scheduler.py 39.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

"""A scheduler that manages a tensor parallel GPU worker."""

18
import json
19
import logging
20
21
22
23
import os
import time
import warnings
from typing import List, Optional, Union
24

25
import torch
26
27
import zmq

28
29
30
31
32
33
34
35
36
37
38
from sglang.global_config import global_config
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.constrained.fsm_cache import FSMCache
from sglang.srt.constrained.jump_forward import JumpForwardCache
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.managers.io_struct import (
    AbortReq,
    BatchEmbeddingOut,
    BatchTokenIDOut,
    FlushCacheReq,
39
    ProfileReq,
40
41
42
43
44
45
46
47
48
49
50
51
52
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
    TokenizedRewardReqInput,
    UpdateWeightReqInput,
    UpdateWeightReqOutput,
)
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
    BaseFinishReason,
    ImageInputs,
    Req,
    ScheduleBatch,
)
53
54
55
56
57
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
58
from sglang.srt.managers.tp_worker import TpModelWorker
59
60
from sglang.srt.mem_cache.chunk_cache import ChunkCache
from sglang.srt.mem_cache.radix_cache import RadixCache
61
from sglang.srt.server_args import PortArgs, ServerArgs
62
63
64
65
66
67
from sglang.srt.utils import (
    broadcast_pyobj,
    configure_logger,
    is_generation_model,
    is_multimodal_model,
    kill_parent_process,
68
    pytorch_profile,
69
70
71
    set_random_seed,
    suppress_other_loggers,
)
72
73
74
75
from sglang.utils import get_exception_traceback

logger = logging.getLogger(__name__)

76
77
78
# Crash on warning if we are running CI tests
crash_on_warning = os.getenv("SGLANG_IS_IN_CI", "false") == "true"

79
80
81
82
83
84
85
86
87
88
89
90

class Scheduler:
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
    ):
        # Parse args
91
        self.server_args = server_args
92
93
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
94
95
96
97
        self.schedule_policy = server_args.schedule_policy
        self.disable_regex_jump_forward = server_args.disable_regex_jump_forward
        self.lora_paths = server_args.lora_paths
        self.max_loras_per_batch = server_args.max_loras_per_batch
98
99
100
101
102
103

        # Init inter-process communication
        context = zmq.Context(2)

        if self.tp_rank == 0:
            self.recv_from_tokenizer = context.socket(zmq.PULL)
104
            self.recv_from_tokenizer.bind(f"ipc://{port_args.scheduler_input_ipc_name}")
105
106

            self.send_to_detokenizer = context.socket(zmq.PUSH)
107
            self.send_to_detokenizer.connect(f"ipc://{port_args.detokenizer_ipc_name}")
108
        else:
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
            self.recv_from_tokenizer = self.send_to_detokenizer = None

        # Init tokenizer
        self.model_config = ModelConfig(
            server_args.model_path,
            server_args.trust_remote_code,
            context_length=server_args.context_length,
            model_override_args=json.loads(server_args.json_model_override_args),
        )

        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if is_multimodal_model(self.model_config.hf_config.architectures):
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                )
                self.tokenizer = self.processor.tokenizer
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                )
        self.is_generation = is_generation_model(
            self.model_config.hf_config.architectures, self.server_args.is_embedding
        )
138

139
        # Launch a tensor parallel worker
140
        self.tp_worker = TpModelWorker(
141
142
143
            gpu_id=gpu_id,
            tp_rank=tp_rank,
            server_args=server_args,
144
            nccl_port=port_args.nccl_port,
145
        )
146
147
        self.tp_cpu_group = self.tp_worker.model_runner.tp_group.cpu_group

148
        # Get token and memory info from the model worker
149
150
151
152
153
154
155
156
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
            self.max_req_input_len,
            self.random_seed,
        ) = self.tp_worker.get_token_and_memory_info()
        set_random_seed(self.random_seed)
157
158
159
        self.pad_input_ids_func = getattr(
            self.tp_worker.model_runner.model, "pad_input_ids", None
        )
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

