scheduler.py 71.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import faulthandler
17
import logging
18
import os
19
import signal
Lianmin Zheng's avatar
Lianmin Zheng committed
20
import threading
21
22
import time
import warnings
Lianmin Zheng's avatar
Lianmin Zheng committed
23
from collections import deque
Lianmin Zheng's avatar
Lianmin Zheng committed
24
from concurrent import futures
25
from dataclasses import dataclass
26
from http import HTTPStatus
27
from types import SimpleNamespace
28
from typing import Dict, List, Optional, Tuple, Union
29

30
import psutil
31
import setproctitle
32
import torch
33
34
import zmq

35
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
36
from sglang.srt.configs.model_config import ModelConfig
37
from sglang.srt.constrained.base_grammar_backend import create_grammar_backend
38
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
39
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
40
41
42
43
44
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.managers.io_struct import (
    AbortReq,
    BatchEmbeddingOut,
    BatchTokenIDOut,
45
    CloseSessionReqInput,
46
    FlushCacheReq,
47
48
    GetWeightsByNameReqInput,
    GetWeightsByNameReqOutput,
49
50
    InitWeightsUpdateGroupReqInput,
    InitWeightsUpdateGroupReqOutput,
51
52
    OpenSessionReqInput,
    OpenSessionReqOutput,
53
    ProfileReq,
54
55
56
57
    ReleaseMemoryOccupationReqInput,
    ReleaseMemoryOccupationReqOutput,
    ResumeMemoryOccupationReqInput,
    ResumeMemoryOccupationReqOutput,
58
59
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
Chayenne's avatar
Chayenne committed
60
61
    UpdateWeightFromDiskReqInput,
    UpdateWeightFromDiskReqOutput,
62
63
    UpdateWeightsFromDistributedReqInput,
    UpdateWeightsFromDistributedReqOutput,
64
65
    UpdateWeightsFromTensorReqInput,
    UpdateWeightsFromTensorReqOutput,
66
67
68
69
70
71
72
)
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
    BaseFinishReason,
    ImageInputs,
    Req,
    ScheduleBatch,
73
    global_server_args_dict,
74
)
75
76
77
78
79
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
80
from sglang.srt.managers.session_controller import Session
81
from sglang.srt.managers.tp_worker import TpModelWorker
82
from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient
83
from sglang.srt.managers.utils import validate_input_length
84
from sglang.srt.mem_cache.chunk_cache import ChunkCache
85
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
86
from sglang.srt.mem_cache.radix_cache import RadixCache
87
from sglang.srt.metrics.collector import SchedulerMetricsCollector, SchedulerStats
88
from sglang.srt.model_executor.forward_batch_info import ForwardMode
89
from sglang.srt.server_args import PortArgs, ServerArgs
90
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
91
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
92
93
94
from sglang.srt.utils import (
    broadcast_pyobj,
    configure_logger,
95
    crash_on_warnings,
96
    get_bool_env_var,
97
    get_zmq_socket,
98
    set_gpu_proc_affinity,
99
100
101
    set_random_seed,
    suppress_other_loggers,
)
102
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
103
104
105

logger = logging.getLogger(__name__)

106
# Test retract decode for debugging purposes
107
test_retract = get_bool_env_var("SGLANG_TEST_RETRACT")
108

109

110
111
112
113
114
115
116
117
118
119
120
121
122
@dataclass
class GenerationBatchResult:
    logits_output: LogitsProcessorOutput
    next_token_ids: List[int]
    bid: int


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor
    bid: int


123
124
125
126
127
128
129
130
131
class Scheduler:
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
132
        dp_rank: Optional[int],
133
134
    ):
        # Parse args
135
        self.server_args = server_args
136
137
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
138
        self.schedule_policy = server_args.schedule_policy
Lianmin Zheng's avatar
Lianmin Zheng committed
139
        self.disable_jump_forward = server_args.disable_jump_forward
140
141
        self.lora_paths = server_args.lora_paths
        self.max_loras_per_batch = server_args.max_loras_per_batch
142
        self.enable_overlap = not server_args.disable_overlap_schedule
143
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
144
        self.enable_metrics = server_args.enable_metrics
145
146
147
148
149
150
151
152
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
        self.decode_mem_cache_buf_multiplier = (
            self.server_args.speculative_num_draft_tokens
            if not self.spec_algorithm.is_none()
            else 1
        )
153
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
154

155
        # Distributed rank info
156
157
158
159
160
161
162
163
164
165
        self.dp_size = server_args.dp_size
        self.attn_tp_rank, self.attn_tp_size, self.dp_rank = (
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

166
167
        # Init inter-process communication
        context = zmq.Context(2)
168
        if self.attn_tp_rank == 0:
169
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
170
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
171
            )
172
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
173
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
174
            )
175

176
            if server_args.skip_tokenizer_init:
177
                # Directly send to the StdOrchestrator
178
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
179
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
180
181
                )
            else:
182
                # Send to the DetokenizerManager
183
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
184
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
185
                )
186
        else:
187
            self.recv_from_tokenizer = None
188
189
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
190
191
192
193

        # Init tokenizer
        self.model_config = ModelConfig(
            server_args.model_path,
194
            trust_remote_code=server_args.trust_remote_code,
195
            revision=server_args.revision,
196
            context_length=server_args.context_length,
197
198
            model_override_args=server_args.json_model_override_args,
            is_embedding=server_args.is_embedding,
199
200
            dtype=server_args.dtype,
            quantization=server_args.quantization,
201
        )
202
        self.is_generation = self.model_config.is_generation
203
204
205
206

        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
207
            if self.model_config.is_multimodal:
208
209
210
211
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
212
                    revision=server_args.revision,
213
214
215
216
217
218
219
                )
                self.tokenizer = self.processor.tokenizer
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
220
                    revision=server_args.revision,
221
                )
222

223
224
225
226
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
227

228
229
230
231
        if self.model_config.is_multimodal:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for multimodal models.")

232
233
        if self.enable_overlap:
            self.disable_jump_forward = True
234

235
        # Launch a tensor parallel worker
236
        if self.enable_overlap:
237
            TpWorkerClass = TpModelWorkerClient
238
239
        else:
            TpWorkerClass = TpModelWorker
240

241
        self.tp_worker = TpWorkerClass(
242
            server_args=server_args,
243
244
            gpu_id=gpu_id,
            tp_rank=tp_rank,
245
            dp_rank=dp_rank,
246
            nccl_port=port_args.nccl_port,
247
        )
248

249
        # Launch a worker for speculative decoding if needed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        else:
            self.draft_worker = None

264
        # Get token and memory info from the model worker
265
266
267
268
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
269
            self.max_req_len,
270
271
            self.max_req_input_len,
            self.random_seed,
272
            self.device,
273
274
275
276
277
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
278
        self.tp_cpu_group = self.tp_worker.get_tp_cpu_group()
279
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
280
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
281
        global_server_args_dict.update(worker_global_server_args_dict)
282
283
284
285
        set_random_seed(self.random_seed)
        # Print debug info
        logger.info(
            f"max_total_num_tokens={self.max_total_num_tokens}, "
286
            f"chunked_prefill_size={server_args.chunked_prefill_size}, "
287
288
289
290
291
            f"max_prefill_tokens={self.max_prefill_tokens}, "
            f"max_running_requests={self.max_running_requests}, "
            f"context_len={self.model_config.context_len}"
        )

