1191
1192
1193
1194
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
1195
            running_bs if self.is_mixed_chunk else 0,
1196
1197
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1198
        if self.chunked_req is not None:
1199
1200
            self.chunked_req.init_next_round_input()
            self.chunked_req = adder.add_chunked_req(self.chunked_req)
1201

Lianmin Zheng's avatar
Lianmin Zheng committed
1202
        if self.lora_paths:
Lianmin Zheng's avatar
Lianmin Zheng committed
1203
1204
            lora_set = set([req.lora_path for req in self.running_batch.reqs])

1205
        # Get requests from the waiting queue to a new prefill batch
1206
1207
        for req in self.waiting_queue:
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1208
                self.lora_paths
1209
1210
1211
1212
1213
1214
1215
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1216
                self.running_batch.batch_is_full = True
1217
1218
                break

1219
            if running_bs + len(adder.can_run_list) >= self.max_running_requests:
Lianmin Zheng's avatar
Lianmin Zheng committed
1220
                self.running_batch.batch_is_full = True
1221
                break
1222

1223
1224
1225
1226
            req.init_next_round_input(
                None if prefix_computed else self.tree_cache,
                self.enable_hierarchical_cache,
            )
1227

1228
1229
1230
            res = adder.add_one_req(
                req, self.chunked_req, self.enable_hierarchical_cache
            )
1231
1232
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
1233
1234
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
Lianmin Zheng's avatar
Lianmin Zheng committed
1235
1236
1237
                        self.running_batch.batch_is_full = len(
                            adder.can_run_list
                        ) > 0 or (
1238
1239
1240
1241
                            self.running_batch is not None
                            and not self.running_batch.is_empty()
                        )
                    else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1242
                        self.running_batch.batch_is_full = True
1243
1244
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1245
        # Update waiting queue
1246
        can_run_list: List[Req] = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1247
1248
        if len(can_run_list) == 0:
            return None
1249
1250
1251
1252
1253
1254

        if self.enable_metrics:
            # only record queue time when enable_metrics is True to avoid overhead
            for req in can_run_list:
                req.queue_time_end = time.time()

Lianmin Zheng's avatar
Lianmin Zheng committed
1255
1256
1257
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1258

1259
        if self.enable_hierarchical_cache:
1260
            self.tree_cache.ready_to_load_cache()
1261

1262
1263
1264
        if adder.new_chunked_req is not None:
            assert self.chunked_req is None
            self.chunked_req = adder.new_chunked_req
1265

1266
1267
        if self.chunked_req:
            self.chunked_req.is_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1268

1269
        # Print stats
1270
        if self.attn_tp_rank == 0:
1271
            self.log_prefill_stats(adder, can_run_list, running_bs)
1272

Lianmin Zheng's avatar
Lianmin Zheng committed
1273
        # Create a new batch
1274
1275
1276
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
1277
            self.token_to_kv_pool_allocator,
1278
            self.tree_cache,
1279
            self.model_config,
1280
            self.enable_overlap,
1281
            self.spec_algorithm,
1282
            self.server_args.enable_custom_logit_processor,
1283
        )
1284
        new_batch.prepare_for_extend()
1285

Lianmin Zheng's avatar
Lianmin Zheng committed
1286
        # Mixed-style chunked prefill
1287
1288
        if (
            self.is_mixed_chunk
Lianmin Zheng's avatar
Lianmin Zheng committed
1289
            and not self.running_batch.is_empty()
1290
1291
1292
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
1293
1294
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
1295
                self.running_batch.prepare_for_decode()
1296
1297
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1298
1299
1300
            self.running_batch = ScheduleBatch(
                reqs=[], batch_is_full=self.running_batch.batch_is_full
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1301
1302
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1303
1304
1305

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
1306
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
1307
        """Update the current running decoding batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1308
        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1309

1310
1311
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1312
1313
            batch.batch_is_full = False
            return batch
1314

Lianmin Zheng's avatar
Lianmin Zheng committed
1315
        # Check if decode out of memory
1316
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
1317
            TEST_RETRACT and batch.batch_size() > 10
1318
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1319
1320
            old_ratio = self.new_token_ratio

1321
            retracted_reqs, new_token_ratio = batch.retract_decode(self.server_args)
Lianmin Zheng's avatar
Lianmin Zheng committed
1322
            self.new_token_ratio = new_token_ratio
1323