        # Print debug info
        logger.info(
            f"max_total_num_tokens={self.max_total_num_tokens}, "
            f"max_prefill_tokens={self.max_prefill_tokens}, "
            f"max_running_requests={self.max_running_requests}, "
            f"context_len={self.model_config.context_len}"
        )

        # Init cache
        self.req_to_token_pool = self.tp_worker.model_runner.req_to_token_pool
        self.token_to_kv_pool = self.tp_worker.model_runner.token_to_kv_pool

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
            self.tree_cache = ChunkCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool=self.token_to_kv_pool,
            )
        else:
            self.tree_cache = RadixCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool=self.token_to_kv_pool,
                disable=server_args.disable_radix_cache,
            )
        self.tree_cache_metrics = {"total": 0, "hit": 0}
188
        self.policy = SchedulePolicy(self.schedule_policy, self.tree_cache)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

        # Init running status
        self.waiting_queue: List[Req] = []
        self.running_batch: ScheduleBatch = None
        self.out_pyobjs = []
        self.decode_forward_ct = 0
        self.stream_interval = server_args.stream_interval
        self.num_generated_tokens = 0
        self.last_stats_tic = time.time()

        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
        self.current_inflight_req = None
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

        # Init the FSM cache for constrained generation
        if not server_args.skip_tokenizer_init:
            self.regex_fsm_cache = FSMCache(
                server_args.tokenizer_path,
                {
                    "tokenizer_mode": server_args.tokenizer_mode,
                    "trust_remote_code": server_args.trust_remote_code,
                },
                skip_tokenizer_init=server_args.skip_tokenizer_init,
                constrained_json_whitespace_pattern=server_args.constrained_json_whitespace_pattern,
            )
        self.jump_forward_cache = JumpForwardCache()

        # Init new token estimation
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
        self.min_new_token_ratio = min(
            global_config.base_min_new_token_ratio
            * server_args.schedule_conservativeness,
            1.0,
        )
        self.new_token_ratio = self.min_new_token_ratio
        self.new_token_ratio_decay = global_config.new_token_ratio_decay
230
        self.batch_is_full = False
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        if os.getenv("SGLANG_TORCH_PROFILER_DIR", "") == "":
            self.profiler = None
        else:
            self.torch_profiler_trace_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR")
            logger.info(
                "Profiling enabled. Traces will be saved to: %s",
                self.torch_profiler_trace_dir,
            )
            self.profiler = torch.profiler.profile(
                activities=[
                    torch.profiler.ProfilerActivity.CPU,
                    torch.profiler.ProfilerActivity.CUDA,
                ],
                with_stack=True,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
248
    @torch.inference_mode()
249
250
    def event_loop(self):
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
251
252
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
253

Lianmin Zheng's avatar
Lianmin Zheng committed
254
            self.run_step()
255

256
            self.send_results()
257

Lianmin Zheng's avatar
Lianmin Zheng committed
258
259
260
261
262
263
264
265
266
267
268
269
    def recv_requests(self):
        if self.tp_rank == 0:
            recv_reqs = []

            while True:
                try:
                    recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
                recv_reqs.append(recv_req)
        else:
            recv_reqs = None
270

271
272
        if self.tp_size != 1:
            recv_reqs = broadcast_pyobj(recv_reqs, self.tp_rank, self.tp_cpu_group)
273
274
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
275
    def process_input_requests(self, recv_reqs: List):
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        for recv_req in recv_reqs:
            if isinstance(recv_req, TokenizedGenerateReqInput):
                self.handle_generate_request(recv_req)
            elif isinstance(
                recv_req, (TokenizedEmbeddingReqInput, TokenizedRewardReqInput)
            ):
                self.handle_embedding_request(recv_req)
            elif isinstance(recv_req, FlushCacheReq):
                self.flush_cache()
            elif isinstance(recv_req, AbortReq):
                self.abort_request(recv_req)
            elif isinstance(recv_req, UpdateWeightReqInput):
                success, message = self.update_weights(recv_req)
                self.out_pyobjs.append(UpdateWeightReqOutput(success, message))
290
291
292
293
294
            elif isinstance(recv_req, ProfileReq):
                if recv_req == ProfileReq.START_PROFILE:
                    self.start_profile()
                else:
                    self.stop_profile()
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
            else:
                raise ValueError(f"Invalid request: {recv_req}")