292
293
        # Init memory pool and cache
        self.req_to_token_pool, self.token_to_kv_pool = self.tp_worker.get_memory_pool()
294
295
296
297
298
299
300
301
302
303

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
            self.tree_cache = ChunkCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool=self.token_to_kv_pool,
            )
        else:
304
305
306
307
308
309
310
311
312
313
314
            self.tree_cache = (
                HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool=self.token_to_kv_pool,
                )
                if self.enable_hierarchical_cache
                else RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool=self.token_to_kv_pool,
                    disable=server_args.disable_radix_cache,
                )
315
316
            )
        self.tree_cache_metrics = {"total": 0, "hit": 0}
317
        self.policy = SchedulePolicy(self.schedule_policy, self.tree_cache)
318
319
320

        # Init running status
        self.waiting_queue: List[Req] = []
321
        self.staging_reqs = {}
322
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
323
        self.running_batch: Optional[ScheduleBatch] = None
324
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
325
        self.cur_batch: Optional[ScheduleBatch] = None
326
327
        # The current forward batch
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
328
329
        self.forward_ct = 0
        self.forward_ct_decode = 0
330
        self.num_generated_tokens = 0
331
332
        self.spec_num_total_accepted_tokens = 0
        self.spec_num_total_forward_ct = 0
333
        self.last_decode_stats_tic = time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
334
        self.stream_interval = server_args.stream_interval
335
        self.current_stream = torch.get_device_module(self.device).current_stream()
336
337
        if self.device == "cpu":
            self.current_stream.synchronize = lambda: None  # No-op for CPU
338
339

        # Session info
340
        self.sessions: Dict[str, Session] = {}
341
342
343

        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
344
345
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
346
        self.being_chunked_req = None
347
348
349
350
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
351
        # Init the grammar backend for constrained generation
352
        self.grammar_queue: List[Req] = []
353
        if not server_args.skip_tokenizer_init:
354
355
356
            self.grammar_backend = create_grammar_backend(
                server_args, self.tokenizer, self.model_config.vocab_size
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
357
358
        else:
            self.grammar_backend = None
359
360

        # Init new token estimation
361
362
363
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
364
365
366

        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
367
368
            * server_args.schedule_conservativeness,
            1.0,
369
        )
370
371
372
373
374
375
376
377
378
379
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
380
381
382
        # Tells whether the current running batch is full so that we can skip
        # the check of whether to prefill new requests.
        # This is an optimization to reduce the overhead of the prefill check.
383
        self.batch_is_full = False
384

Lianmin Zheng's avatar
Lianmin Zheng committed
385
386
387
388
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
389
        self.parent_process = psutil.Process().parent()
Lianmin Zheng's avatar
Lianmin Zheng committed
390

391
392
393
394
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )

395
        # Init profiler
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        if os.getenv("SGLANG_TORCH_PROFILER_DIR", "") == "":
            self.profiler = None
        else:
            self.torch_profiler_trace_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR")
            logger.info(
                "Profiling enabled. Traces will be saved to: %s",
                self.torch_profiler_trace_dir,
            )
            self.profiler = torch.profiler.profile(
                activities=[
                    torch.profiler.ProfilerActivity.CPU,
                    torch.profiler.ProfilerActivity.CUDA,
                ],
                with_stack=True,
            )
411

412
        # Init metrics stats
413
414
415
416
417
418
419
420
        self.stats = SchedulerStats()
        if self.enable_metrics:
            self.metrics_collector = SchedulerMetricsCollector(
                labels={
                    "model_name": self.server_args.served_model_name,
                    # TODO: Add lora name/path in the future,
                },
            )
421

422
423
424
425
426
        # The largest prefill length of a single request
        self._largest_prefill_len: int = 0
        # The largest context length (prefill + generation) of a single request
        self._largest_prefill_decode_len: int = 0

427
428
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
                (FlushCacheReq, self.flush_cache_wrapped),
                (AbortReq, self.abort_request),
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
                (ProfileReq, self.profile),
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
                (
                    ReleaseMemoryOccupationReqInput,
                    lambda _: self.release_memory_occupation(),
                ),
                (
                    ResumeMemoryOccupationReqInput,
                    lambda _: self.resume_memory_occupation(),
                ),
            ]
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
456
    def watchdog_thread(self):
457
        """A watch dog thread that will try to kill the server itself if one batch takes too long."""
Lianmin Zheng's avatar
Lianmin Zheng committed
458
459
460
461
        self.watchdog_last_forward_ct = 0
        self.watchdog_last_time = time.time()

        while True:
462
            current = time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
463
464
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
465
                    if current > self.watchdog_last_time + self.watchdog_timeout:
Lianmin Zheng's avatar
Lianmin Zheng committed
466
467
468
469
                        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
470
471
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)
472
473
        # Wait sometimes so that the parent process can print the error.
        time.sleep(5)
474
        self.parent_process.send_signal(signal.SIGQUIT)
Lianmin Zheng's avatar
Lianmin Zheng committed
475

476
    @torch.no_grad()
477
    def event_loop_normal(self):
478
        """A normal scheduler loop."""
479
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
480
481
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
482

483
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
484
            self.cur_batch = batch
485
486
487
488

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
489
            else:
490
                # When the server is idle, so self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
491
                self.check_memory()
492
                self.new_token_ratio = self.init_new_token_ratio
493
494

            self.last_batch = batch
495

496
    @torch.no_grad()
Lianmin Zheng's avatar
Lianmin Zheng committed
497
    def event_loop_overlap(self):
498
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
499
        self.result_queue = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
500
501
502
503
504
505
506

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
507

Lianmin Zheng's avatar
Lianmin Zheng committed
508
509
            if batch:
                result = self.run_batch(batch)
510
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
511

512
                if self.last_batch is None:
513
                    # Create a dummy first batch to start the pipeline for overlap schedule.
514
515
516
517
518
519
520
521
                    # It is now used for triggering the sampling_info_done event.
                    tmp_batch = ScheduleBatch(
                        reqs=None,
                        forward_mode=ForwardMode.DUMMY_FIRST,
                        next_batch_sampling_info=self.tp_worker.cur_sampling_info,
                    )
                    self.process_batch_result(tmp_batch, None)

Lianmin Zheng's avatar
Lianmin Zheng committed
522
            if self.last_batch:
523
                # Process the results of the last batch
524
                tmp_batch, tmp_result = self.result_queue.popleft()
525
526
527
                tmp_batch.next_batch_sampling_info = (
                    self.tp_worker.cur_sampling_info if batch else None
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
528
529
                self.process_batch_result(tmp_batch, tmp_result)
            elif batch is None:
530
                # When the server is idle, so self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
531
                self.check_memory()
532
                self.new_token_ratio = self.init_new_token_ratio
Lianmin Zheng's avatar
Lianmin Zheng committed
533
534
535

            self.last_batch = batch

536
537
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
538
        if self.attn_tp_rank == 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
539
540
            recv_reqs = []

541
542
543
544
545
            while True:
                try:
                    recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
546
                recv_reqs.append(recv_req)
Lianmin Zheng's avatar
Lianmin Zheng committed
547
548
        else:
            recv_reqs = None
549

