"official/vision/dataloaders/tfds_classification_decoders.py" did not exist on "ab7a0789622168c6738a206dbf24d59657d89791"
scheduler.py 69.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import faulthandler
17
import logging
18
import os
19
import signal
20
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
21
import threading
22
23
import time
import warnings
24
from collections import defaultdict, deque
Lianmin Zheng's avatar
Lianmin Zheng committed
25
from concurrent import futures
26
from dataclasses import dataclass
27
from http import HTTPStatus
28
from types import SimpleNamespace
29
from typing import Dict, List, Optional, Tuple, Union
30

31
import psutil
32
import setproctitle
33
import torch
34
import zmq
35
from torch.distributed import barrier
36

37
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
38
from sglang.srt.configs.model_config import ModelConfig
39
from sglang.srt.constrained.base_grammar_backend import create_grammar_backend
40
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
41
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
42
43
44
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.managers.io_struct import (
    AbortReq,
45
    CloseSessionReqInput,
46
    FlushCacheReq,
47
48
    GetInternalStateReq,
    GetInternalStateReqOutput,
49
50
    GetWeightsByNameReqInput,
    GetWeightsByNameReqOutput,
51
    HealthCheckOutput,
52
53
    InitWeightsUpdateGroupReqInput,
    InitWeightsUpdateGroupReqOutput,
54
55
    OpenSessionReqInput,
    OpenSessionReqOutput,
56
    ProfileReq,
57
58
    ProfileReqOutput,
    ProfileReqType,
59
60
61
62
    ReleaseMemoryOccupationReqInput,
    ReleaseMemoryOccupationReqOutput,
    ResumeMemoryOccupationReqInput,
    ResumeMemoryOccupationReqOutput,
63
64
    RpcReqInput,
    RpcReqOutput,
65
66
    SetInternalStateReq,
    SetInternalStateReqOutput,
67
68
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
Chayenne's avatar
Chayenne committed
69
70
    UpdateWeightFromDiskReqInput,
    UpdateWeightFromDiskReqOutput,
71
72
    UpdateWeightsFromDistributedReqInput,
    UpdateWeightsFromDistributedReqOutput,
73
74
    UpdateWeightsFromTensorReqInput,
    UpdateWeightsFromTensorReqOutput,
75
76
77
78
79
80
)
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
    ImageInputs,
    Req,
    ScheduleBatch,
81
    global_server_args_dict,
82
)
83
84
85
86
87
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
88
89
90
from sglang.srt.managers.scheduler_output_processor_mixin import (
    SchedulerOutputProcessorMixin,
)
91
from sglang.srt.managers.session_controller import Session
92
from sglang.srt.managers.tp_worker import TpModelWorker
93
from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient
94
from sglang.srt.managers.utils import validate_input_length
95
from sglang.srt.mem_cache.chunk_cache import ChunkCache
96
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
97
from sglang.srt.mem_cache.radix_cache import RadixCache
98
from sglang.srt.metrics.collector import SchedulerMetricsCollector, SchedulerStats
Lianmin Zheng's avatar
Lianmin Zheng committed
99
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
100
from sglang.srt.server_args import PortArgs, ServerArgs
101
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
102
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
103
from sglang.srt.utils import (
104
    DynamicGradMode,
105
106
    broadcast_pyobj,
    configure_logger,
107
    crash_on_warnings,
108
    get_bool_env_var,
109
    get_zmq_socket,
Lianmin Zheng's avatar
Lianmin Zheng committed
110
    kill_itself_when_parent_died,
111
    pyspy_dump_schedulers,
112
    set_gpu_proc_affinity,
113
114
115
    set_random_seed,
    suppress_other_loggers,
)
116
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
117
118
119

logger = logging.getLogger(__name__)

120
# Test retract decode for debugging purposes
121
122
TEST_RETRACT = get_bool_env_var("SGLANG_TEST_RETRACT")
RECORD_STEP_TIME = get_bool_env_var("SGLANG_RECORD_STEP_TIME")
123

124

125
126
127
128
@dataclass
class GenerationBatchResult:
    logits_output: LogitsProcessorOutput
    next_token_ids: List[int]
129
130
    extend_input_len_per_req: List[int]
    extend_logprob_start_len_per_req: List[int]
131
132
133
134
135
136
137
138
139
    bid: int


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor
    bid: int


140
class Scheduler(SchedulerOutputProcessorMixin):
141
142
143
144
145
146
147
148
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
149
        dp_rank: Optional[int],
150
151
    ):
        # Parse args
152
        self.server_args = server_args
153
154
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
155
156
157
        self.schedule_policy = server_args.schedule_policy
        self.lora_paths = server_args.lora_paths
        self.max_loras_per_batch = server_args.max_loras_per_batch
158
        self.enable_overlap = not server_args.disable_overlap_schedule
159
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
160
        self.enable_metrics = server_args.enable_metrics
161
        self.stream_interval = server_args.stream_interval
162
163
164
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
165
166
        self.gpu_id = gpu_id
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
Lianmin Zheng's avatar
Lianmin Zheng committed
167
        self.page_size = server_args.page_size
168

169
        # Distributed rank info
170
171
172
173
174
175
176
177
178
179
        self.dp_size = server_args.dp_size
        self.attn_tp_rank, self.attn_tp_size, self.dp_rank = (
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

180
181
        # Init inter-process communication
        context = zmq.Context(2)
182
        if self.attn_tp_rank == 0:
183
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
184
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
185
            )
186
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
187
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
188
            )
189

190
            if server_args.skip_tokenizer_init:
191
                # Directly send to the TokenizerManager
192
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
193
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
194
195
                )
            else:
196
                # Send to the DetokenizerManager
197
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
198
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
199
                )
200
201
202
203

            self.recv_from_rpc = get_zmq_socket(
                context, zmq.DEALER, port_args.rpc_ipc_name, False
            )
204
        else:
205
            self.recv_from_tokenizer = None
206
            self.recv_from_rpc = None
207
208
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
209
210

        # Init tokenizer
211
        self.init_tokenizer()
212

213
214
215
216
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
217
218
219
220
        if self.model_config.is_multimodal:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for multimodal models.")