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
            lora_path=recv_req.lora_path,
        )
        req.tokenizer = self.tokenizer

        # Image inputs
        if recv_req.image_inputs is not None:
            req.image_inputs = ImageInputs.from_dict(
                recv_req.image_inputs, self.model_config.vocab_size
            )
316
            req.origin_input_ids = self.pad_input_ids_func(
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
                req.origin_input_ids_unpadded, req.image_inputs
            )

        req.return_logprob = recv_req.return_logprob
        req.top_logprobs_num = recv_req.top_logprobs_num
        req.stream = recv_req.stream
        req.logprob_start_len = recv_req.logprob_start_len

        if req.logprob_start_len == -1:
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(recv_req.input_ids) - 1

        # Init regex FSM
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
        ):
            if req.sampling_params.json_schema is not None:
                req.regex_fsm, computed_regex_string = self.regex_fsm_cache.query(
                    ("json", req.sampling_params.json_schema)
                )
            elif req.sampling_params.regex is not None:
                req.regex_fsm, computed_regex_string = self.regex_fsm_cache.query(
                    ("regex", req.sampling_params.regex)
                )
            if not self.disable_regex_jump_forward:
                req.jump_forward_map = self.jump_forward_cache.query(
                    computed_regex_string
                )

        # Truncate prompts that are too long
        if len(req.origin_input_ids) >= self.max_req_input_len:
            logger.warning(
                "Request length is longer than the KV cache pool size or "
                "the max context length. Truncated!!!"
            )
            req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len]
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
            self.max_req_input_len - 1 - len(req.origin_input_ids),
        )

        self.waiting_queue.append(req)

    def handle_embedding_request(
        self,
        recv_req: Union[TokenizedEmbeddingReqInput, TokenizedRewardReqInput],
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
        )
        req.tokenizer = self.tokenizer

        # Truncate prompts that are too long
        if len(req.origin_input_ids) >= self.max_req_input_len:
            logger.warning(
                "Request length is longer than the KV cache pool size or "
                "the max context length. Truncated!!!"
            )
            req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len]

        self.waiting_queue.append(req)

387
388
389
390
391
    def send_results(self):
        if self.tp_rank == 0:
            for obj in self.out_pyobjs:
                self.send_to_detokenizer.send_pyobj(obj)
            self.out_pyobjs = []
Lianmin Zheng's avatar
Lianmin Zheng committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

    def print_decode_stats(self):
        num_used = self.max_total_num_tokens - (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        throughput = self.num_generated_tokens / (time.time() - self.last_stats_tic)
        self.num_generated_tokens = 0
        self.last_stats_tic = time.time()
        logger.info(
            f"Decode batch. "
            f"#running-req: {len(self.running_batch.reqs)}, "
            f"#token: {num_used}, "
            f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
            f"gen throughput (token/s): {throughput:.2f}, "
            f"#queue-req: {len(self.waiting_queue)}"
        )

    def check_memory(self):
        available_size = (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        if available_size != self.max_total_num_tokens:
            warnings.warn(
                "Warning: "
                f"available_size={available_size}, max_total_num_tokens={self.max_total_num_tokens}\n"
                "KV cache pool leak detected!"
            )
            exit(1) if crash_on_warning else None

        if len(self.req_to_token_pool.free_slots) != self.req_to_token_pool.size:
            warnings.warn(
                "Warning: "
                f"available req slots={len(self.req_to_token_pool.free_slots)}, "
                f"total slots={self.req_to_token_pool.size}\n"
                "Memory pool leak detected!"
            )
            exit(1) if crash_on_warning else None