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                attn_tp_rank_0 = self.dp_rank * self.attn_tp_size
                work_reqs = broadcast_pyobj(
                    work_reqs,
                    self.attn_tp_rank,
                    self.attn_tp_cpu_group,
                    src=attn_tp_rank_0,
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
                    control_reqs, self.tp_rank, self.tp_cpu_group
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
584
            recv_reqs = broadcast_pyobj(recv_reqs, self.tp_rank, self.tp_cpu_group)
585
586
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
587
    def process_input_requests(self, recv_reqs: List):
588
        for recv_req in recv_reqs:
589
            output = self._request_dispatcher(recv_req)
590
591
            if output is not None:
                self.send_to_tokenizer.send_pyobj(output)
592
593
594
595
596

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
597
        # Create a new request
598
599
600
601
602
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
603

Rin Intachuen's avatar
Rin Intachuen committed
604
605
606
607
608
609
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

610
611
612
613
614
615
616
617
618
619
620
621
622
            # Handle custom logit processor passed to the request
            custom_logit_processor = recv_req.custom_logit_processor
            if (
                not self.server_args.enable_custom_logit_processor
                and custom_logit_processor is not None
            ):
                logger.warning(
                    "The SGLang server is not configured to enable custom logit processor."
                    "The custom logit processor passed in will be ignored."
                    "Please set --enable-custom-logits-processor to enable this feature."
                )
                custom_logit_processor = None

623
624
625
626
627
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
628
629
630
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
                stream=recv_req.stream,
631
                lora_path=recv_req.lora_path,
Rin Intachuen's avatar
Rin Intachuen committed
632
                input_embeds=recv_req.input_embeds,
633
                custom_logit_processor=custom_logit_processor,
634
                eos_token_ids=self.model_config.hf_eos_token_id,
635
636
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
637

638
639
640
641
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
642
                req.finished_reason = FINISH_ABORT(
643
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
644
645
646
647
                )
                self.waiting_queue.append(req)
                return
        else:
648
649
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
650
            req = session.create_req(recv_req, self.tokenizer)
651
652
653
            if isinstance(req.finished_reason, FINISH_ABORT):
                self.waiting_queue.append(req)
                return
654

655
        # Handle multimodal inputs
656
        if recv_req.image_inputs is not None:
657
658
            image_inputs = ImageInputs.from_dict(recv_req.image_inputs)
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
659
            req.origin_input_ids = self.pad_input_ids_func(
660
                req.origin_input_ids, image_inputs
661
            )
662
            req.extend_image_inputs(image_inputs)
663

664
            if len(req.origin_input_ids) >= self.max_req_input_len:
665
                error_msg = (
666
                    "Multimodal prompt is too long after expanding multimodal tokens. "
667
                    f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
668
                )
669
                logger.error(error_msg)
670
                req.origin_input_ids = [0]
671
                req.image_inputs = None
672
                req.sampling_params.max_new_tokens = 0
673
                req.finished_reason = FINISH_ABORT(
674
                    error_msg, HTTPStatus.BAD_REQUEST, "BadRequestError"
675
                )
676
677
678
                self.waiting_queue.append(req)
                return

679
680
681
682
683
684
685
686
687
        # Validate prompts length
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
            self.waiting_queue.append(req)
            return
688

689
690
691
692
693
694
695
        # Copy more attributes
        if recv_req.logprob_start_len == -1:
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(req.origin_input_ids) - 1
        else:
            req.logprob_start_len = recv_req.logprob_start_len

696
697
698
699
700
701
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
702
            self.max_req_len - len(req.origin_input_ids) - 1,
703
704
        )

705
706
707
708
709
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
710
            or req.sampling_params.ebnf is not None
711
712
713
714
715
716
        ):
            assert self.grammar_backend is not None
            if req.sampling_params.json_schema is not None:
                key = ("json", req.sampling_params.json_schema)
            elif req.sampling_params.regex is not None:
                key = ("regex", req.sampling_params.regex)
717
718
            elif req.sampling_params.ebnf is not None:
                key = ("ebnf", req.sampling_params.ebnf)
719
720
721
722
723
724
725

            req.grammar = self.grammar_backend.get_cached_value(key)
            if not req.grammar:
                req.grammar = self.grammar_backend.get_future_value(key)
                add_to_grammar_queue = True

        if add_to_grammar_queue:
726
727
728
            self.grammar_queue.append(req)
        else:
            self.waiting_queue.append(req)
729
730
731

    def handle_embedding_request(
        self,
732
        recv_req: TokenizedEmbeddingReqInput,
733
734
735
736
737
738
739
740
741
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
        )
        req.tokenizer = self.tokenizer

742
        # Validate prompts length
743
        error_msg = validate_input_length(
744
745
746
747
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
748
749
750
        if error_msg:
            self.waiting_queue.append(req)
            return
751

752
753
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
754
755
        self.waiting_queue.append(req)

756
757
758
759
760
761
762
    def log_prefill_stats(
        self,
        adder: PrefillAdder,
        can_run_list: List[Req],
        running_bs: ScheduleBatch,
        has_being_chunked: bool,
    ):
763
764
765
766
767
768
769
        self.tree_cache_metrics["total"] += (
            adder.log_input_tokens + adder.log_hit_tokens
        ) / 10**9
        self.tree_cache_metrics["hit"] += (adder.log_hit_tokens) / 10**9
        tree_cache_hit_rate = (
            self.tree_cache_metrics["hit"] / self.tree_cache_metrics["total"]
        )
770
771
772
773
774
775
776
777
778
779
780
781
782

        num_used = self.max_total_num_tokens - (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )

        logger.info(
            f"Prefill batch. "
            f"#new-seq: {len(can_run_list)}, "
            f"#new-token: {adder.log_input_tokens}, "
            f"#cached-token: {adder.log_hit_tokens}, "
            f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, "
            f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
            f"#running-req: {running_bs}, "
783
            f"#queue-req: {len(self.waiting_queue) + has_being_chunked}"
784
785
786
787
788
789
        )

        if self.enable_metrics:
            self.stats.num_running_reqs = running_bs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = round(num_used / self.max_total_num_tokens, 2)
790
            self.stats.num_queue_reqs = len(self.waiting_queue) + has_being_chunked
791
792
793
794
            self.stats.cache_hit_rate = tree_cache_hit_rate
            self.metrics_collector.log_stats(self.stats)

    def log_decode_stats(self):
Lianmin Zheng's avatar
Lianmin Zheng committed
795
796
797
        num_used = self.max_total_num_tokens - (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
798
799
800
        gen_throughput = self.num_generated_tokens / (
            time.time() - self.last_decode_stats_tic
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
801
        self.num_generated_tokens = 0
802
        self.last_decode_stats_tic = time.time()
803
        num_running_reqs = len(self.running_batch.reqs) if self.running_batch else 0
Lianmin Zheng's avatar
Lianmin Zheng committed
804