Lianmin Zheng's avatar
Lianmin Zheng committed
1324
1325
1326
1327
1328
            logger.info(
                "Decode out of memory happened. "
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
1329
            self._extend_requests_to_queue(retracted_reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1330
1331
        else:
            self.new_token_ratio = max(
1332
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
1333
1334
1335
                self.min_new_token_ratio,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1336
        if batch.batch_size() < initial_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1337
            batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1338
1339

        # Update batch tensors
1340
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1341
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1342

1343
1344
1345
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
1346
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1347
1348
        self.forward_ct += 1

1349
1350
1351
1352
1353
1354
1355
        # Check profiler
        if (
            self.profiler_target_forward_ct
            and self.profiler_target_forward_ct <= self.forward_ct
        ):
            self.stop_profile()

1356
        # Run forward
1357
        if self.is_generation:
1358
1359
1360
1361
1362
            if self.spec_algorithm.is_none():
                model_worker_batch = batch.get_model_worker_batch()
                logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
                    model_worker_batch
                )
1363
                bid = model_worker_batch.bid
Lianmin Zheng's avatar
Lianmin Zheng committed
1364
            else:
1365
1366
1367
                (
                    logits_output,
                    next_token_ids,
1368
                    bid,
1369
1370
1371
1372
1373
1374
1375
                    num_accepted_tokens,
                ) = self.draft_worker.forward_batch_speculative_generation(batch)
                self.spec_num_total_accepted_tokens += (
                    num_accepted_tokens + batch.batch_size()
                )
                self.spec_num_total_forward_ct += batch.batch_size()
                self.num_generated_tokens += num_accepted_tokens
1376
            batch.output_ids = next_token_ids
1377

1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
            # These 2 values are needed for processing the output, but the values can be
            # modified by overlap schedule. So we have to copy them here so that
            # we can use the correct values in output processing.
            if batch.return_logprob:
                extend_input_len_per_req = [req.extend_input_len for req in batch.reqs]
                extend_logprob_start_len_per_req = [
                    req.extend_logprob_start_len for req in batch.reqs
                ]
            else:
                extend_input_len_per_req = None
                extend_logprob_start_len_per_req = None

1390
1391
1392
            ret = GenerationBatchResult(
                logits_output=logits_output,
                next_token_ids=next_token_ids,
1393
1394
                extend_input_len_per_req=extend_input_len_per_req,
                extend_logprob_start_len_per_req=extend_logprob_start_len_per_req,
1395
                bid=bid,
1396
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1397
1398
1399
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
1400
1401
1402
            ret = EmbeddingBatchResult(
                embeddings=embeddings, bid=model_worker_batch.bid
            )
1403
        return ret
Chayenne's avatar
Chayenne committed
1404

1405
1406
1407
1408
1409
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1410
1411
        if batch.forward_mode.is_decode():
            self.process_batch_result_decode(batch, result)
1412
        elif batch.forward_mode.is_extend():
Lianmin Zheng's avatar
Lianmin Zheng committed
1413
            self.process_batch_result_prefill(batch, result)
1414
1415
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
1416
                self.tp_worker.resolve_batch_result(result.bid)
1417
1418
1419
1420
                if batch.next_batch_sampling_info:
                    batch.next_batch_sampling_info.update_regex_vocab_mask()
                    self.current_stream.synchronize()
                    batch.next_batch_sampling_info.sampling_info_done.set()
1421
1422
        elif batch.forward_mode.is_dummy_first():
            batch.next_batch_sampling_info.update_regex_vocab_mask()
1423
            self.current_stream.synchronize()
1424
            batch.next_batch_sampling_info.sampling_info_done.set()
Lianmin Zheng's avatar
Lianmin Zheng committed
1425

1426
1427
1428
1429
1430
1431
1432
        if self.return_health_check_ct:
            # Return some signal for the health check.
            # This is used to prevent the health check signal being blocked by long context prefill.
            # However, one minor issue is that this code path does not check the status of detokenizer manager.
            self.return_health_check_ct -= 1
            self.send_to_tokenizer.send_pyobj(HealthCheckOutput())