430
431
432
433
    def run_step(self):
        new_batch = self.get_new_batch_prefill()
        if new_batch is not None:
            # Run a new prefill batch
434
435
436
437
            # replace run_batch with the uncommented line to use pytorch profiler
            # result = pytorch_profile(
            #     "profile_prefill_step", self.run_batch, new_batch, data_size=len(new_batch.reqs)
            # )
438
439
440
441
442
443
444
445
446
            result = self.run_batch(new_batch)
            self.process_batch_result(new_batch, result)
        else:
            if self.running_batch is not None:
                # Run a few decode batches continuously for reducing overhead
                for _ in range(global_config.num_continue_decode_steps):
                    batch = self.get_new_batch_decode()

                    if batch:
447
448
449
450
451
452
453
                        # replace run_batch with the uncommented line to use pytorch profiler
                        # result = pytorch_profile(
                        #     "profile_decode_step",
                        #     self.run_batch,
                        #     batch,
                        #     data_size=len(batch.reqs),
                        # )
454
455
456
                        result = self.run_batch(batch)
                        self.process_batch_result(batch, result)

457
458
459
                    if self.running_batch.is_empty():
                        self.running_batch = None

460
461
462
463
464
465
466
467
468
                    if self.running_batch is None:
                        break

                    if self.out_pyobjs and self.running_batch.has_stream:
                        break
            else:
                self.check_memory()
                self.new_token_ratio = global_config.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
469
470
471
472
473
474
475
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
        # Handle the cases where prefill is not allowed
        if (
            self.batch_is_full or len(self.waiting_queue) == 0
        ) and self.current_inflight_req is None:
            return None

476
477
478
479
        running_bs = (
            len(self.running_batch.reqs) if self.running_batch is not None else 0
        )
        if running_bs >= self.max_running_requests:
480
            self.batch_is_full = True
481
482
483
484
485
            return None

        # Get priority queue
        prefix_computed = self.policy.calc_priority(self.waiting_queue)

Lianmin Zheng's avatar
Lianmin Zheng committed
486
        # Prefill policy
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
        num_mixed_running = running_bs if self.is_mixed_chunk else 0
        adder = PrefillAdder(
            self.tree_cache,
            self.running_batch,
            self.new_token_ratio,
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size(),
            self.max_prefill_tokens,
            self.chunked_prefill_size,
            num_mixed_running,
        )

        has_inflight = self.current_inflight_req is not None
        if self.current_inflight_req is not None:
            self.current_inflight_req.init_next_round_input(
                None if prefix_computed else self.tree_cache
            )
            self.current_inflight_req = adder.add_inflight_req(
                self.current_inflight_req
            )

        if self.lora_paths is not None:
            lora_set = (
                set([req.lora_path for req in self.running_batch.reqs])
                if self.running_batch is not None
                else set([])
            )

        for req in self.waiting_queue:
            if (
                self.lora_paths is not None
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
524
                self.batch_is_full = True
525
526
                break

527
            if running_bs + len(adder.can_run_list) >= self.max_running_requests:
528
                self.batch_is_full = True
529
                break
530

531
532
            req.init_next_round_input(None if prefix_computed else self.tree_cache)
            res = adder.add_one_req(req)
533
534
535
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
                    self.batch_is_full = True
536
537
538
539
540
541
542
543
544
545
546
                break

        can_run_list = adder.can_run_list

        if adder.new_inflight_req is not None:
            assert self.current_inflight_req is None
            self.current_inflight_req = adder.new_inflight_req

        if len(can_run_list) == 0:
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
547
548
        self.waiting_queue = [x for x in self.waiting_queue if x not in can_run_list]

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
        # Print stats
        if self.tp_rank == 0:
            if isinstance(self.tree_cache, RadixCache):
                self.tree_cache_metrics["total"] += (
                    adder.log_input_tokens + adder.log_hit_tokens
                ) / 10**9
                self.tree_cache_metrics["hit"] += (adder.log_hit_tokens) / 10**9
                tree_cache_hit_rate = (
                    self.tree_cache_metrics["hit"] / self.tree_cache_metrics["total"]
                )
            else:
                tree_cache_hit_rate = 0.0

            num_used = self.max_total_num_tokens - (
                self.token_to_kv_pool.available_size()
                + self.tree_cache.evictable_size()
            )