221
        # Launch a tensor parallel worker
222
        if self.enable_overlap:
223
            TpWorkerClass = TpModelWorkerClient
224
225
        else:
            TpWorkerClass = TpModelWorker
226

227
        self.tp_worker = TpWorkerClass(
228
            server_args=server_args,
229
230
            gpu_id=gpu_id,
            tp_rank=tp_rank,
231
            dp_rank=dp_rank,
232
            nccl_port=port_args.nccl_port,
233
        )
234

235
        # Launch a draft worker for speculative decoding
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        else:
            self.draft_worker = None

250
        # Get token and memory info from the model worker
251
252
253
254
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
255
            self.max_req_len,
256
257
            self.max_req_input_len,
            self.random_seed,
258
            self.device,
259
260
261
262
263
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
264
        self.tp_cpu_group = self.tp_worker.get_tp_cpu_group()
265
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
266
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
267
        global_server_args_dict.update(worker_global_server_args_dict)
268
        set_random_seed(self.random_seed)
269

270
271
272
        # Print debug info
        logger.info(
            f"max_total_num_tokens={self.max_total_num_tokens}, "
273
            f"chunked_prefill_size={server_args.chunked_prefill_size}, "
274
275
276
277
278
            f"max_prefill_tokens={self.max_prefill_tokens}, "
            f"max_running_requests={self.max_running_requests}, "
            f"context_len={self.model_config.context_len}"
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
279
        # Init memory pool and cache
280
        self.init_memory_pool_and_cache()
281
282
283

        # Init running status
        self.waiting_queue: List[Req] = []
284
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
285
        self.running_batch: ScheduleBatch = ScheduleBatch(reqs=[], batch_is_full=False)
286
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
287
        self.cur_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
288
        # The last forward batch
289
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
290
291
        self.forward_ct = 0
        self.forward_ct_decode = 0
292
        self.num_generated_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
293
        self.num_prefill_tokens = 0
294
        self.last_decode_stats_tic = time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
295
        self.last_prefill_stats_tic = time.time()
296
        self.return_health_check_ct = 0
297
        self.current_stream = torch.get_device_module(self.device).current_stream()
298
299
        if self.device == "cpu":
            self.current_stream.synchronize = lambda: None  # No-op for CPU
300

301
        # Init session info
302
        self.sessions: Dict[str, Session] = {}
303
304
305

        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
306
307
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
308
        self.chunked_req = None
309
310
311
312
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
313
        # Init the grammar backend for constrained generation
314
        self.grammar_queue: List[Req] = []
315
        if not server_args.skip_tokenizer_init:
316
317
318
            self.grammar_backend = create_grammar_backend(
                server_args, self.tokenizer, self.model_config.vocab_size
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
319
320
        else:
            self.grammar_backend = None
321

322
        # Init schedule policy and new token estimation
323
        self.policy = SchedulePolicy(
Lianmin Zheng's avatar
Lianmin Zheng committed
324
325
326
            self.schedule_policy,
            self.tree_cache,
            self.enable_hierarchical_cache,
327
        )
328
329
330
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
331
332
        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
333
334
            * server_args.schedule_conservativeness,
            1.0,
335
        )
336
337
338
339
340
341
342
343
344
345
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
346
347
348
349
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
350
        self.parent_process = psutil.Process().parent()
Lianmin Zheng's avatar
Lianmin Zheng committed
351

352
        # Init memory saver
353
354
355
356
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )

357
        # Init profiler
358
359
360
361
        self.torch_profiler = None
        self.torch_profiler_output_dir: Optional[str] = None
        self.torch_profiler_activities: Optional[List[str]] = None
        self.profiler_target_forward_ct: Optional[int] = None
362

363
        # Init metrics stats
364
        self.init_metrics()
365

366
367
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
368
369
370
371
372
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
                (FlushCacheReq, self.flush_cache_wrapped),
                (AbortReq, self.abort_request),
373
374
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
375
376
377
378
379
380
381
382
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
383
384
                (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
                (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
385
                (ProfileReq, self.profile),
386
                (GetInternalStateReq, self.get_internal_state),
387
                (SetInternalStateReq, self.set_internal_state),
388
                (RpcReqInput, self.handle_rpc_request),
389
390
391
            ]
        )

392
393
    def init_tokenizer(self):
        server_args = self.server_args
Lianmin Zheng's avatar
Lianmin Zheng committed
394

395
396
397
398
399
400
401
402
403
404
405
        self.model_config = ModelConfig(
            server_args.model_path,
            trust_remote_code=server_args.trust_remote_code,
            revision=server_args.revision,
            context_length=server_args.context_length,
            model_override_args=server_args.json_model_override_args,
            is_embedding=server_args.is_embedding,
            dtype=server_args.dtype,
            quantization=server_args.quantization,
        )
        self.is_generation = self.model_config.is_generation
406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if self.model_config.is_multimodal:
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )
                self.tokenizer = self.processor.tokenizer
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )

    def init_memory_pool_and_cache(self):
        server_args = self.server_args

        self.req_to_token_pool, self.token_to_kv_pool_allocator = (
            self.tp_worker.get_memory_pool()
        )

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
            self.tree_cache = ChunkCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
            )
        else:
            if self.enable_hierarchical_cache:
                self.tree_cache = HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
446
                    tp_cache_group=self.tp_worker.get_tp_cpu_group(),
447
                    page_size=self.page_size,
448
449
450
451
452
                )
            else:
                self.tree_cache = RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
453
                    page_size=self.page_size,
454
455
456
457
458
459
460
461
462
463
464
465
466
                    disable=server_args.disable_radix_cache,
                )

        self.decode_mem_cache_buf_multiplier = (
            1
            if self.spec_algorithm.is_none()
            else (
                server_args.speculative_num_draft_tokens
                + (
                    server_args.speculative_eagle_topk
                    * server_args.speculative_num_steps
                )
            )
467
        )
468
469
470
471
472
473
474

    def init_metrics(self):
        # The largest prefill length of a single request
        self._largest_prefill_len: int = 0
        # The largest context length (prefill + generation) of a single request
        self._largest_prefill_decode_len: int = 0
        self.last_gen_throughput: float = 0.0
Lianmin Zheng's avatar
Lianmin Zheng committed
475
        self.last_input_throughput: float = 0.0
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        self.step_time_dict = defaultdict(list)  # Dict[batch size -> step time]
        self.spec_num_total_accepted_tokens = 0
        self.spec_num_total_forward_ct = 0
        self.cum_spec_accept_length = 0
        self.cum_spec_accept_count = 0
        self.stats = SchedulerStats()
        if self.enable_metrics:
            engine_type = "unified"
            self.metrics_collector = SchedulerMetricsCollector(
                labels={
                    "model_name": self.server_args.served_model_name,
                    "engine_type": engine_type,
                },
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
490

491
    @DynamicGradMode()
492
    def event_loop_normal(self):
493
        """A normal scheduler loop."""
494
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
495
496
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
497

498
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
499
            self.cur_batch = batch
500
501
502
503

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
504
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
505
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
506
                self.check_memory()
507
                self.new_token_ratio = self.init_new_token_ratio
508
509

            self.last_batch = batch
510

511
    @DynamicGradMode()
Lianmin Zheng's avatar
Lianmin Zheng committed
512
    def event_loop_overlap(self):
513
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
514
        self.result_queue = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
515
516
517
518
519
520
521

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
522

Lianmin Zheng's avatar
Lianmin Zheng committed
523
524
            if batch:
                result = self.run_batch(batch)
525
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
526

527
                if self.last_batch is None:
528
                    # Create a dummy first batch to start the pipeline for overlap schedule.
529
530
531
532
533
534
535
536
                    # It is now used for triggering the sampling_info_done event.
                    tmp_batch = ScheduleBatch(
                        reqs=None,
                        forward_mode=ForwardMode.DUMMY_FIRST,
                        next_batch_sampling_info=self.tp_worker.cur_sampling_info,
                    )
                    self.process_batch_result(tmp_batch, None)