805
806
807
808
809
810
811
812
813
        if self.spec_algorithm.is_none():
            msg = (
                f"Decode batch. "
                f"#running-req: {num_running_reqs}, "
                f"#token: {num_used}, "
                f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
                f"gen throughput (token/s): {gen_throughput:.2f}, "
                f"#queue-req: {len(self.waiting_queue)}"
            )
814
            spec_accept_length = 0
815
        else:
816
            spec_accept_length = (
817
818
819
820
821
822
823
824
                self.spec_num_total_accepted_tokens / self.spec_num_total_forward_ct
            )
            self.spec_num_total_accepted_tokens = self.spec_num_total_forward_ct = 0
            msg = (
                f"Decode batch. "
                f"#running-req: {num_running_reqs}, "
                f"#token: {num_used}, "
                f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
825
                f"accept len: {spec_accept_length:.2f}, "
826
827
828
829
830
                f"gen throughput (token/s): {gen_throughput:.2f}, "
                f"#queue-req: {len(self.waiting_queue)}"
            )

        logger.info(msg)
831
832
833
834
835
836
        if self.enable_metrics:
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = num_used / self.max_total_num_tokens
            self.stats.gen_throughput = gen_throughput
            self.stats.num_queue_reqs = len(self.waiting_queue)
837
            self.stats.spec_accept_length = spec_accept_length
838
839
            self.metrics_collector.log_stats(self.stats)

Lianmin Zheng's avatar
Lianmin Zheng committed
840
841
842
843
    def check_memory(self):
        available_size = (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
844
845
846
847
848
849
850
        protected_size = self.tree_cache.protected_size()
        memory_leak = available_size != (
            self.max_total_num_tokens
            if not self.enable_hierarchical_cache
            else self.max_total_num_tokens - protected_size
        )
        if memory_leak:
851
            msg = (
Lianmin Zheng's avatar
Lianmin Zheng committed
852
                "KV cache pool leak detected!"
853
                f"{available_size=}, {protected_size=}, {self.max_total_num_tokens=}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
854
            )
855
856
857
            warnings.warn(msg)
            if crash_on_warnings():
                raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
858
859

        if len(self.req_to_token_pool.free_slots) != self.req_to_token_pool.size:
860
            msg = (
Lianmin Zheng's avatar
Lianmin Zheng committed
861
                "Memory pool leak detected!"
862
863
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
864
            )
865
866
867
            warnings.warn(msg)
            if crash_on_warnings():
                raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
868

869
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
870
        # Merge the prefill batch into the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
871
        if self.last_batch and self.last_batch.forward_mode.is_extend():
872
            if self.being_chunked_req:
Lianmin Zheng's avatar
Lianmin Zheng committed
873
                # Move the chunked request out of the batch
Chayenne's avatar
Chayenne committed
874
                self.last_batch.filter_batch(being_chunked_req=self.being_chunked_req)
875
                self.tree_cache.cache_unfinished_req(self.being_chunked_req)
876
                # being chunked request keeps its rid but will get a new req_pool_idx
877
                self.req_to_token_pool.free(self.being_chunked_req.req_pool_idx)
878
                self.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
879

880
881
882
883
884
            if not self.last_batch.is_empty():
                if self.running_batch is None:
                    self.running_batch = self.last_batch
                else:
                    self.running_batch.merge_batch(self.last_batch)
885

886
887
        new_batch = self.get_new_batch_prefill()
        if new_batch is not None:
888
889
890
891
892
893
894
895
896
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
            if self.running_batch is None:
                ret = None
            else:
                self.running_batch = self.update_running_batch(self.running_batch)
                ret = self.running_batch
897

898
899
900
901
902
        # Handle DP attention
        if self.server_args.enable_dp_attention:
            ret = self.prepare_dp_attn_batch(ret)

        return ret
903

Lianmin Zheng's avatar
Lianmin Zheng committed
904
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
905
        # Check if the grammar is ready in the grammar queue
906
        if self.grammar_queue:
907
            self.move_ready_grammar_requests()
908

Lianmin Zheng's avatar
Lianmin Zheng committed
909
910
911
        # Handle the cases where prefill is not allowed
        if (
            self.batch_is_full or len(self.waiting_queue) == 0
912
        ) and self.being_chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
913
914
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
915
        running_bs = len(self.running_batch.reqs) if self.running_batch else 0
916
        if running_bs >= self.max_running_requests:
917
            self.batch_is_full = True
918
919
920
921
922
            return None

        # Get priority queue
        prefix_computed = self.policy.calc_priority(self.waiting_queue)

Lianmin Zheng's avatar
Lianmin Zheng committed
923
        # Prefill policy
924
925
        adder = PrefillAdder(
            self.tree_cache,
926
            self.token_to_kv_pool,
927
928
929
930
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
931
            running_bs if self.is_mixed_chunk else 0,
932
933
        )

934
935
        has_being_chunked = self.being_chunked_req is not None
        if has_being_chunked:
936
            self.being_chunked_req.init_next_round_input()
937
            self.being_chunked_req = adder.add_being_chunked_req(self.being_chunked_req)
938

Lianmin Zheng's avatar
Lianmin Zheng committed
939
        if self.lora_paths:
940
941
942
943
944
945
            lora_set = (
                set([req.lora_path for req in self.running_batch.reqs])
                if self.running_batch is not None
                else set([])
            )

946
        # Get requests from the waiting queue to a new prefill batch
947
948
        for req in self.waiting_queue:
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
949
                self.lora_paths
950
951
952
953
954
955
956
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
957
                self.batch_is_full = True
958
959
                break

960
            if running_bs + len(adder.can_run_list) >= self.max_running_requests:
961
                self.batch_is_full = True
962
                break
963

964
            req.init_next_round_input(None if prefix_computed else self.tree_cache)
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

            if self.enable_hierarchical_cache and req.last_node is not None:
                if req.last_node.evicted:
                    # loading KV cache for the request
                    req.last_node, req.prefix_indices = self.tree_cache.init_load_back(
                        req.last_node,
                        req.prefix_indices,
                        adder.rem_total_tokens,
                    )
                    if req.last_node.loading:
                        # to prevent frequent cache invalidation
                        if req.rid in self.staging_reqs:
                            self.tree_cache.dec_lock_ref(self.staging_reqs[req.rid])
                        self.tree_cache.inc_lock_ref(req.last_node)
                        self.staging_reqs[req.rid] = req.last_node
                        continue
                elif req.last_node.loading:
                    if not self.tree_cache.loading_complete(req.last_node):
                        continue

                if req.rid in self.staging_reqs:
                    self.tree_cache.dec_lock_ref(self.staging_reqs[req.rid])
                    del self.staging_reqs[req.rid]

989
            res = adder.add_one_req(req)
990
991
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
992
993
994
995
996
997
998
999
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
                        self.batch_is_full = len(adder.can_run_list) > 0 or (
                            self.running_batch is not None
                            and not self.running_batch.is_empty()
                        )
                    else:
                        self.batch_is_full = True
1000
                break
1001
1002
            if self.server_args.prefill_only_one_req:
                break
1003

Lianmin Zheng's avatar
Lianmin Zheng committed
1004
        # Update waiting queue
1005
        can_run_list = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1006
1007
1008
1009
1010
        if len(can_run_list) == 0:
            return None
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1011

1012
        if adder.new_being_chunked_req is not None:
1013
            assert self.being_chunked_req is None
1014
            self.being_chunked_req = adder.new_being_chunked_req
1015

1016
1017
        if self.being_chunked_req:
            self.being_chunked_req.is_being_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1018

1019
        # Print stats
1020
        if self.attn_tp_rank == 0:
1021
            self.log_prefill_stats(adder, can_run_list, running_bs, has_being_chunked)
1022