            if num_mixed_running > 0:
                logger.info(
                    f"Prefill batch"
                    f"(mixed #running-req: {num_mixed_running}). "
                    f"#new-seq: {len(can_run_list)}, "
                    f"#new-token: {adder.log_input_tokens}, "
                    f"#cached-token: {adder.log_hit_tokens}, "
                    f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, "
                    f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
576
                    f"#queue-req: {len(self.waiting_queue) + has_inflight}"
577
578
579
580
581
582
583
584
585
586
                )
            else:
                logger.info(
                    f"Prefill batch. "
                    f"#new-seq: {len(can_run_list)}, "
                    f"#new-token: {adder.log_input_tokens}, "
                    f"#cached-token: {adder.log_hit_tokens}, "
                    f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, "
                    f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
                    f"#running-req: {running_bs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
587
                    f"#queue-req: {len(self.waiting_queue) + has_inflight}"
588
589
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
590
        # Create a new batch
591
592
593
594
595
596
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
            self.token_to_kv_pool,
            self.tree_cache,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
597
        new_batch.prepare_for_extend(self.model_config.vocab_size)
598

Lianmin Zheng's avatar
Lianmin Zheng committed
599
        # Mixed-style chunked prefill
600
601
602
        decoding_reqs = []
        if self.is_mixed_chunk and self.running_batch is not None:
            self.running_batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
603
            new_batch.mix_with_running(self.running_batch)
604
605
            decoding_reqs = self.running_batch.reqs
            self.running_batch = None
Lianmin Zheng's avatar
Lianmin Zheng committed
606
607
608
609
610
611
612
613
614
615
616
617
618
        new_batch.decoding_reqs = decoding_reqs

        return new_batch

    def get_new_batch_decode(self) -> Optional[ScheduleBatch]:
        batch = self.running_batch

        # Check if decode out of memory
        if not batch.check_decode_mem():
            old_ratio = self.new_token_ratio

            retracted_reqs, new_token_ratio = batch.retract_decode()
            self.new_token_ratio = new_token_ratio
619

Lianmin Zheng's avatar
Lianmin Zheng committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
            logger.info(
                "Decode out of memory happened. "
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
            self.waiting_queue.extend(retracted_reqs)
        else:
            self.new_token_ratio = max(
                self.new_token_ratio - self.new_token_ratio_decay,
                self.min_new_token_ratio,
            )

        # Check for jump-forward
        if not self.disable_regex_jump_forward:
            jump_forward_reqs = batch.check_for_jump_forward(self.pad_input_ids_func)
            self.waiting_queue.extend(jump_forward_reqs)
636
637
            if jump_forward_reqs:
                self.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
638
639
640
641
642
643
644
645
            if batch.is_empty():
                return None

        # Update batch tensors
        batch.prepare_for_decode()
        return batch

    def run_batch(self, batch: ScheduleBatch):
646
        if self.is_generation:
Lianmin Zheng's avatar
Lianmin Zheng committed
647
            if batch.forward_mode.is_decode() or batch.extend_num_tokens != 0:
648
                model_worker_batch = batch.get_model_worker_batch()
649
                logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
650
                    model_worker_batch
651
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
652
653
654
            else:
                logits_output = None
                if self.tokenizer is not None:
655
656
657
                    next_token_ids = torch.full(
                        (batch.batch_size(),), self.tokenizer.eos_token_id
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
658
                else:
659
                    next_token_ids = torch.full((batch.batch_size(),), 0)
Lianmin Zheng's avatar
Lianmin Zheng committed
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
            return logits_output, next_token_ids
        else:  # embedding or reward model
            assert batch.extend_num_tokens != 0
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
            return embeddings

    def process_batch_result(self, batch: ScheduleBatch, result):
        if batch.forward_mode.is_decode():
            self.process_batch_result_decode(batch, result)
        else:
            self.process_batch_result_prefill(batch, result)

    def process_batch_result_prefill(self, batch: ScheduleBatch, result):
        if self.is_generation:
            logits_output, next_token_ids = result
676
677
678
679
            if batch.sampling_info.penalizer_orchestrator:
                batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
                    next_token_ids
                )
680