Lianmin Zheng's avatar
Lianmin Zheng committed
537
            if self.last_batch:
538
                # Process the results of the last batch
539
                tmp_batch, tmp_result = self.result_queue.popleft()
540
541
542
                tmp_batch.next_batch_sampling_info = (
                    self.tp_worker.cur_sampling_info if batch else None
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
543
544
                self.process_batch_result(tmp_batch, tmp_result)
            elif batch is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
545
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
546
                self.check_memory()
547
                self.new_token_ratio = self.init_new_token_ratio
Lianmin Zheng's avatar
Lianmin Zheng committed
548
549
550

            self.last_batch = batch

551
552
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
553
        if self.attn_tp_rank == 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
554
555
            recv_reqs = []

556
557
558
559
560
            while True:
                try:
                    recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
561
                recv_reqs.append(recv_req)
562
563
564
565
566
567
568

            while True:
                try:
                    recv_rpc = self.recv_from_rpc.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
                recv_reqs.append(recv_rpc)
Lianmin Zheng's avatar
Lianmin Zheng committed
569
570
        else:
            recv_reqs = None
571

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                attn_tp_rank_0 = self.dp_rank * self.attn_tp_size
                work_reqs = broadcast_pyobj(
                    work_reqs,
                    self.attn_tp_rank,
                    self.attn_tp_cpu_group,
                    src=attn_tp_rank_0,
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
                    control_reqs, self.tp_rank, self.tp_cpu_group
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
606
            recv_reqs = broadcast_pyobj(recv_reqs, self.tp_rank, self.tp_cpu_group)
607
608
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
609
    def process_input_requests(self, recv_reqs: List):
610
        for recv_req in recv_reqs:
611
612
            # If it is a health check generation request and there are running requests, ignore it.
            if is_health_check_generate_req(recv_req) and (
Lianmin Zheng's avatar
Lianmin Zheng committed
613
                self.chunked_req is not None or not self.running_batch.is_empty()
614
615
616
617
            ):
                self.return_health_check_ct += 1
                continue

618
            output = self._request_dispatcher(recv_req)
619
            if output is not None:
620
621
622
623
624
                if isinstance(output, RpcReqOutput):
                    if self.recv_from_rpc is not None:
                        self.recv_from_rpc.send_pyobj(output)
                else:
                    self.send_to_tokenizer.send_pyobj(output)
625
626
627
628
629

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
630
        # Create a new request
631
632
633
634
635
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
Rin Intachuen's avatar
Rin Intachuen committed
636
637
638
639
640
641
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

642
643
644
645
646
647
648
649
650
651
652
653
654
            # Handle custom logit processor passed to the request
            custom_logit_processor = recv_req.custom_logit_processor
            if (
                not self.server_args.enable_custom_logit_processor
                and custom_logit_processor is not None
            ):
                logger.warning(
                    "The SGLang server is not configured to enable custom logit processor."
                    "The custom logit processor passed in will be ignored."
                    "Please set --enable-custom-logits-processor to enable this feature."
                )
                custom_logit_processor = None

655
656
657
658
659
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
660
661
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
662
                token_ids_logprob=recv_req.token_ids_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
663
                stream=recv_req.stream,
664
                lora_path=recv_req.lora_path,
Rin Intachuen's avatar
Rin Intachuen committed
665
                input_embeds=recv_req.input_embeds,
666
                custom_logit_processor=custom_logit_processor,
667
                return_hidden_states=recv_req.return_hidden_states,
668
                eos_token_ids=self.model_config.hf_eos_token_id,
669
670
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
671

672
673
674
675
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
676
                req.finished_reason = FINISH_ABORT(
677
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
678
                )
679
                self._add_request_to_queue(req)
680
681
                return
        else:
682
683
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
684
            req = session.create_req(recv_req, self.tokenizer)
685
            if isinstance(req.finished_reason, FINISH_ABORT):
686
                self._add_request_to_queue(req)
687
                return
688

689
        # Handle multimodal inputs
690
        if recv_req.image_inputs is not None:
691
692
            image_inputs = ImageInputs.from_dict(recv_req.image_inputs)
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
693
            req.origin_input_ids = self.pad_input_ids_func(
694
                req.origin_input_ids, image_inputs
695
            )
696
            req.extend_image_inputs(image_inputs)
697

698
            if len(req.origin_input_ids) >= self.max_req_input_len:
699
                error_msg = (
700
                    "Multimodal prompt is too long after expanding multimodal tokens. "
701
                    f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
702
                )
703
                logger.error(error_msg)
704
                req.origin_input_ids = [0]
705
                req.image_inputs = None
706
                req.sampling_params.max_new_tokens = 0
707
                req.finished_reason = FINISH_ABORT(
708
                    error_msg, HTTPStatus.BAD_REQUEST, "BadRequestError"
709
                )
710
                self._add_request_to_queue(req)
711
712
                return

713
714
715
716
717
718
719
        # Validate prompts length
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
720
721
            req.origin_input_ids = [0]
            req.sampling_params.max_new_tokens = 0
722
            self._add_request_to_queue(req)
723
            return
724

725
        # Copy more attributes
726
        if recv_req.logprob_start_len == -1 or not recv_req.return_logprob:
727
728
729
730
731
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(req.origin_input_ids) - 1
        else:
            req.logprob_start_len = recv_req.logprob_start_len

732
733
734
735
736
737
738
739
740
741
        if req.logprob_start_len >= len(req.origin_input_ids):
            req.finished_reason = FINISH_ABORT(
                f"logprob_start_len, ({req.logprob_start_len}) is higher than the number of input tokens ({len(req.origin_input_ids)}). Request with a lower logprob_start_len.",
                HTTPStatus.BAD_REQUEST,
                "BadRequestError",
            )
            req.logprob_start_len = len(req.origin_input_ids) - 1
            self._add_request_to_queue(req)
            return

742
743
744
745
746
747
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
748
            self.max_req_len - len(req.origin_input_ids) - 1,
749
750
        )

751
752
753
754
755
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
756
            or req.sampling_params.ebnf is not None
757
            or req.sampling_params.structural_tag is not None
758
759
760
761
762
763
        ):
            assert self.grammar_backend is not None
            if req.sampling_params.json_schema is not None:
                key = ("json", req.sampling_params.json_schema)
            elif req.sampling_params.regex is not None:
                key = ("regex", req.sampling_params.regex)
764
765
            elif req.sampling_params.ebnf is not None:
                key = ("ebnf", req.sampling_params.ebnf)
766
767
            elif req.sampling_params.structural_tag:
                key = ("structural_tag", req.sampling_params.structural_tag)
768
769
770
771
772
773
774

            req.grammar = self.grammar_backend.get_cached_value(key)
            if not req.grammar:
                req.grammar = self.grammar_backend.get_future_value(key)
                add_to_grammar_queue = True

        if add_to_grammar_queue:
775
776
            self.grammar_queue.append(req)
        else:
777
778
779
780
781
782
783
            self._add_request_to_queue(req)

    def _add_request_to_queue(self, req: Req):
        self.waiting_queue.append(req)

    def _extend_requests_to_queue(self, reqs: List[Req]):
        self.waiting_queue.extend(reqs)
784
785
786

    def handle_embedding_request(
        self,
787
        recv_req: TokenizedEmbeddingReqInput,
788
789
790
791
792
793
794
795
796
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
        )
        req.tokenizer = self.tokenizer