1433
    def prepare_dp_attn_batch(self, local_batch: ScheduleBatch):
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
        return self.prepare_dp_attn_batch_raw(
            local_batch,
            dp_size=self.server_args.dp_size,
            attn_tp_size=self.attn_tp_size,
            tp_cpu_group=self.tp_cpu_group,
            get_idle_batch=self.get_idle_batch,
            disable_cuda_graph=self.server_args.disable_cuda_graph,
            spec_algorithm=self.spec_algorithm,
            speculative_num_draft_tokens=self.server_args.speculative_num_draft_tokens,
        )

    @staticmethod
    def prepare_dp_attn_batch_raw(
        local_batch: ScheduleBatch,
        dp_size,
        attn_tp_size: int,
        tp_cpu_group,
        get_idle_batch,
        disable_cuda_graph: bool,
        spec_algorithm,
        speculative_num_draft_tokens,
    ):
1456
1457
1458
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
1459
            global_num_tokens_for_logprob = 0
1460
1461
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
1462
1463
            if not spec_algorithm.is_none() and spec_algorithm.is_eagle():
                num_tokens = num_tokens * speculative_num_draft_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
1464
            global_num_tokens_for_logprob = num_tokens
1465
1466
        else:
            num_tokens = local_batch.extend_num_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
            global_num_tokens_for_logprob = sum(
                [
                    # We should have at least 1 token for sample in every case.
                    max(extend_len - logprob_start_len, 1)
                    for logprob_start_len, extend_len in zip(
                        local_batch.extend_logprob_start_lens, local_batch.extend_lens
                    )
                ]
            )

        if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
            can_cuda_graph = 1
        else:
            can_cuda_graph = 0

1482
        if not spec_algorithm.is_none():
Lianmin Zheng's avatar
Lianmin Zheng committed
1483
1484
1485
            # TODO(sang): Support cuda graph when idle batch is there.
            if local_batch is None or local_batch.forward_mode.is_idle():
                can_cuda_graph = 0
1486

Lianmin Zheng's avatar
Lianmin Zheng committed
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
        is_extend_in_batch = (
            local_batch.forward_mode.is_extend() if local_batch else False
        )
        local_info = torch.tensor(
            [
                num_tokens,
                can_cuda_graph,
                global_num_tokens_for_logprob,
                is_extend_in_batch,
            ],
            dtype=torch.int64,
        )
        global_info = torch.empty(
1500
            (dp_size, attn_tp_size, 4),
Lianmin Zheng's avatar
Lianmin Zheng committed
1501
1502
            dtype=torch.int64,
        )
1503
        torch.distributed.all_gather_into_tensor(
Lianmin Zheng's avatar
Lianmin Zheng committed
1504
1505
            global_info.flatten(),
            local_info,
1506
            group=tp_cpu_group,
1507
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1508
1509
1510
1511
        global_num_tokens = global_info[:, 0, 0].tolist()
        can_cuda_graph = min(global_info[:, 0, 1].tolist())
        global_num_tokens_for_logprob = global_info[:, 0, 2].tolist()
        is_extend_in_batch = global_info[:, 0, 3].tolist()
1512

Lianmin Zheng's avatar
Lianmin Zheng committed
1513
        if local_batch is None and max(global_num_tokens) > 0:
1514
            local_batch = get_idle_batch()
1515
1516

        if local_batch is not None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1517
1518
            local_batch.global_num_tokens = global_num_tokens
            local_batch.global_num_tokens_for_logprob = global_num_tokens_for_logprob
1519
1520

            # Check forward mode for cuda graph
1521
            if not disable_cuda_graph:
Lianmin Zheng's avatar
Lianmin Zheng committed
1522
                local_batch.can_run_dp_cuda_graph = can_cuda_graph
1523

Lianmin Zheng's avatar
Lianmin Zheng committed
1524
        return local_batch, any(is_extend_in_batch)
1525
1526
1527
1528
1529

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
1530
            self.token_to_kv_pool_allocator,
1531
1532
1533
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
1534
            self.spec_algorithm,
1535
            self.server_args.enable_custom_logit_processor,
1536
1537
1538
1539
        )
        idle_batch.prepare_for_idle()
        return idle_batch

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
        num_ready_reqs = 0
        for req in self.grammar_queue:
            try:
                req.grammar = req.grammar.result(timeout=0.05)
                num_ready_reqs += 1
            except futures._base.TimeoutError:
                break