Lianmin Zheng's avatar
Lianmin Zheng committed
681
            if logits_output:
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
                # Move logprobs to cpu
                if logits_output.next_token_logprobs is not None:
                    logits_output.next_token_logprobs = (
                        logits_output.next_token_logprobs[
                            torch.arange(
                                len(next_token_ids), device=next_token_ids.device
                            ),
                            next_token_ids,
                        ].tolist()
                    )
                    logits_output.input_token_logprobs = (
                        logits_output.input_token_logprobs.tolist()
                    )
                    logits_output.normalized_prompt_logprobs = (
                        logits_output.normalized_prompt_logprobs.tolist()
                    )

Lianmin Zheng's avatar
Lianmin Zheng committed
699
            next_token_ids = next_token_ids.tolist()
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

            # Check finish conditions
            logprob_pt = 0
            for i, req in enumerate(batch.reqs):
                if req is not self.current_inflight_req:
                    # Inflight reqs' prefill is not finished
                    req.completion_tokens_wo_jump_forward += 1
                    req.output_ids.append(next_token_ids[i])
                    req.check_finished()

                if req.regex_fsm is not None:
                    req.regex_fsm_state = req.regex_fsm.get_next_state(
                        req.regex_fsm_state, next_token_ids[i]
                    )

                if req.finished():
                    self.tree_cache.cache_finished_req(req)
Lianmin Zheng's avatar
Lianmin Zheng committed
717
                elif req not in batch.decoding_reqs:
718
719
720
721
722
723
724
725
726
727
728
                    # To reduce overhead, only cache prefill reqs
                    self.tree_cache.cache_unfinished_req(req)

                if req is self.current_inflight_req:
                    # Inflight request would get a new req idx
                    self.req_to_token_pool.free(req.req_pool_idx)

                if req.return_logprob:
                    logprob_pt += self.add_logprob_return_values(
                        i, req, logprob_pt, next_token_ids, logits_output
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
729
        else:  # embedding or reward model
730
            assert batch.extend_num_tokens != 0
Lianmin Zheng's avatar
Lianmin Zheng committed
731
            embeddings = result
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

            # Check finish conditions
            for i, req in enumerate(batch.reqs):
                req.embedding = embeddings[i]
                if req is not self.current_inflight_req:
                    # Inflight reqs' prefill is not finished
                    # dummy output token for embedding models
                    req.output_ids.append(0)
                    req.check_finished()

                if req.finished():
                    self.tree_cache.cache_finished_req(req)
                else:
                    self.tree_cache.cache_unfinished_req(req)

                if req is self.current_inflight_req:
                    # Inflight request would get a new req idx
                    self.req_to_token_pool.free(req.req_pool_idx)

        self.handle_finished_requests(batch)

753
754
755
756
757
758
        if not batch.is_empty():
            if self.running_batch is None:
                self.running_batch = batch
            else:
                self.running_batch.merge_batch(batch)

Lianmin Zheng's avatar
Lianmin Zheng committed
759
760
    def process_batch_result_decode(self, batch: ScheduleBatch, result):
        logits_output, next_token_ids = result
761
762
763
764
        if batch.sampling_info.penalizer_orchestrator:
            batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
                next_token_ids
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
        self.num_generated_tokens += len(batch.reqs)

        # Move logprobs to cpu
        if logits_output.next_token_logprobs is not None:
            next_token_logprobs = logits_output.next_token_logprobs[
                torch.arange(len(next_token_ids), device=next_token_ids.device),
                next_token_ids,
            ].tolist()

        next_token_ids = next_token_ids.tolist()

        # Check finish condition
        for i, (req, next_token_id) in enumerate(zip(batch.reqs, next_token_ids)):
            req.completion_tokens_wo_jump_forward += 1
            req.output_ids.append(next_token_id)
            req.check_finished()

            if req.regex_fsm is not None:
                req.regex_fsm_state = req.regex_fsm.get_next_state(
                    req.regex_fsm_state, next_token_id
                )

            if req.finished():
                self.tree_cache.cache_finished_req(req)

            if req.return_logprob:
                req.output_token_logprobs.append(
                    (next_token_logprobs[i], next_token_id)
                )
                if req.top_logprobs_num > 0:
                    req.output_top_logprobs.append(logits_output.output_top_logprobs[i])

        self.handle_finished_requests(batch)