797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
        # Handle multimodal inputs
        if recv_req.image_inputs is not None:
            image_inputs = ImageInputs.from_dict(recv_req.image_inputs)
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
            req.origin_input_ids = self.pad_input_ids_func(
                req.origin_input_ids, image_inputs
            )
            req.extend_image_inputs(image_inputs)

            if len(req.origin_input_ids) >= self.max_req_input_len:
                error_msg = (
                    "Multimodal prompt is too long after expanding multimodal tokens. "
                    f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                )
                logger.error(error_msg)
                req.origin_input_ids = [0]
                req.image_inputs = None
                req.sampling_params.max_new_tokens = 0
                req.finished_reason = FINISH_ABORT(
                    error_msg, HTTPStatus.BAD_REQUEST, "BadRequestError"
                )
                self.waiting_queue.append(req)
                return

821
        # Validate prompts length
822
        error_msg = validate_input_length(
823
824
825
826
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
827
        if error_msg:
828
            self._add_request_to_queue(req)
829
            return
830

831
832
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
833
        self._add_request_to_queue(req)
834

835
836
837
838
    def log_prefill_stats(
        self,
        adder: PrefillAdder,
        can_run_list: List[Req],
839
        running_bs: int,
840
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
841
842
843
844
845
        gap_latency = time.time() - self.last_prefill_stats_tic
        self.last_prefill_stats_tic = time.time()
        self.last_input_throughput = self.num_prefill_tokens / gap_latency
        self.num_prefill_tokens = 0

846
        num_used = self.max_total_num_tokens - (
847
848
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
849
        )
850
851
852
        self._largest_prefill_len = max(
            self._largest_prefill_len, adder.log_input_tokens
        )
853

854
        f = (
855
856
857
858
859
860
            f"Prefill batch. "
            f"#new-seq: {len(can_run_list)}, "
            f"#new-token: {adder.log_input_tokens}, "
            f"#cached-token: {adder.log_hit_tokens}, "
            f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
            f"#running-req: {running_bs}, "
861
            f"#queue-req: {len(self.waiting_queue)}, "
862
        )
863
        logger.info(f)
864
865

        if self.enable_metrics:
866
867
868
            cache_hit_rate = adder.log_hit_tokens / (
                adder.log_input_tokens + adder.log_hit_tokens
            )
869
870
871
            self.stats.num_running_reqs = running_bs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = round(num_used / self.max_total_num_tokens, 2)
872
873
            self.stats.num_queue_reqs = len(self.waiting_queue)
            self.stats.cache_hit_rate = cache_hit_rate
874
875
876
            self.metrics_collector.log_stats(self.stats)

    def log_decode_stats(self):
877
878
879
880
        gap_latency = time.time() - self.last_decode_stats_tic
        self.last_decode_stats_tic = time.time()
        self.last_gen_throughput = self.num_generated_tokens / gap_latency
        self.num_generated_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
881
        num_running_reqs = len(self.running_batch.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
882
        num_used = self.max_total_num_tokens - (
883
884
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
885
        )
886
887
888
889
890

        if RECORD_STEP_TIME:
            self.step_time_dict[num_running_reqs].append(
                gap_latency / self.server_args.decode_log_interval
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
891

892
893
894
895
896
897
        if self.spec_algorithm.is_none():
            msg = (
                f"Decode batch. "
                f"#running-req: {num_running_reqs}, "
                f"#token: {num_used}, "
                f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
898
899
                f"gen throughput (token/s): {self.last_gen_throughput:.2f}, "
                f"#queue-req: {len(self.waiting_queue)}, "
900
            )
901
            spec_accept_length = 0
902
        else:
903
            spec_accept_length = (
904
905
                self.spec_num_total_accepted_tokens / self.spec_num_total_forward_ct
            )
906
907
            self.cum_spec_accept_length += self.spec_num_total_accepted_tokens
            self.cum_spec_accept_count += self.spec_num_total_forward_ct
908
909
910
911
912
913
            self.spec_num_total_accepted_tokens = self.spec_num_total_forward_ct = 0
            msg = (
                f"Decode batch. "
                f"#running-req: {num_running_reqs}, "
                f"#token: {num_used}, "
                f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
914
                f"accept len: {spec_accept_length:.2f}, "
915
916
                f"gen throughput (token/s): {self.last_gen_throughput:.2f}, "
                f"#queue-req: {len(self.waiting_queue)}, "
917
918
919
            )

        logger.info(msg)
920
921
922
923
        if self.enable_metrics:
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = num_used / self.max_total_num_tokens
924
925
            self.stats.cache_hit_rate = 0.0
            self.stats.gen_throughput = self.last_gen_throughput
926
            self.stats.num_queue_reqs = len(self.waiting_queue)
927
            self.stats.spec_accept_length = spec_accept_length
928
929
            self.metrics_collector.log_stats(self.stats)

Lianmin Zheng's avatar
Lianmin Zheng committed
930
931
    def check_memory(self):
        available_size = (
932
933
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
934
        )
935
936
937
938
939
940
941
        protected_size = self.tree_cache.protected_size()
        memory_leak = available_size != (
            self.max_total_num_tokens
            if not self.enable_hierarchical_cache
            else self.max_total_num_tokens - protected_size
        )
        if memory_leak:
942
            msg = (
Lianmin Zheng's avatar
Lianmin Zheng committed
943
                "KV cache pool leak detected! "
944
                f"{available_size=}, {protected_size=}, {self.max_total_num_tokens=}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
945
946
                f"{self.token_to_kv_pool_allocator.available_size()=}\n"
                f"{self.tree_cache.evictable_size()=}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
947
            )
948
949
950
            warnings.warn(msg)
            if crash_on_warnings():
                raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
951
952

        if len(self.req_to_token_pool.free_slots) != self.req_to_token_pool.size:
953
            msg = (
Lianmin Zheng's avatar
Lianmin Zheng committed
954
                "Memory pool leak detected!"
955
956
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
957
            )
958
959
960
            warnings.warn(msg)
            if crash_on_warnings():
                raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
961

962
963
964
965
966
967
968
        if (
            self.enable_metrics
            and self.attn_tp_rank == 0
            and time.time() > self.metrics_collector.last_log_time + 30
        ):
            # During idle time, also collect metrics every 30 seconds.
            num_used = self.max_total_num_tokens - (
969
                self.token_to_kv_pool_allocator.available_size()
970
971
                + self.tree_cache.evictable_size()
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
972
            num_running_reqs = len(self.running_batch.reqs)
973
974
975
976
977
978
979
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = num_used / self.max_total_num_tokens
            self.stats.gen_throughput = 0
            self.stats.num_queue_reqs = len(self.waiting_queue)
            self.metrics_collector.log_stats(self.stats)

980
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
981
        # Merge the prefill batch into the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
982
        if self.last_batch and self.last_batch.forward_mode.is_extend():
983
984
985
986
987
988
989
            if self.chunked_req:
                # Move the chunked request out of the batch so that we can merge
                # only finished requests to running_batch.
                self.last_batch.filter_batch(chunked_req_to_exclude=self.chunked_req)
                self.tree_cache.cache_unfinished_req(self.chunked_req)
                # chunked request keeps its rid but will get a new req_pool_idx
                self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
Lianmin Zheng's avatar
Lianmin Zheng committed
990
                self.running_batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
991