Lianmin Zheng's avatar
Lianmin Zheng committed
1023
        # Create a new batch
1024
1025
1026
1027
1028
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
            self.token_to_kv_pool,
            self.tree_cache,
1029
            self.model_config,
1030
            self.enable_overlap,
1031
            self.spec_algorithm,
1032
            self.server_args.enable_custom_logit_processor,
1033
            self.server_args.return_hidden_states,
1034
        )
1035
        new_batch.prepare_for_extend()
1036

Lianmin Zheng's avatar
Lianmin Zheng committed
1037
        # Mixed-style chunked prefill
1038
1039
1040
1041
1042
1043
        if (
            self.is_mixed_chunk
            and self.running_batch is not None
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
1044
1045
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
1046
                self.running_batch.prepare_for_decode()
1047
1048
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
1049
            self.running_batch = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1050
1051
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1052
1053
1054

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
1055
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
1056
        """Update the current running decoding batch."""
1057
        global test_retract
Lianmin Zheng's avatar
Lianmin Zheng committed
1058
1059

        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1060

1061
1062
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1063
1064
            self.batch_is_full = False
            return None
1065

Lianmin Zheng's avatar
Lianmin Zheng committed
1066
        # Check if decode out of memory
1067
1068
1069
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
            test_retract and batch.batch_size() > 10
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1070
1071
1072
1073
            old_ratio = self.new_token_ratio

            retracted_reqs, new_token_ratio = batch.retract_decode()
            self.new_token_ratio = new_token_ratio
1074
1075
            if self.draft_worker:
                self.draft_worker.finish_request(retracted_reqs)
1076

Lianmin Zheng's avatar
Lianmin Zheng committed
1077
1078
1079
1080
1081
1082
1083
1084
            logger.info(
                "Decode out of memory happened. "
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
            self.waiting_queue.extend(retracted_reqs)
        else:
            self.new_token_ratio = max(
1085
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
1086
1087
1088
1089
                self.min_new_token_ratio,
            )

        # Check for jump-forward
1090
        if not self.disable_jump_forward and batch.has_grammar:
Lianmin Zheng's avatar
Lianmin Zheng committed
1091
1092
1093
            jump_forward_reqs = batch.check_for_jump_forward(self.pad_input_ids_func)
            self.waiting_queue.extend(jump_forward_reqs)
            if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1094
1095
1096
1097
1098
                self.batch_is_full = False
                return None

        if batch.batch_size() < initial_bs:
            self.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1099
1100

        # Update batch tensors
1101
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1102
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1103

1104
1105
1106
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
1107
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1108
1109
        self.forward_ct += 1

1110
        if self.is_generation:
1111
1112
1113
1114
1115
            if self.spec_algorithm.is_none():
                model_worker_batch = batch.get_model_worker_batch()
                logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
                    model_worker_batch
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
1116
            else:
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
                (
                    logits_output,
                    next_token_ids,
                    model_worker_batch,
                    num_accepted_tokens,
                ) = self.draft_worker.forward_batch_speculative_generation(batch)
                self.spec_num_total_accepted_tokens += (
                    num_accepted_tokens + batch.batch_size()
                )
                self.spec_num_total_forward_ct += batch.batch_size()
                self.num_generated_tokens += num_accepted_tokens
1128
            batch.output_ids = next_token_ids
1129
1130
1131
1132
1133
1134

            ret = GenerationBatchResult(
                logits_output=logits_output,
                next_token_ids=next_token_ids,
                bid=model_worker_batch.bid,
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1135
1136
1137
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
1138
1139
1140
            ret = EmbeddingBatchResult(
                embeddings=embeddings, bid=model_worker_batch.bid
            )
1141
        return ret
Chayenne's avatar
Chayenne committed
1142

1143
1144
1145
1146
1147
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1148
1149
        if batch.forward_mode.is_decode():
            self.process_batch_result_decode(batch, result)
1150
1151
            if batch.is_empty():
                self.running_batch = None
1152
        elif batch.forward_mode.is_extend():
Lianmin Zheng's avatar
Lianmin Zheng committed
1153
            self.process_batch_result_prefill(batch, result)
1154
1155
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
1156
                self.tp_worker.resolve_batch_result(result.bid)
1157
1158
        elif batch.forward_mode.is_dummy_first():
            batch.next_batch_sampling_info.update_regex_vocab_mask()
1159
            self.current_stream.synchronize()
1160
            batch.next_batch_sampling_info.sampling_info_done.set()
Lianmin Zheng's avatar
Lianmin Zheng committed
1161

1162
1163
1164
1165
1166
    def process_batch_result_prefill(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
    ):
1167
        skip_stream_req = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1168

Lianmin Zheng's avatar
Lianmin Zheng committed
1169
        if self.is_generation:
1170
1171
1172
1173
1174
1175
1176
1177
1178
            (
                logits_output,
                next_token_ids,
                bid,
            ) = (
                result.logits_output,
                result.next_token_ids,
                result.bid,
            )
1179
1180

            if self.enable_overlap:
1181
                logits_output, next_token_ids = self.tp_worker.resolve_batch_result(bid)
1182
1183
            else:
                # Move next_token_ids and logprobs to cpu
1184
                next_token_ids = next_token_ids.tolist()
1185
                if batch.return_logprob:
1186
                    logits_output.next_token_logprobs = (
1187
                        logits_output.next_token_logprobs.tolist()
1188
1189
1190
1191
1192
                    )
                    logits_output.input_token_logprobs = (
                        logits_output.input_token_logprobs.tolist()
                    )

1193
1194
            hidden_state_offset = 0

1195
1196
            # Check finish conditions
            logprob_pt = 0
1197
            for i, (req, next_token_id) in enumerate(zip(batch.reqs, next_token_ids)):
1198
1199
1200
                if req.is_retracted:
                    continue

Lianmin Zheng's avatar
Lianmin Zheng committed
1201
                if self.is_mixed_chunk and self.enable_overlap and req.finished():
1202
1203
1204
1205
                    # Free the one delayed token for the mixed decode batch
                    j = len(batch.out_cache_loc) - len(batch.reqs) + i
                    self.token_to_kv_pool.free(batch.out_cache_loc[j : j + 1])
                    continue
Lianmin Zheng's avatar
Lianmin Zheng committed
1206

1207
                if req.is_being_chunked <= 0:
1208
                    req.output_ids.append(next_token_id)
1209
1210
                    req.check_finished()

1211
                    if req.finished():
1212
                        self.tree_cache.cache_finished_req(req)
1213
1214
1215
                    elif not batch.decoding_reqs or req not in batch.decoding_reqs:
                        self.tree_cache.cache_unfinished_req(req)

1216
1217
1218
1219
                    if req.return_logprob:
                        logprob_pt += self.add_logprob_return_values(
                            i, req, logprob_pt, next_token_ids, logits_output
                        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1220

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
                    if (
                        self.server_args.return_hidden_states
                        and logits_output.hidden_states is not None
                    ):
                        req.hidden_states.append(
                            logits_output.hidden_states[
                                hidden_state_offset : (
                                    hidden_state_offset := hidden_state_offset
                                    + len(req.origin_input_ids)
                                )
                            ]
                            .cpu()
                            .clone()
                        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1236
1237
                    if req.grammar is not None:
                        req.grammar.accept_token(next_token_id)
1238
                        req.grammar.finished = req.finished()
1239
                else:
1240
                    # being chunked reqs' prefill is not finished
1241
                    req.is_being_chunked -= 1
1242
1243
1244
1245
                    # There is only at most one request being currently chunked.
                    # Because this request does not finish prefill,
                    # we don't want to stream the request currently being chunked.
                    skip_stream_req = req
1246