1550
        if self.server_args.enable_dp_attention:
1551
1552
            tp_size = self.attn_tp_size
            tp_group = self.attn_tp_cpu_group
1553
        else:
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
            tp_size = self.tp_size
            tp_group = self.tp_cpu_group

        if tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
            tensor = torch.tensor(num_ready_reqs, dtype=torch.int32)
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=tp_group
            )
            num_ready_reqs_max = tensor.item()
            for i in range(num_ready_reqs, num_ready_reqs_max):
                self.grammar_queue[i].grammar = self.grammar_queue[i].grammar.result()
            num_ready_reqs = num_ready_reqs_max
1567

1568
        self._extend_requests_to_queue(self.grammar_queue[:num_ready_reqs])
1569
1570
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
    def watchdog_thread(self):
        """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
        self.watchdog_last_forward_ct = 0
        self.watchdog_last_time = time.time()

        while True:
            current = time.time()
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
                    if current > self.watchdog_last_time + self.watchdog_timeout:
                        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)

        # Print batch size and memory pool info to check whether there are de-sync issues.
        logger.error(
            f"{self.cur_batch.batch_size()=}, "
            f"{self.cur_batch.reqs=}, "
            f"{self.token_to_kv_pool_allocator.available_size()=}, "
            f"{self.tree_cache.evictable_size()=}, "
        )
        # Wait for some time so that the parent process can print the error.
        pyspy_dump_schedulers()
        print(file=sys.stderr, flush=True)
        print(file=sys.stdout, flush=True)
        time.sleep(5)
        self.parent_process.send_signal(signal.SIGQUIT)

1602
1603
1604
    def flush_cache_wrapped(self, recv_req: FlushCacheReqInput):
        success = self.flush_cache()
        return FlushCacheReqOutput(success=success)
1605

1606
    def flush_cache(self):
1607
        """Flush the memory pool and cache."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1608
        if len(self.waiting_queue) == 0 and self.running_batch.is_empty():
1609
1610
            self.cur_batch = None
            self.last_batch = None
1611
            self.tree_cache.reset()
1612
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
1613
                self.grammar_backend.reset()
1614
            self.req_to_token_pool.clear()
1615
            self.token_to_kv_pool_allocator.clear()
1616
1617
1618

            if not self.spec_algorithm.is_none():
                self.draft_worker.model_runner.req_to_token_pool.clear()
1619
                self.draft_worker.model_runner.token_to_kv_pool_allocator.clear()
1620
1621
1622
1623
1624

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
1625
1626
            self.cum_spec_accept_length = 0
            self.cum_spec_accept_count = 0
1627
1628
1629
1630
1631
1632
1633
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
1634
                f"#running-req: {len(self.running_batch.reqs)}"
1635
1636
1637
1638
            )
            if_success = False
        return if_success

1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
    def get_internal_state(self, recv_req: GetInternalStateReq):
        ret = dict(global_server_args_dict)
        ret["last_gen_throughput"] = self.last_gen_throughput
        if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
            ret["avg_spec_accept_length"] = (
                self.cum_spec_accept_length / self.cum_spec_accept_count
            )

        if RECORD_STEP_TIME:
            ret["step_time_dict"] = self.step_time_dict
        return GetInternalStateReqOutput(
            internal_state=ret,
        )

    def set_internal_state(self, recv_req: SetInternalStateReq):
        server_args_dict = recv_req.server_args
        args_allow_update = set(
            [
                "speculative_accept_threshold_single",
                "speculative_accept_threshold_acc",
            ]
        )
        if_success = True
        for k, v in server_args_dict.items():
            if k not in args_allow_update:
                logging.warning(f"Updating {k} is not supported.")
                if_success = False
                break
        if if_success:
            if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
                avg_spec_accept_length = (
                    self.cum_spec_accept_length / self.cum_spec_accept_count
                )
                logger.info(f"{avg_spec_accept_length=}")
            self.cum_spec_accept_length = self.cum_spec_accept_count = 0
            for k, v in server_args_dict.items():
                global_server_args_dict[k] = v
            logger.info(f"Global server args updated! " f"{global_server_args_dict=}")
        return SetInternalStateReqOutput(
            updated=True,
            server_args=global_server_args_dict,
        )