992
            # Filter batch
993
            last_bs = self.last_batch.batch_size()
994
            self.last_batch.filter_batch()
995
            if self.last_batch.batch_size() < last_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
996
                self.running_batch.batch_is_full = False
997

998
            # Merge the new batch into the running batch
999
            if not self.last_batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1000
                if self.running_batch.is_empty():
1001
1002
                    self.running_batch = self.last_batch
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1003
                    # Merge running_batch with prefill batch
1004
                    self.running_batch.merge_batch(self.last_batch)
1005

1006
1007
        new_batch = self.get_new_batch_prefill()
        if new_batch is not None:
1008
1009
1010
1011
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
Lianmin Zheng's avatar
Lianmin Zheng committed
1012
            if not self.running_batch.is_empty():
1013
                self.running_batch = self.update_running_batch(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1014
1015
1016
                ret = self.running_batch if not self.running_batch.is_empty() else None
            else:
                ret = None
1017

1018
1019
        # Handle DP attention
        if self.server_args.enable_dp_attention:
Lianmin Zheng's avatar
Lianmin Zheng committed
1020
            ret, _ = self.prepare_dp_attn_batch(ret)
1021
1022

        return ret
1023

Lianmin Zheng's avatar
Lianmin Zheng committed
1024
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
1025
        # Check if the grammar is ready in the grammar queue
1026
        if self.grammar_queue:
1027
            self.move_ready_grammar_requests()
1028

Lianmin Zheng's avatar
Lianmin Zheng committed
1029
1030
        # Handle the cases where prefill is not allowed
        if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1031
            self.running_batch.batch_is_full or len(self.waiting_queue) == 0
1032
        ) and self.chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1033
1034
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
1035
        running_bs = len(self.running_batch.reqs)
1036
        if running_bs >= self.max_running_requests:
Lianmin Zheng's avatar
Lianmin Zheng committed
1037
            self.running_batch.batch_is_full = True
1038
1039
            return None

1040
1041
1042
1043
1044
        if self.enable_hierarchical_cache:
            # check for completion of hierarchical cache activities to release memory
            self.tree_cache.writing_check()
            self.tree_cache.loading_check()

1045
1046
1047
        # Get priority queue
        prefix_computed = self.policy.calc_priority(self.waiting_queue)

Lianmin Zheng's avatar
Lianmin Zheng committed
1048
        # Prefill policy
1049
1050
        adder = PrefillAdder(
            self.tree_cache,
1051
            self.token_to_kv_pool_allocator,
1052
1053
1054
1055
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
1056
            running_bs if self.is_mixed_chunk else 0,
1057
1058
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1059
        if self.chunked_req is not None:
1060
1061
            self.chunked_req.init_next_round_input()
            self.chunked_req = adder.add_chunked_req(self.chunked_req)
1062

Lianmin Zheng's avatar
Lianmin Zheng committed
1063
        if self.lora_paths:
Lianmin Zheng's avatar
Lianmin Zheng committed
1064
1065
            lora_set = set([req.lora_path for req in self.running_batch.reqs])

1066
        # Get requests from the waiting queue to a new prefill batch
1067
1068
        for req in self.waiting_queue:
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1069
                self.lora_paths
1070
1071
1072
1073
1074
1075
1076
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1077
                self.running_batch.batch_is_full = True
1078
1079
                break

1080
            if running_bs + len(adder.can_run_list) >= self.max_running_requests:
Lianmin Zheng's avatar
Lianmin Zheng committed
1081
                self.running_batch.batch_is_full = True
1082
                break
1083

1084
1085
1086
1087
            req.init_next_round_input(
                None if prefix_computed else self.tree_cache,
                self.enable_hierarchical_cache,
            )
1088

1089
1090
1091
            res = adder.add_one_req(
                req, self.chunked_req, self.enable_hierarchical_cache
            )
1092
1093
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
1094
1095
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
Lianmin Zheng's avatar
Lianmin Zheng committed
1096
1097
1098
                        self.running_batch.batch_is_full = len(
                            adder.can_run_list
                        ) > 0 or (
1099
1100
1101
1102
                            self.running_batch is not None
                            and not self.running_batch.is_empty()
                        )
                    else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1103
                        self.running_batch.batch_is_full = True
1104
1105
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1106
        # Update waiting queue
1107
        can_run_list: List[Req] = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1108
1109
1110
1111
1112
        if len(can_run_list) == 0:
            return None
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1113

1114
1115
1116
        if self.enable_hierarchical_cache:
            self.tree_cache.read_to_load_cache()

1117
1118
1119
        if adder.new_chunked_req is not None:
            assert self.chunked_req is None
            self.chunked_req = adder.new_chunked_req
1120

1121
1122
        if self.chunked_req:
            self.chunked_req.is_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1123

1124
        # Print stats
1125
        if self.attn_tp_rank == 0:
1126
            self.log_prefill_stats(adder, can_run_list, running_bs)
1127

Lianmin Zheng's avatar
Lianmin Zheng committed
1128
        # Create a new batch
1129
1130
1131
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
1132
            self.token_to_kv_pool_allocator,
1133
            self.tree_cache,
1134
            self.model_config,
1135
            self.enable_overlap,
1136
            self.spec_algorithm,
1137
            self.server_args.enable_custom_logit_processor,
1138
        )
1139
        new_batch.prepare_for_extend()
1140

Lianmin Zheng's avatar
Lianmin Zheng committed
1141
        # Mixed-style chunked prefill
1142
1143
        if (
            self.is_mixed_chunk
Lianmin Zheng's avatar
Lianmin Zheng committed
1144
            and not self.running_batch.is_empty()
1145
1146
1147
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
1148
1149
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
1150
                self.running_batch.prepare_for_decode()
1151
1152
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1153
1154
1155
            self.running_batch = ScheduleBatch(
                reqs=[], batch_is_full=self.running_batch.batch_is_full
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1156
1157
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1158
1159
1160

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
1161
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
1162
        """Update the current running decoding batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1163
        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1164

1165
1166
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1167
1168
            batch.batch_is_full = False
            return batch
1169

Lianmin Zheng's avatar
Lianmin Zheng committed
1170
        # Check if decode out of memory
1171
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
1172
            TEST_RETRACT and batch.batch_size() > 10
1173
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1174
1175
            old_ratio = self.new_token_ratio

1176
            retracted_reqs, new_token_ratio = batch.retract_decode(self.server_args)
Lianmin Zheng's avatar
Lianmin Zheng committed
1177
            self.new_token_ratio = new_token_ratio
1178

Lianmin Zheng's avatar
Lianmin Zheng committed
1179
1180
1181
1182
1183
            logger.info(
                "Decode out of memory happened. "
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
1184
            self._extend_requests_to_queue(retracted_reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1185
1186
        else:
            self.new_token_ratio = max(
1187
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
1188
1189
1190
                self.min_new_token_ratio,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1191
        if batch.batch_size() < initial_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1192
            batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1193
1194