1247
1248
            if batch.next_batch_sampling_info:
                batch.next_batch_sampling_info.update_regex_vocab_mask()
1249
                self.current_stream.synchronize()
1250
1251
                batch.next_batch_sampling_info.sampling_info_done.set()

Lianmin Zheng's avatar
Lianmin Zheng committed
1252
        else:  # embedding or reward model
1253
            embeddings, bid = result.embeddings, result.bid
1254
            embeddings = embeddings.tolist()
1255
1256
1257

            # Check finish conditions
            for i, req in enumerate(batch.reqs):
1258
1259
1260
                if req.is_retracted:
                    continue

1261
                req.embedding = embeddings[i]
Lianmin Zheng's avatar
Lianmin Zheng committed
1262
1263
                if req.is_being_chunked <= 0:
                    # Dummy output token for embedding models
1264
1265
1266
                    req.output_ids.append(0)
                    req.check_finished()

Lianmin Zheng's avatar
Lianmin Zheng committed
1267
1268
1269
1270
                    if req.finished():
                        self.tree_cache.cache_finished_req(req)
                    else:
                        self.tree_cache.cache_unfinished_req(req)
1271
                else:
1272
                    # being chunked reqs' prefill is not finished
Lianmin Zheng's avatar
Lianmin Zheng committed
1273
                    req.is_being_chunked -= 1
1274

Lianmin Zheng's avatar
Lianmin Zheng committed
1275
        self.stream_output(batch.reqs, batch.return_logprob, skip_stream_req)
1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
    def process_batch_result_decode(
        self,
        batch: ScheduleBatch,
        result: GenerationBatchResult,
    ):
        logits_output, next_token_ids, bid = (
            result.logits_output,
            result.next_token_ids,
            result.bid,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1287
1288
        self.num_generated_tokens += len(batch.reqs)

1289
        if self.enable_overlap:
1290
            logits_output, next_token_ids = self.tp_worker.resolve_batch_result(bid)
1291
            next_token_logprobs = logits_output.next_token_logprobs
1292
1293
        else:
            next_token_ids = next_token_ids.tolist()
1294
1295
            if batch.return_logprob:
                next_token_logprobs = logits_output.next_token_logprobs.tolist()
Lianmin Zheng's avatar
Lianmin Zheng committed
1296

1297
1298
        self.token_to_kv_pool.free_group_begin()

Lianmin Zheng's avatar
Lianmin Zheng committed
1299
1300
        # Check finish condition
        for i, (req, next_token_id) in enumerate(zip(batch.reqs, next_token_ids)):
1301
1302
1303
            if req.is_retracted:
                continue

1304
            if self.enable_overlap and req.finished():
1305
                # Free the one delayed token
1306
                self.token_to_kv_pool.free(batch.out_cache_loc[i : i + 1])
Lianmin Zheng's avatar
Lianmin Zheng committed
1307
1308
                continue

1309
1310
1311
1312
            if batch.spec_algorithm.is_none():
                # speculative worker will solve the output_ids in speculative decoding
                req.output_ids.append(next_token_id)

Lianmin Zheng's avatar
Lianmin Zheng committed
1313
1314
1315
            req.check_finished()

            if req.finished():
1316
                self.tree_cache.cache_finished_req(req)
Lianmin Zheng's avatar
Lianmin Zheng committed
1317
1318

            if req.return_logprob:
Lianmin Zheng's avatar
Lianmin Zheng committed
1319
1320
                req.output_token_logprobs_val.append(next_token_logprobs[i])
                req.output_token_logprobs_idx.append(next_token_id)
Lianmin Zheng's avatar
Lianmin Zheng committed
1321
                if req.top_logprobs_num > 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
1322
                    req.output_top_logprobs_val.append(
1323
                        logits_output.next_token_top_logprobs_val[i]
Lianmin Zheng's avatar
Lianmin Zheng committed
1324
1325
                    )
                    req.output_top_logprobs_idx.append(
1326
                        logits_output.next_token_top_logprobs_idx[i]
Lianmin Zheng's avatar
Lianmin Zheng committed
1327
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
1328

1329
1330
1331
1332
1333
1334
            if (
                self.server_args.return_hidden_states
                and logits_output.hidden_states is not None
            ):
                req.hidden_states.append(logits_output.hidden_states[i].cpu().clone())

Lianmin Zheng's avatar
Lianmin Zheng committed
1335
1336
            if req.grammar is not None:
                req.grammar.accept_token(next_token_id)
1337
                req.grammar.finished = req.finished()
Lianmin Zheng's avatar
Lianmin Zheng committed
1338

1339
1340
        if batch.next_batch_sampling_info:
            batch.next_batch_sampling_info.update_regex_vocab_mask()
1341
            self.current_stream.synchronize()
1342
1343
            batch.next_batch_sampling_info.sampling_info_done.set()

Lianmin Zheng's avatar
Lianmin Zheng committed
1344
        self.stream_output(batch.reqs, batch.return_logprob)
Lianmin Zheng's avatar
Lianmin Zheng committed
1345

1346
1347
        self.token_to_kv_pool.free_group_end()

Lianmin Zheng's avatar
Lianmin Zheng committed
1348
        self.forward_ct_decode = (self.forward_ct_decode + 1) % (1 << 30)
Chayenne's avatar
Chayenne committed
1349
        if (
1350
            self.attn_tp_rank == 0
Chayenne's avatar
Chayenne committed
1351
1352
            and self.forward_ct_decode % self.server_args.decode_log_interval == 0
        ):
1353
            self.log_decode_stats()
1354

1355
1356
1357
1358
1359
1360
1361
1362
1363
    def add_logprob_return_values(
        self,
        i: int,
        req: Req,
        pt: int,
        next_token_ids: List[int],
        output: LogitsProcessorOutput,
    ):
        """Attach logprobs to the return values."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1364
1365
        req.output_token_logprobs_val.append(output.next_token_logprobs[i])
        req.output_token_logprobs_idx.append(next_token_ids[i])
1366
1367
1368
1369

        # If logprob_start_len > 0, then first logprob_start_len prompt tokens will be ignored.
        num_input_logprobs = req.extend_input_len - req.extend_logprob_start_len

Lianmin Zheng's avatar
Lianmin Zheng committed
1370
1371
        if req.input_token_logprobs_val is None:
            input_token_logprobs_val = output.input_token_logprobs[
1372
1373
                pt : pt + num_input_logprobs - 1 - req.last_update_decode_tokens
            ]
Lianmin Zheng's avatar
Lianmin Zheng committed
1374
1375

            input_token_logprobs_idx = req.fill_ids[
1376
1377
1378
1379
1380
                len(req.fill_ids)
                - num_input_logprobs
                + 1 : len(req.fill_ids)
                - req.last_update_decode_tokens
            ]
1381
1382
            # Clip the padded hash values from image tokens.
            # Otherwise, it will lead to detokenization errors.
Lianmin Zheng's avatar
Lianmin Zheng committed
1383
            input_token_logprobs_idx = [
1384
                x if x < self.model_config.vocab_size - 1 else 0
Lianmin Zheng's avatar
Lianmin Zheng committed
1385
                for x in input_token_logprobs_idx
1386
1387
            ]