799
800
801
802
        self.decode_forward_ct = (self.decode_forward_ct + 1) % (1 << 30)
        if self.tp_rank == 0 and self.decode_forward_ct % 40 == 0:
            self.print_decode_stats()

803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
    def add_logprob_return_values(
        self,
        i: int,
        req: Req,
        pt: int,
        next_token_ids: List[int],
        output: LogitsProcessorOutput,
    ):
        """Attach logprobs to the return values."""
        req.output_token_logprobs.append(
            (output.next_token_logprobs[i], next_token_ids[i])
        )

        # If logprob_start_len > 0, then first logprob_start_len prompt tokens will be ignored.
        num_input_logprobs = req.extend_input_len - req.extend_logprob_start_len

        if req.normalized_prompt_logprob is None:
            req.normalized_prompt_logprob = output.normalized_prompt_logprobs[i]

        if req.input_token_logprobs is None:
            input_token_logprobs = output.input_token_logprobs[
                pt : pt + num_input_logprobs - 1 - req.last_update_decode_tokens
            ]
            input_token_ids = req.fill_ids[
                len(req.fill_ids)
                - num_input_logprobs
                + 1 : len(req.fill_ids)
                - req.last_update_decode_tokens
            ]
            req.input_token_logprobs = list(zip(input_token_logprobs, input_token_ids))

            if (
                req.logprob_start_len == 0
            ):  # The first token does not have logprob, pad it.
                req.input_token_logprobs = [
                    (None, req.fill_ids[0])
                ] + req.input_token_logprobs

        if req.last_update_decode_tokens != 0:
            # Some decode tokens are re-computed in an extend batch
            req.output_token_logprobs.extend(
                list(
                    zip(
                        output.input_token_logprobs[
                            pt
                            + num_input_logprobs
                            - 1
                            - req.last_update_decode_tokens : pt
                            + num_input_logprobs
                            - 1
                        ],
                        req.fill_ids[
                            len(req.fill_ids)
                            - req.last_update_decode_tokens : len(req.fill_ids)
                        ],
                    )
                )
            )

        if req.top_logprobs_num > 0:
            if req.input_top_logprobs is None:
                req.input_top_logprobs = output.input_top_logprobs[i]
                if req.logprob_start_len == 0:
                    req.input_top_logprobs = [None] + req.input_top_logprobs

            if req.last_update_decode_tokens != 0:
                req.output_top_logprobs.extend(
                    output.input_top_logprobs[i][-req.last_update_decode_tokens :]
                )
            req.output_top_logprobs.append(output.output_top_logprobs[i])

        return num_input_logprobs

    def handle_finished_requests(self, batch: ScheduleBatch):
        output_rids = []
        output_meta_info = []
        output_finished_reason: List[BaseFinishReason] = []
        if self.is_generation:
            output_vids = []
            decoded_texts = []
            output_read_ids = []
            output_read_offsets = []
            output_skip_special_tokens = []
            output_spaces_between_special_tokens = []
Lianmin Zheng's avatar
Lianmin Zheng committed
887
        else:  # embedding or reward model
888
889
890
891
892
893
            output_embeddings = []
        unfinished_indices = []

        for i, req in enumerate(batch.reqs):
            if not req.finished() and req is not self.current_inflight_req:
                unfinished_indices.append(i)
894
895
            else:
                self.batch_is_full = False
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

            if req.finished() or (
                req.stream
                and (
                    self.decode_forward_ct % self.stream_interval == 0
                    or len(req.output_ids) == 1
                )
            ):
                output_rids.append(req.rid)
                output_finished_reason.append(req.finished_reason)
                if self.is_generation:
                    output_vids.append(req.vid)
                    decoded_texts.append(req.decoded_text)
                    read_ids, read_offset = req.init_incremental_detokenize()
                    output_read_ids.append(read_ids)
                    output_read_offsets.append(read_offset)
                    output_skip_special_tokens.append(
                        req.sampling_params.skip_special_tokens
                    )
                    output_spaces_between_special_tokens.append(
                        req.sampling_params.spaces_between_special_tokens
                    )