        # Update batch tensors
1195
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1196
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1197

1198
1199
1200
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
1201
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1202
1203
        self.forward_ct += 1

1204
1205
1206
1207
1208
1209
1210
        # Check profiler
        if (
            self.profiler_target_forward_ct
            and self.profiler_target_forward_ct <= self.forward_ct
        ):
            self.stop_profile()

1211
        # Run forward
1212
        if self.is_generation:
1213
1214
1215
1216
1217
            if self.spec_algorithm.is_none():
                model_worker_batch = batch.get_model_worker_batch()
                logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
                    model_worker_batch
                )
1218
                bid = model_worker_batch.bid
Lianmin Zheng's avatar
Lianmin Zheng committed
1219
            else:
1220
1221
1222
                (
                    logits_output,
                    next_token_ids,
1223
                    bid,
1224
1225
1226
1227
1228
1229
1230
                    num_accepted_tokens,
                ) = self.draft_worker.forward_batch_speculative_generation(batch)
                self.spec_num_total_accepted_tokens += (
                    num_accepted_tokens + batch.batch_size()
                )
                self.spec_num_total_forward_ct += batch.batch_size()
                self.num_generated_tokens += num_accepted_tokens
1231
            batch.output_ids = next_token_ids
1232

1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
            # These 2 values are needed for processing the output, but the values can be
            # modified by overlap schedule. So we have to copy them here so that
            # we can use the correct values in output processing.
            if batch.return_logprob:
                extend_input_len_per_req = [req.extend_input_len for req in batch.reqs]
                extend_logprob_start_len_per_req = [
                    req.extend_logprob_start_len for req in batch.reqs
                ]
            else:
                extend_input_len_per_req = None
                extend_logprob_start_len_per_req = None

1245
1246
1247
            ret = GenerationBatchResult(
                logits_output=logits_output,
                next_token_ids=next_token_ids,
1248
1249
                extend_input_len_per_req=extend_input_len_per_req,
                extend_logprob_start_len_per_req=extend_logprob_start_len_per_req,
1250
                bid=bid,
1251
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1252
1253
1254
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
1255
1256
1257
            ret = EmbeddingBatchResult(
                embeddings=embeddings, bid=model_worker_batch.bid
            )
1258
        return ret
Chayenne's avatar
Chayenne committed
1259

1260
1261
1262
1263
1264
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1265
1266
        if batch.forward_mode.is_decode():
            self.process_batch_result_decode(batch, result)
1267
        elif batch.forward_mode.is_extend():
Lianmin Zheng's avatar
Lianmin Zheng committed
1268
            self.process_batch_result_prefill(batch, result)
1269
1270
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
1271
                self.tp_worker.resolve_batch_result(result.bid)
1272
1273
1274
1275
                if batch.next_batch_sampling_info:
                    batch.next_batch_sampling_info.update_regex_vocab_mask()
                    self.current_stream.synchronize()
                    batch.next_batch_sampling_info.sampling_info_done.set()
1276
1277
        elif batch.forward_mode.is_dummy_first():
            batch.next_batch_sampling_info.update_regex_vocab_mask()
1278
            self.current_stream.synchronize()
1279
            batch.next_batch_sampling_info.sampling_info_done.set()
Lianmin Zheng's avatar
Lianmin Zheng committed
1280

1281
1282
1283
1284
1285
1286
1287
        if self.return_health_check_ct:
            # Return some signal for the health check.
            # This is used to prevent the health check signal being blocked by long context prefill.
            # However, one minor issue is that this code path does not check the status of detokenizer manager.
            self.return_health_check_ct -= 1
            self.send_to_tokenizer.send_pyobj(HealthCheckOutput())

1288
1289
1290
1291
    def prepare_dp_attn_batch(self, local_batch: ScheduleBatch):
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
1292
            global_num_tokens_for_logprob = 0
1293
1294
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1295
1296
1297
            if not self.spec_algorithm.is_none() and self.spec_algorithm.is_eagle():
                num_tokens = num_tokens * self.server_args.speculative_num_draft_tokens
            global_num_tokens_for_logprob = num_tokens
1298
1299
        else:
            num_tokens = local_batch.extend_num_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
            global_num_tokens_for_logprob = sum(
                [
                    # We should have at least 1 token for sample in every case.
                    max(extend_len - logprob_start_len, 1)
                    for logprob_start_len, extend_len in zip(
                        local_batch.extend_logprob_start_lens, local_batch.extend_lens
                    )
                ]
            )

        if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
            can_cuda_graph = 1
        else:
            can_cuda_graph = 0

        if not self.spec_algorithm.is_none():
            # TODO(sang): Support cuda graph when idle batch is there.
            if local_batch is None or local_batch.forward_mode.is_idle():
                can_cuda_graph = 0
1319

Lianmin Zheng's avatar
Lianmin Zheng committed
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
        is_extend_in_batch = (
            local_batch.forward_mode.is_extend() if local_batch else False
        )
        local_info = torch.tensor(
            [
                num_tokens,
                can_cuda_graph,
                global_num_tokens_for_logprob,
                is_extend_in_batch,
            ],
            dtype=torch.int64,
        )
        global_info = torch.empty(
            (self.server_args.dp_size, self.attn_tp_size, 4),
            dtype=torch.int64,
        )
1336
        torch.distributed.all_gather_into_tensor(
Lianmin Zheng's avatar
Lianmin Zheng committed
1337
1338
            global_info.flatten(),
            local_info,
1339
1340
            group=self.tp_cpu_group,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1341
1342
1343
1344
        global_num_tokens = global_info[:, 0, 0].tolist()
        can_cuda_graph = min(global_info[:, 0, 1].tolist())
        global_num_tokens_for_logprob = global_info[:, 0, 2].tolist()
        is_extend_in_batch = global_info[:, 0, 3].tolist()
1345

Lianmin Zheng's avatar
Lianmin Zheng committed
1346
        if local_batch is None and max(global_num_tokens) > 0:
1347
1348
1349
            local_batch = self.get_idle_batch()

        if local_batch is not None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1350
1351
            local_batch.global_num_tokens = global_num_tokens
            local_batch.global_num_tokens_for_logprob = global_num_tokens_for_logprob
1352
1353
1354

            # Check forward mode for cuda graph
            if not self.server_args.disable_cuda_graph:
Lianmin Zheng's avatar
Lianmin Zheng committed
1355
                local_batch.can_run_dp_cuda_graph = can_cuda_graph
1356

Lianmin Zheng's avatar
Lianmin Zheng committed
1357
        return local_batch, any(is_extend_in_batch)
1358
1359
1360
1361
1362

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
1363
            self.token_to_kv_pool_allocator,
1364
1365
1366
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
1367
            self.spec_algorithm,
1368
            self.server_args.enable_custom_logit_processor,
1369
1370
1371
1372
        )
        idle_batch.prepare_for_idle()
        return idle_batch

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
        num_ready_reqs = 0
        for req in self.grammar_queue:
            try:
                req.grammar = req.grammar.result(timeout=0.05)
                num_ready_reqs += 1
            except futures._base.TimeoutError:
                break