1388
1389
1390
            if (
                req.logprob_start_len == 0
            ):  # The first token does not have logprob, pad it.
Lianmin Zheng's avatar
Lianmin Zheng committed
1391
1392
1393
1394
1395
                input_token_logprobs_val = [None] + input_token_logprobs_val
                input_token_logprobs_idx = [req.fill_ids[0]] + input_token_logprobs_idx

            req.input_token_logprobs_val = input_token_logprobs_val
            req.input_token_logprobs_idx = input_token_logprobs_idx
1396
1397
1398

        if req.last_update_decode_tokens != 0:
            # Some decode tokens are re-computed in an extend batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
            req.output_token_logprobs_val.extend(
                output.input_token_logprobs[
                    pt
                    + num_input_logprobs
                    - 1
                    - req.last_update_decode_tokens : pt
                    + num_input_logprobs
                    - 1
                ],
            )
            req.output_token_logprobs_idx.extend(
                req.fill_ids[
                    len(req.fill_ids)
                    - req.last_update_decode_tokens : len(req.fill_ids)
                ]
1414
1415
1416
            )

        if req.top_logprobs_num > 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
1417
1418
1419
            if req.input_top_logprobs_val is None:
                req.input_top_logprobs_val = output.input_top_logprobs_val[i]
                req.input_top_logprobs_idx = output.input_top_logprobs_idx[i]
1420
                if req.logprob_start_len == 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
1421
1422
                    req.input_top_logprobs_val = [None] + req.input_top_logprobs_val
                    req.input_top_logprobs_idx = [None] + req.input_top_logprobs_idx
1423
1424

            if req.last_update_decode_tokens != 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
1425
1426
                req.output_top_logprobs_val.extend(
                    output.input_top_logprobs_val[i][-req.last_update_decode_tokens :]
1427
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
1428
1429
1430
                req.output_top_logprobs_idx.extend(
                    output.input_top_logprobs_idx[i][-req.last_update_decode_tokens :]
                )
1431
1432
1433

            req.output_top_logprobs_val.append(output.next_token_top_logprobs_val[i])
            req.output_top_logprobs_idx.append(output.next_token_top_logprobs_idx[i])
1434
1435
1436

        return num_input_logprobs

Lianmin Zheng's avatar
Lianmin Zheng committed
1437
1438
1439
    def stream_output(
        self, reqs: List[Req], return_logprob: bool, skip_req: Optional[Req] = None
    ):
1440
        """Stream the output to detokenizer."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1441
1442
1443
        rids = []
        finished_reasons: List[BaseFinishReason] = []

1444
        if self.is_generation:
Lianmin Zheng's avatar
Lianmin Zheng committed
1445
            vids = []
1446
            decoded_texts = []
Lianmin Zheng's avatar
Lianmin Zheng committed
1447
1448
            decode_ids_list = []
            read_offsets = []
1449
            output_ids = []
1450

Lianmin Zheng's avatar
Lianmin Zheng committed
1451
1452
1453
1454
1455
1456
            skip_special_tokens = []
            spaces_between_special_tokens = []
            no_stop_trim = []
            prompt_tokens = []
            completion_tokens = []
            cached_tokens = []
1457
            spec_verify_ct = []
1458
            hidden_states = []
Lianmin Zheng's avatar
Lianmin Zheng committed
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473

            if return_logprob:
                input_token_logprobs_val = []
                input_token_logprobs_idx = []
                output_token_logprobs_val = []
                output_token_logprobs_idx = []
                input_top_logprobs_val = []
                input_top_logprobs_idx = []
                output_top_logprobs_val = []
                output_top_logprobs_idx = []
            else:
                input_token_logprobs_val = input_token_logprobs_idx = (
                    output_token_logprobs_val
                ) = output_token_logprobs_idx = input_top_logprobs_val = (
                    input_top_logprobs_idx
1474
                ) = output_top_logprobs_val = output_top_logprobs_idx = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1475
1476
1477
1478

            for req in reqs:
                if req is skip_req:
                    continue
1479

Lianmin Zheng's avatar
Lianmin Zheng committed
1480
1481
1482
1483
1484
1485
1486
1487
                # TODO(lianmin): revisit this for overlap + retract + stream
                if (
                    req.finished()
                    # If stream, follow the given stream_interval
                    or (req.stream and len(req.output_ids) % self.stream_interval == 0)
                    # If not stream, we still want to output some tokens to get the benefit of incremental decoding.
                    or (not req.stream and len(req.output_ids) % 50 == 0)
                ):
1488
1489
1490
                    if self.draft_worker and req.finished():
                        self.draft_worker.finish_request(req)

Lianmin Zheng's avatar
Lianmin Zheng committed
1491
1492
1493
1494
1495
                    rids.append(req.rid)
                    finished_reasons.append(
                        req.finished_reason.to_json() if req.finished_reason else None
                    )
                    vids.append(req.vid)
1496
                    decoded_texts.append(req.decoded_text)
Lianmin Zheng's avatar
Lianmin Zheng committed
1497
1498
1499
                    decode_ids, read_offset = req.init_incremental_detokenize()
                    decode_ids_list.append(decode_ids)
                    read_offsets.append(read_offset)
1500
                    if self.skip_tokenizer_init:
1501
                        output_ids.append(req.output_ids)
Lianmin Zheng's avatar
Lianmin Zheng committed
1502
1503
                    skip_special_tokens.append(req.sampling_params.skip_special_tokens)
                    spaces_between_special_tokens.append(
1504
1505
                        req.sampling_params.spaces_between_special_tokens
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
1506
1507
1508
1509
1510
1511
                    no_stop_trim.append(req.sampling_params.no_stop_trim)

                    prompt_tokens.append(len(req.origin_input_ids))
                    completion_tokens.append(len(req.output_ids))
                    cached_tokens.append(req.cached_tokens)

1512
1513
1514
                    if not self.spec_algorithm.is_none():
                        spec_verify_ct.append(req.spec_verify_ct)

Lianmin Zheng's avatar
Lianmin Zheng committed
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
                    if return_logprob:
                        input_token_logprobs_val.append(req.input_token_logprobs_val)
                        input_token_logprobs_idx.append(req.input_token_logprobs_idx)
                        output_token_logprobs_val.append(req.output_token_logprobs_val)
                        output_token_logprobs_idx.append(req.output_token_logprobs_idx)
                        input_top_logprobs_val.append(req.input_top_logprobs_val)
                        input_top_logprobs_idx.append(req.input_top_logprobs_idx)
                        output_top_logprobs_val.append(req.output_top_logprobs_val)
                        output_top_logprobs_idx.append(req.output_top_logprobs_idx)

1525
1526
                    hidden_states.append(req.hidden_states)