1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
    def handle_rpc_request(self, recv_req: RpcReqInput):
        # Handle RPC requests
        logger.info(
            f"handle_rpc_request: {recv_req.method}, param: {recv_req.parameters}"
        )

        success = True
        exec = None
        try:
            func = getattr(self, recv_req.method)
            func(recv_req.parameters)
        except Exception as e:
            success = False
            exec = e
            logger.error(f"Failed to call rpc {recv_req.method}: {str(e)}")

        barrier()
        return RpcReqOutput(success, "" if not exec else str(exec))

    def save_remote_model(self, params):
        url = params["url"]

1704
        worker = self.tp_worker.worker
1705
1706
1707
1708

        worker.model_runner.save_remote_model(url)

    def save_sharded_model(self, params):
1709
        worker = self.tp_worker.worker
1710
1711
1712
1713
1714
1715
1716

        worker.model_runner.save_sharded_model(
            path=params["path"],
            pattern=params["pattern"],
            max_size=params["max_size"],
        )

1717
1718
    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
Lianmin Zheng's avatar
Lianmin Zheng committed
1719
        to_del = []
1720
        for i, req in enumerate(self.waiting_queue):
Lianmin Zheng's avatar
Lianmin Zheng committed
1721
1722
            if req.rid.startswith(recv_req.rid):
                to_del.append(i)
1723
1724
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1725
1726
1727
        # Sort in reverse order to avoid index issues when deleting
        for i in sorted(to_del, reverse=True):
            req = self.waiting_queue.pop(i)
1728
1729
            logger.debug(f"Abort queued request. {req.rid=}")
            return
1730
1731

        # Delete requests in the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1732
1733
1734
1735
1736
        for req in self.running_batch.reqs:
            if req.rid.startswith(recv_req.rid) and not req.finished():
                logger.debug(f"Abort running request. {req.rid=}")
                req.to_abort = True
                return
1737

1738
1739
1740
    def _pause_engine(self) -> Tuple[List[Req], int]:
        raise NotImplementedError()

Chayenne's avatar
Chayenne committed
1741
1742
1743
    def update_weights_from_disk(self, recv_req: UpdateWeightFromDiskReqInput):
        """In-place update of the weights from disk."""
        success, message = self.tp_worker.update_weights_from_disk(recv_req)
1744
1745
1746
1747
1748
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
1749
        return UpdateWeightFromDiskReqOutput(success, message, 0)
1750

1751
1752
1753
    def init_weights_update_group(self, recv_req: InitWeightsUpdateGroupReqInput):
        """Initialize the online model parameter update group."""
        success, message = self.tp_worker.init_weights_update_group(recv_req)
1754
        return InitWeightsUpdateGroupReqOutput(success, message)
1755
1756

    def update_weights_from_distributed(
1757
1758
1759
        self,
        recv_req: UpdateWeightsFromDistributedReqInput,
    ) -> Tuple[bool, str]:
1760
1761
1762
1763
1764
1765
1766
        """Update the online model parameter."""
        success, message = self.tp_worker.update_weights_from_distributed(recv_req)
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
1767
        return UpdateWeightsFromDistributedReqOutput(success, message)
1768

1769
1770
1771
1772
1773
    def update_weights_from_tensor(self, recv_req: UpdateWeightsFromTensorReqInput):
        """Update the online model parameter from tensors."""
        success, message = self.tp_worker.update_weights_from_tensor(recv_req)
        # TODO extract common code b/t update_weights_from_distributed and update_weights_from_tensor later
        if success:
1774
1775
1776
            if recv_req.flush_cache:
                flash_cache_success = self.flush_cache()
                assert flash_cache_success, "Cache flush failed after updating weights"
1777
1778
        else:
            logger.error(message)
1779
        return UpdateWeightsFromTensorReqOutput(success, message)
1780

1781
1782
    def get_weights_by_name(self, recv_req: GetWeightsByNameReqInput):
        parameter = self.tp_worker.get_weights_by_name(recv_req)
1783
        return GetWeightsByNameReqOutput(parameter)
1784