1383
        if self.server_args.enable_dp_attention:
1384
1385
            tp_size = self.attn_tp_size
            tp_group = self.attn_tp_cpu_group
1386
        else:
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
            tp_size = self.tp_size
            tp_group = self.tp_cpu_group

        if tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
            tensor = torch.tensor(num_ready_reqs, dtype=torch.int32)
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=tp_group
            )
            num_ready_reqs_max = tensor.item()
            for i in range(num_ready_reqs, num_ready_reqs_max):
                self.grammar_queue[i].grammar = self.grammar_queue[i].grammar.result()
            num_ready_reqs = num_ready_reqs_max
1400

1401
        self._extend_requests_to_queue(self.grammar_queue[:num_ready_reqs])
1402
1403
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
    def watchdog_thread(self):
        """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
        self.watchdog_last_forward_ct = 0
        self.watchdog_last_time = time.time()

        while True:
            current = time.time()
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
                    if current > self.watchdog_last_time + self.watchdog_timeout:
                        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)

        # Print batch size and memory pool info to check whether there are de-sync issues.
        logger.error(
            f"{self.cur_batch.batch_size()=}, "
            f"{self.cur_batch.reqs=}, "
            f"{self.token_to_kv_pool_allocator.available_size()=}, "
            f"{self.tree_cache.evictable_size()=}, "
        )
        # Wait for some time so that the parent process can print the error.
        pyspy_dump_schedulers()
        print(file=sys.stderr, flush=True)
        print(file=sys.stdout, flush=True)
        time.sleep(5)
        self.parent_process.send_signal(signal.SIGQUIT)

1435
1436
1437
    def flush_cache_wrapped(self, recv_req: FlushCacheReq):
        self.flush_cache()

1438
    def flush_cache(self):
1439
        """Flush the memory pool and cache."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1440
        if len(self.waiting_queue) == 0 and self.running_batch.is_empty():
1441
1442
            self.cur_batch = None
            self.last_batch = None
1443
            self.tree_cache.reset()
1444
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
1445
                self.grammar_backend.reset()
1446
            self.req_to_token_pool.clear()
1447
            self.token_to_kv_pool_allocator.clear()
1448
1449
1450

            if not self.spec_algorithm.is_none():
                self.draft_worker.model_runner.req_to_token_pool.clear()
1451
                self.draft_worker.model_runner.token_to_kv_pool_allocator.clear()
1452
1453
1454
1455
1456

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
1457
1458
            self.cum_spec_accept_length = 0
            self.cum_spec_accept_count = 0
1459
1460
1461
1462
1463
1464
1465
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
1466
                f"#running-req: {len(self.running_batch.reqs)}"
1467
1468
1469
1470
            )
            if_success = False
        return if_success

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
    def get_internal_state(self, recv_req: GetInternalStateReq):
        ret = dict(global_server_args_dict)
        ret["last_gen_throughput"] = self.last_gen_throughput
        if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
            ret["avg_spec_accept_length"] = (
                self.cum_spec_accept_length / self.cum_spec_accept_count
            )

        if RECORD_STEP_TIME:
            ret["step_time_dict"] = self.step_time_dict
        return GetInternalStateReqOutput(
            internal_state=ret,
        )

    def set_internal_state(self, recv_req: SetInternalStateReq):
        server_args_dict = recv_req.server_args
        args_allow_update = set(
            [
                "speculative_accept_threshold_single",
                "speculative_accept_threshold_acc",
            ]
        )
        if_success = True
        for k, v in server_args_dict.items():
            if k not in args_allow_update:
                logging.warning(f"Updating {k} is not supported.")
                if_success = False
                break
        if if_success:
            if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
                avg_spec_accept_length = (
                    self.cum_spec_accept_length / self.cum_spec_accept_count
                )
                logger.info(f"{avg_spec_accept_length=}")
            self.cum_spec_accept_length = self.cum_spec_accept_count = 0
            for k, v in server_args_dict.items():
                global_server_args_dict[k] = v
            logger.info(f"Global server args updated! " f"{global_server_args_dict=}")
        return SetInternalStateReqOutput(
            updated=True,
            server_args=global_server_args_dict,
        )

1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
    def handle_rpc_request(self, recv_req: RpcReqInput):
        # Handle RPC requests
        logger.info(
            f"handle_rpc_request: {recv_req.method}, param: {recv_req.parameters}"
        )

        success = True
        exec = None
        try:
            func = getattr(self, recv_req.method)
            func(recv_req.parameters)
        except Exception as e:
            success = False
            exec = e
            logger.error(f"Failed to call rpc {recv_req.method}: {str(e)}")

        barrier()
        return RpcReqOutput(success, "" if not exec else str(exec))

    def save_remote_model(self, params):
        url = params["url"]

        if isinstance(self.tp_worker, TpModelWorkerClient):
            worker = self.tp_worker.worker
        else:
            worker = self.tp_worker

        worker.model_runner.save_remote_model(url)

    def save_sharded_model(self, params):
        if isinstance(self.tp_worker, TpModelWorkerClient):
            worker = self.tp_worker.worker
        else:
            worker = self.tp_worker

        worker.model_runner.save_sharded_model(
            path=params["path"],
            pattern=params["pattern"],
            max_size=params["max_size"],
        )

1555
1556
    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
Lianmin Zheng's avatar
Lianmin Zheng committed
1557
        to_del = []
1558
        for i, req in enumerate(self.waiting_queue):
Lianmin Zheng's avatar
Lianmin Zheng committed
1559
1560
            if req.rid.startswith(recv_req.rid):
                to_del.append(i)
1561
1562
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1563
1564
1565
        # Sort in reverse order to avoid index issues when deleting
        for i in sorted(to_del, reverse=True):
            req = self.waiting_queue.pop(i)
1566
1567
            logger.debug(f"Abort queued request. {req.rid=}")
            return
1568
1569

        # Delete requests in the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1570
1571
1572
1573
1574
        for req in self.running_batch.reqs:
            if req.rid.startswith(recv_req.rid) and not req.finished():
                logger.debug(f"Abort running request. {req.rid=}")
                req.to_abort = True
                return
1575

1576
1577
1578
    def _pause_engine(self) -> Tuple[List[Req], int]:
        raise NotImplementedError()

Chayenne's avatar
Chayenne committed
1579
1580
1581
    def update_weights_from_disk(self, recv_req: UpdateWeightFromDiskReqInput):
        """In-place update of the weights from disk."""
        success, message = self.tp_worker.update_weights_from_disk(recv_req)
1582
1583
1584
1585
1586
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
1587
        return UpdateWeightFromDiskReqOutput(success, message, 0)
1588

1589
1590
1591
    def init_weights_update_group(self, recv_req: InitWeightsUpdateGroupReqInput):
        """Initialize the online model parameter update group."""
        success, message = self.tp_worker.init_weights_update_group(recv_req)
1592
        return InitWeightsUpdateGroupReqOutput(success, message)
1593
1594

    def update_weights_from_distributed(
1595
1596
1597
        self,
        recv_req: UpdateWeightsFromDistributedReqInput,
    ) -> Tuple[bool, str]:
1598
1599
1600
1601
1602
1603
1604
        """Update the online model parameter."""
        success, message = self.tp_worker.update_weights_from_distributed(recv_req)
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
1605
        return UpdateWeightsFromDistributedReqOutput(success, message)
1606