                    meta_info = {
                        "prompt_tokens": len(req.origin_input_ids),
                        "completion_tokens": len(req.output_ids),
                        "completion_tokens_wo_jump_forward": req.completion_tokens_wo_jump_forward,
                        "finish_reason": (
                            req.finished_reason.to_json()
                            if req.finished_reason is not None
                            else None
                        ),
                    }
                    if req.return_logprob:
                        (
                            meta_info["input_token_logprobs"],
                            meta_info["output_token_logprobs"],
                            meta_info["input_top_logprobs"],
                            meta_info["output_top_logprobs"],
                            meta_info["normalized_prompt_logprob"],
                        ) = (
                            req.input_token_logprobs,
                            req.output_token_logprobs,
                            req.input_top_logprobs,
                            req.output_top_logprobs,
                            req.normalized_prompt_logprob,
                        )
                    output_meta_info.append(meta_info)
Lianmin Zheng's avatar
Lianmin Zheng committed
944
                else:  # embedding or reward model
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
                    output_embeddings.append(req.embedding)
                    meta_info = {
                        "prompt_tokens": len(req.origin_input_ids),
                    }
                    output_meta_info.append(meta_info)

        # Send to detokenizer
        if output_rids:
            if self.is_generation:
                self.out_pyobjs.append(
                    BatchTokenIDOut(
                        output_rids,
                        output_vids,
                        decoded_texts,
                        output_read_ids,
                        output_read_offsets,
                        output_skip_special_tokens,
                        output_spaces_between_special_tokens,
                        output_meta_info,
                        output_finished_reason,
                    )
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
967
            else:  # embedding or reward model
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
                self.out_pyobjs.append(
                    BatchEmbeddingOut(
                        output_rids,
                        output_embeddings,
                        output_meta_info,
                        output_finished_reason,
                    )
                )

        # Remove finished reqs: update batch tensors
        batch.filter_batch(unfinished_indices)

    def flush_cache(self):
        if len(self.waiting_queue) == 0 and (
            self.running_batch is None or len(self.running_batch.reqs) == 0
        ):
            self.tree_cache.reset()
            self.tree_cache_metrics = {"total": 0, "hit": 0}
            self.regex_fsm_cache.reset()
            self.req_to_token_pool.clear()
            self.token_to_kv_pool.clear()
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
                f"#running-req: {0 if self.running_batch is None else len(self.running_batch.reqs)}"
            )
            if_success = False
        return if_success

    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
        to_del = None
        for i, req in enumerate(self.waiting_queue):
            if req.rid == recv_req.rid:
                to_del = i
                break

        if to_del is not None:
            del self.waiting_queue[to_del]

        # Delete requests in the running batch
        if self.running_batch:
            for req in self.running_batch.reqs:
                if req.rid == recv_req.rid:
                    req.finished_reason = FINISH_ABORT()
                    break

    def update_weights(self, recv_req: UpdateWeightReqInput):
        success, message = self.tp_worker.update_weights(recv_req)
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
        return success, message

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    def start_profile(self) -> None:
        if self.profiler is None:
            raise RuntimeError("Profiler is not enabled.")
        self.profiler.start()

    def stop_profile(self) -> None:
        if self.profiler is None:
            raise RuntimeError("Profiler is not enabled.")
        self.profiler.stop()
        self.profiler.export_chrome_trace(
            self.torch_profiler_trace_dir + "/" + str(time.time()) + ".trace.json.gz"
        )
        logger.info("Profiler is done")

1042
1043
1044
1045
1046
1047

def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
1048
    dp_rank: Optional[int],
1049
    pipe_writer,
1050
):
1051
1052
1053
1054
1055
    if dp_rank is None:
        configure_logger(server_args, prefix=f" TP{tp_rank}")
    else:
        configure_logger(server_args, prefix=f" DP{dp_rank} TP{tp_rank}")

1056
    suppress_other_loggers()
1057
1058
1059
1060
1061
1062
1063
1064
1065

    try:
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank)
        pipe_writer.send("ready")
        scheduler.event_loop()
    except Exception:
        msg = get_exception_traceback()
        logger.error(msg)
        kill_parent_process()