1785
    def release_memory_occupation(self, recv_req: ReleaseMemoryOccupationReqInput):
1786
1787
1788
        self.memory_saver_adapter.check_validity(
            caller_name="release_memory_occupation"
        )
1789
1790
1791
1792
1793
        self.stashed_model_static_state = _export_static_state(
            self.tp_worker.worker.model_runner.model
        )
        self.memory_saver_adapter.pause()
        self.flush_cache()
1794
        return ReleaseMemoryOccupationReqOutput()
1795

1796
    def resume_memory_occupation(self, recv_req: ResumeMemoryOccupationReqInput):
1797
        self.memory_saver_adapter.check_validity(caller_name="resume_memory_occupation")
1798
1799
1800
1801
1802
        self.memory_saver_adapter.resume()
        _import_static_state(
            self.tp_worker.worker.model_runner.model, self.stashed_model_static_state
        )
        del self.stashed_model_static_state
1803
1804
1805
        return ResumeMemoryOccupationReqOutput()

    def profile(self, recv_req: ProfileReq):
1806
1807
        if recv_req.type == ProfileReqType.START_PROFILE:
            return self.start_profile(
1808
1809
1810
1811
1812
                recv_req.output_dir,
                recv_req.num_steps,
                recv_req.activities,
                recv_req.with_stack,
                recv_req.record_shapes,
1813
                recv_req.profile_id,
1814
            )
1815
        else:
1816
1817
1818
1819
1820
1821
1822
            return self.stop_profile()

    def start_profile(
        self,
        output_dir: Optional[str],
        num_steps: Optional[int],
        activities: Optional[List[str]],
1823
1824
        with_stack: Optional[bool],
        record_shapes: Optional[bool],
1825
        profile_id: Optional[str],
1826
    ) -> None:
1827
        if self.profiler_activities:
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
            return ProfileReqOutput(
                success=False,
                message="Profiling is already in progress. Call /stop_profile first.",
            )

        if output_dir is None:
            output_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR", "/tmp")
        if activities is None:
            activities = ["CPU", "GPU"]

        self.torch_profiler_output_dir = output_dir
1839
        self.profiler_activities = activities
1840
        self.profiler_id = profile_id
1841
        logger.info(
1842
            "Profiling starts. Traces will be saved to: %s (with id %s)",
1843
            self.torch_profiler_output_dir,
1844
            self.profiler_id,
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
        )

        activity_map = {
            "CPU": torch.profiler.ProfilerActivity.CPU,
            "GPU": torch.profiler.ProfilerActivity.CUDA,
        }
        torchprof_activities = [
            activity_map[a] for a in activities if a in activity_map
        ]

        if torchprof_activities:
            self.torch_profiler = torch.profiler.profile(
                activities=torchprof_activities,
1858
1859
                with_stack=with_stack if with_stack is not None else True,
                record_shapes=record_shapes if record_shapes is not None else False,
1860
1861
1862
1863
1864
            )
            self.torch_profiler.start()

        if "MEM" in activities:
            torch.cuda.memory._record_memory_history(max_entries=100000)
1865

1866
1867
1868
        if "CUDA_PROFILER" in activities:
            torch.cuda.cudart().cudaProfilerStart()

1869
1870
1871
1872
1873
1874
        if num_steps:
            self.profiler_target_forward_ct = self.forward_ct + num_steps
            # The caller will be notified when reaching profiler_target_forward_ct
        else:
            self.profiler_target_forward_ct = None
            return ProfileReqOutput(success=True, message="Succeeded")
1875
1876

    def stop_profile(self) -> None:
1877
        if self.profiler_activities is None:
1878
1879
1880
1881
1882
1883
1884
1885
            return

        logger.info("Stop profiling...")
        if self.torch_profiler is not None:
            self.torch_profiler.stop()
            self.torch_profiler.export_chrome_trace(
                os.path.join(
                    self.torch_profiler_output_dir,
1886
                    self.profiler_id + f"-TP-{self.tp_rank}" + ".trace.json.gz",
1887
1888
1889
                )
            )

1890
        if "MEM" in self.profiler_activities:
1891
            memory_profile_path = os.path.join(
1892
                self.torch_profiler_output_dir,
1893
                self.profiler_id + f"-TP-{self.tp_rank}-memory" + ".pickle",
1894
1895
1896
1897
            )
            torch.cuda.memory._dump_snapshot(memory_profile_path)
            torch.cuda.memory._record_memory_history(enabled=None)