1607
1608
1609
1610
1611
    def update_weights_from_tensor(self, recv_req: UpdateWeightsFromTensorReqInput):
        """Update the online model parameter from tensors."""
        success, message = self.tp_worker.update_weights_from_tensor(recv_req)
        # TODO extract common code b/t update_weights_from_distributed and update_weights_from_tensor later
        if success:
1612
1613
1614
            if recv_req.flush_cache:
                flash_cache_success = self.flush_cache()
                assert flash_cache_success, "Cache flush failed after updating weights"
1615
1616
        else:
            logger.error(message)
1617
        return UpdateWeightsFromTensorReqOutput(success, message)
1618

1619
1620
    def get_weights_by_name(self, recv_req: GetWeightsByNameReqInput):
        parameter = self.tp_worker.get_weights_by_name(recv_req)
1621
        return GetWeightsByNameReqOutput(parameter)
1622

1623
    def release_memory_occupation(self, recv_req: ReleaseMemoryOccupationReqInput):
1624
1625
1626
1627
1628
        self.stashed_model_static_state = _export_static_state(
            self.tp_worker.worker.model_runner.model
        )
        self.memory_saver_adapter.pause()
        self.flush_cache()
1629
        return ReleaseMemoryOccupationReqOutput()
1630

1631
    def resume_memory_occupation(self, recv_req: ResumeMemoryOccupationReqInput):
1632
1633
1634
1635
1636
        self.memory_saver_adapter.resume()
        _import_static_state(
            self.tp_worker.worker.model_runner.model, self.stashed_model_static_state
        )
        del self.stashed_model_static_state
1637
1638
1639
        return ResumeMemoryOccupationReqOutput()

    def profile(self, recv_req: ProfileReq):
1640
1641
1642
1643
        if recv_req.type == ProfileReqType.START_PROFILE:
            return self.start_profile(
                recv_req.output_dir, recv_req.num_steps, recv_req.activities
            )
1644
        else:
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
            return self.stop_profile()

    def start_profile(
        self,
        output_dir: Optional[str],
        num_steps: Optional[int],
        activities: Optional[List[str]],
    ) -> None:
        if self.torch_profiler_activities:
            return ProfileReqOutput(
                success=False,
                message="Profiling is already in progress. Call /stop_profile first.",
            )

        if output_dir is None:
            output_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR", "/tmp")
        if activities is None:
            activities = ["CPU", "GPU"]

        self.torch_profiler_output_dir = output_dir
        self.torch_profiler_activities = activities
        logger.info(
            "Profiling starts. Traces will be saved to: %s",
            self.torch_profiler_output_dir,
        )

        activity_map = {
            "CPU": torch.profiler.ProfilerActivity.CPU,
            "GPU": torch.profiler.ProfilerActivity.CUDA,
        }
        torchprof_activities = [
            activity_map[a] for a in activities if a in activity_map
        ]

        if torchprof_activities:
            self.torch_profiler = torch.profiler.profile(
                activities=torchprof_activities,
                with_stack=True,
            )
            self.torch_profiler.start()

        if "MEM" in activities:
            torch.cuda.memory._record_memory_history(max_entries=100000)
1688

1689
1690
1691
1692
1693
1694
        if num_steps:
            self.profiler_target_forward_ct = self.forward_ct + num_steps
            # The caller will be notified when reaching profiler_target_forward_ct
        else:
            self.profiler_target_forward_ct = None
            return ProfileReqOutput(success=True, message="Succeeded")
1695
1696

    def stop_profile(self) -> None:
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
        if self.torch_profiler_activities is None:
            return

        logger.info("Stop profiling...")
        if self.torch_profiler is not None:
            self.torch_profiler.stop()
            self.torch_profiler.export_chrome_trace(
                os.path.join(
                    self.torch_profiler_output_dir,
                    str(time.time()) + f"-TP-{self.tp_rank}" + ".trace.json.gz",
                )
            )

        if "MEM" in self.torch_profiler_activities:
            memory_profile_path = os.path.join(
                self.torch_profiler_trace_dir,
                str(time.time()) + f"-TP-{self.tp_rank}-memory" + ".pickle",
            )
            torch.cuda.memory._dump_snapshot(memory_profile_path)
            torch.cuda.memory._record_memory_history(enabled=None)

        logger.info(
            "Profiling done. Traces are saved to: %s",
            self.torch_profiler_output_dir,
1721
        )
1722
1723
1724
1725
1726
1727
1728
1729
        self.torch_profiler = None
        self.torch_profiler_output_dir = None
        self.torch_profiler_activities = None

        if self.profiler_target_forward_ct:
            self.send_to_tokenizer.send_pyobj(
                ProfileReqOutput(success=True, message="Succeeded.")
            )
1730

1731
    def open_session(self, recv_req: OpenSessionReqInput):
1732
1733
1734
1735
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
1736
            return OpenSessionReqOutput(session_id, False)
1737
        elif session_id is None:
1738
            logger.warning("session id is None, cannot open.")
1739
            return OpenSessionReqOutput(session_id, False)
1740
1741
1742
1743
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
1744
            return OpenSessionReqOutput(session_id, True)
1745
1746
1747
1748
1749
1750
1751
1752
1753

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

1754

1755
1756
1757
1758
def is_health_check_generate_req(recv_req):
    return getattr(recv_req, "rid", "").startswith("HEALTH_CHECK")


1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
def _export_static_state(model):
    return dict(
        buffers=[
            (name, buffer.detach().clone()) for name, buffer in model.named_buffers()
        ]
    )


def _import_static_state(model, static_params):
    self_named_buffers = dict(model.named_buffers())
    for name, tensor in static_params["buffers"]:
        self_named_buffers[name][...] = tensor


1773
1774
1775
1776
1777
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
1778
    dp_rank: Optional[int],
1779
    pipe_writer,
1780
):
1781
1782
1783
1784
1785
1786
1787

    # Generate the prefix
    if dp_rank is None:
        prefix = f" TP{tp_rank}"
    else:
        prefix = f" DP{dp_rank} TP{tp_rank}"

1788
    # Config the process
1789
    kill_itself_when_parent_died()
1790
    setproctitle.setproctitle(f"sglang::scheduler{prefix.replace(' ', '_')}")
1791
    faulthandler.enable()
1792
    parent_process = psutil.Process().parent()
1793

1794
1795
1796
    # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
1797

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1798
    # Configure the logger
1799
    configure_logger(server_args, prefix=prefix)
1800
    suppress_other_loggers()
1801

1802
    # Set cpu affinity to this gpu process
1803
1804
1805
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, gpu_id)

1806
    # Create a scheduler and run the event loop
1807
    try:
1808
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank, dp_rank)
1809
        pipe_writer.send(
Mick's avatar
Mick committed
1810
1811
1812
1813
1814
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
1815
        )
1816
        if scheduler.enable_overlap:
Lianmin Zheng's avatar
Lianmin Zheng committed
1817
1818
1819
            scheduler.event_loop_overlap()
        else:
            scheduler.event_loop_normal()
1820
    except Exception:
1821
1822
1823
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)