1898
1899
1900
        if "CUDA_PROFILER" in self.profiler_activities:
            torch.cuda.cudart().cudaProfilerStop()

1901
1902
1903
        logger.info(
            "Profiling done. Traces are saved to: %s",
            self.torch_profiler_output_dir,
1904
        )
1905
1906
        self.torch_profiler = None
        self.torch_profiler_output_dir = None
1907
        self.profiler_activities = None
1908
1909
1910
1911
1912

        if self.profiler_target_forward_ct:
            self.send_to_tokenizer.send_pyobj(
                ProfileReqOutput(success=True, message="Succeeded.")
            )
1913

1914
1915
1916
1917
1918
1919
1920
1921
1922
    def expert_distribution_handle(self, recv_req: ExpertDistributionReq):
        if recv_req == ExpertDistributionReq.START_RECORD:
            expert_distribution_recorder.start_record()
        elif recv_req == ExpertDistributionReq.STOP_RECORD:
            expert_distribution_recorder.stop_record()
        elif recv_req == ExpertDistributionReq.DUMP_RECORD:
            expert_distribution_recorder.dump_record()
        else:
            raise ValueError("Unrecognized ExpertDistributionReq value")
1923
        return ExpertDistributionReqOutput()
1924

1925
    def open_session(self, recv_req: OpenSessionReqInput):
1926
1927
1928
1929
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
1930
            return OpenSessionReqOutput(session_id, False)
1931
        elif session_id is None:
1932
            logger.warning("session id is None, cannot open.")
1933
            return OpenSessionReqOutput(session_id, False)
1934
1935
1936
1937
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
1938
            return OpenSessionReqOutput(session_id, True)
1939
1940
1941
1942
1943
1944
1945
1946
1947

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

1948

1949
1950
1951
1952
def is_health_check_generate_req(recv_req):
    return getattr(recv_req, "rid", "").startswith("HEALTH_CHECK")


1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
def _export_static_state(model):
    return dict(
        buffers=[
            (name, buffer.detach().clone()) for name, buffer in model.named_buffers()
        ]
    )


def _import_static_state(model, static_params):
    self_named_buffers = dict(model.named_buffers())
    for name, tensor in static_params["buffers"]:
        self_named_buffers[name][...] = tensor


1967
1968
1969
1970
1971
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
1972
    dp_rank: Optional[int],
1973
    pipe_writer,
1974
):
1975
1976
1977
1978
1979
1980
    # Generate the prefix
    if dp_rank is None:
        prefix = f" TP{tp_rank}"
    else:
        prefix = f" DP{dp_rank} TP{tp_rank}"

1981
    # Config the process
1982
    kill_itself_when_parent_died()
1983
    setproctitle.setproctitle(f"sglang::scheduler{prefix.replace(' ', '_')}")
1984
    faulthandler.enable()
1985
    parent_process = psutil.Process().parent()
1986

1987
1988
1989
    # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
1990

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1991
    # Configure the logger
1992
    configure_logger(server_args, prefix=prefix)
1993
    suppress_other_loggers()
1994

1995
    # Set cpu affinity to this gpu process
1996
1997
1998
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, gpu_id)

1999
    # Create a scheduler and run the event loop
2000
    try:
2001
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank, dp_rank)
2002
        pipe_writer.send(
Mick's avatar
Mick committed
2003
2004
2005
2006
2007
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
2008
        )
Byron Hsu's avatar
Byron Hsu committed
2009
2010
2011
2012
2013
2014
2015
2016
        disaggregation_mode: DisaggregationMode = scheduler.disaggregation_mode

        if disaggregation_mode == DisaggregationMode.NULL:
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap()
            else:
                scheduler.event_loop_normal()
        elif disaggregation_mode == DisaggregationMode.PREFILL:
2017
2018
2019
2020
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_prefill()
            else:
                scheduler.event_loop_normal_disagg_prefill()
Byron Hsu's avatar
Byron Hsu committed
2021
        elif disaggregation_mode == DisaggregationMode.DECODE:
2022
2023
2024
2025
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_decode()
            else:
                scheduler.event_loop_normal_disagg_decode()
Byron Hsu's avatar
Byron Hsu committed
2026

2027
    except Exception:
2028
2029
2030
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)