Lianmin Zheng's avatar
Lianmin Zheng committed
1527
1528
            # Send to detokenizer
            if rids:
1529
                self.send_to_detokenizer.send_pyobj(
1530
                    BatchTokenIDOut(
Lianmin Zheng's avatar
Lianmin Zheng committed
1531
1532
1533
                        rids,
                        finished_reasons,
                        vids,
1534
                        decoded_texts,
Lianmin Zheng's avatar
Lianmin Zheng committed
1535
1536
                        decode_ids_list,
                        read_offsets,
1537
                        output_ids,
Lianmin Zheng's avatar
Lianmin Zheng committed
1538
1539
1540
1541
1542
1543
                        skip_special_tokens,
                        spaces_between_special_tokens,
                        no_stop_trim,
                        prompt_tokens,
                        completion_tokens,
                        cached_tokens,
1544
                        spec_verify_ct,
Lianmin Zheng's avatar
Lianmin Zheng committed
1545
1546
1547
1548
1549
1550
1551
1552
                        input_token_logprobs_val,
                        input_token_logprobs_idx,
                        output_token_logprobs_val,
                        output_token_logprobs_idx,
                        input_top_logprobs_val,
                        input_top_logprobs_idx,
                        output_top_logprobs_val,
                        output_top_logprobs_idx,
1553
                        hidden_states,
1554
1555
                    )
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
1556
1557
1558
1559
        else:  # embedding or reward model
            embeddings = []
            prompt_tokens = []
            for req in reqs:
1560
1561
1562
1563
1564
                if req.finished():
                    rids.append(req.rid)
                    finished_reasons.append(req.finished_reason.to_json())
                    embeddings.append(req.embedding)
                    prompt_tokens.append(len(req.origin_input_ids))
Lianmin Zheng's avatar
Lianmin Zheng committed
1565
1566
1567
            self.send_to_detokenizer.send_pyobj(
                BatchEmbeddingOut(rids, finished_reasons, embeddings, prompt_tokens)
            )
1568

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
    def prepare_dp_attn_batch(self, local_batch: ScheduleBatch):
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
        else:
            num_tokens = local_batch.extend_num_tokens

        local_num_tokens = torch.tensor([num_tokens], dtype=torch.int64)
        global_num_tokens = torch.empty(self.tp_size, dtype=torch.int64)
        torch.distributed.all_gather_into_tensor(
            global_num_tokens,
            local_num_tokens,
            group=self.tp_cpu_group,
        )

        if local_batch is None and global_num_tokens.max().item() > 0:
            local_batch = self.get_idle_batch()

        if local_batch is not None:
            local_batch.global_num_tokens = global_num_tokens.tolist()

            # Check forward mode for cuda graph
            if not self.server_args.disable_cuda_graph:
                forward_mode_state = torch.tensor(
1595
                    (1 if local_batch.forward_mode.is_decode_or_idle() else 0),
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
                    dtype=torch.int32,
                )
                torch.distributed.all_reduce(
                    forward_mode_state,
                    op=torch.distributed.ReduceOp.MIN,
                    group=self.tp_cpu_group,
                )
                local_batch.can_run_dp_cuda_graph = forward_mode_state.item() == 1

        return local_batch

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
            self.token_to_kv_pool,
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
1615
            self.spec_algorithm,
1616
            self.server_args.enable_custom_logit_processor,
1617
            self.server_args.return_hidden_states,
1618
1619
1620
1621
        )
        idle_batch.prepare_for_idle()
        return idle_batch

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
        num_ready_reqs = 0
        for req in self.grammar_queue:
            try:
                req.grammar = req.grammar.result(timeout=0.05)
                num_ready_reqs += 1
            except futures._base.TimeoutError:
                break

        if self.tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
            tensor = torch.tensor(num_ready_reqs, dtype=torch.int32)
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=self.tp_cpu_group
            )
            num_ready_reqs_max = tensor.item()
            for i in range(num_ready_reqs, num_ready_reqs_max):
                self.grammar_queue[i].grammar = self.grammar_queue[i].grammar.result()
            num_ready_reqs = num_ready_reqs_max

        self.waiting_queue.extend(self.grammar_queue[:num_ready_reqs])
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

1646
1647
1648
    def flush_cache_wrapped(self, recv_req: FlushCacheReq):
        self.flush_cache()

1649
    def flush_cache(self):
1650
        """Flush the memory pool and cache."""
1651
1652
1653
1654
1655
        if len(self.waiting_queue) == 0 and (
            self.running_batch is None or len(self.running_batch.reqs) == 0
        ):
            self.tree_cache.reset()
            self.tree_cache_metrics = {"total": 0, "hit": 0}
1656
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
1657
                self.grammar_backend.reset()
1658
1659
            self.req_to_token_pool.clear()
            self.token_to_kv_pool.clear()
1660
1661
1662
1663
1664
1665
1666
1667
1668

            if not self.spec_algorithm.is_none():
                self.draft_worker.model_runner.req_to_token_pool.clear()
                self.draft_worker.model_runner.token_to_kv_pool.clear()

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
                f"#running-req: {0 if self.running_batch is None else len(self.running_batch.reqs)}"
            )
            if_success = False
        return if_success

    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
        to_del = None
        for i, req in enumerate(self.waiting_queue):
            if req.rid == recv_req.rid:
                to_del = i
                break

        if to_del is not None:
            del self.waiting_queue[to_del]
1691
1692
            logger.debug(f"Abort queued request. {req.rid=}")
            return
1693
1694
1695
1696

        # Delete requests in the running batch
        if self.running_batch:
            for req in self.running_batch.reqs:
1697
                if req.rid == recv_req.rid and not req.finished():
1698
1699
                    logger.debug(f"Abort running request. {req.rid=}")
                    req.to_abort = True
1700
1701
                    break

Chayenne's avatar
Chayenne committed
1702
1703
1704
    def update_weights_from_disk(self, recv_req: UpdateWeightFromDiskReqInput):
        """In-place update of the weights from disk."""
        success, message = self.tp_worker.update_weights_from_disk(recv_req)
1705
1706
1707
1708
1709
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
1710
        return UpdateWeightFromDiskReqOutput(success, message)
1711

1712
1713
1714
    def init_weights_update_group(self, recv_req: InitWeightsUpdateGroupReqInput):
        """Initialize the online model parameter update group."""
        success, message = self.tp_worker.init_weights_update_group(recv_req)
1715
        return InitWeightsUpdateGroupReqOutput(success, message)
1716
1717

    def update_weights_from_distributed(
1718
1719
1720
        self,
        recv_req: UpdateWeightsFromDistributedReqInput,
    ) -> Tuple[bool, str]:
1721
1722
1723
1724
1725
1726
1727
        """Update the online model parameter."""
        success, message = self.tp_worker.update_weights_from_distributed(recv_req)
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
1728
        return UpdateWeightsFromDistributedReqOutput(success, message)
1729

1730
1731
1732
1733
1734
1735
1736
1737
1738
    def update_weights_from_tensor(self, recv_req: UpdateWeightsFromTensorReqInput):
        """Update the online model parameter from tensors."""
        success, message = self.tp_worker.update_weights_from_tensor(recv_req)
        # TODO extract common code b/t update_weights_from_distributed and update_weights_from_tensor later
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
1739
        return UpdateWeightsFromTensorReqOutput(success, message)
1740

1741
1742
    def get_weights_by_name(self, recv_req: GetWeightsByNameReqInput):
        parameter = self.tp_worker.get_weights_by_name(recv_req)
1743
        return GetWeightsByNameReqOutput(parameter)
1744

1745
1746
1747
1748
1749
1750
    def release_memory_occupation(self):
        self.stashed_model_static_state = _export_static_state(
            self.tp_worker.worker.model_runner.model
        )
        self.memory_saver_adapter.pause()
        self.flush_cache()
1751
        return ReleaseMemoryOccupationReqOutput()
1752
1753
1754
1755
1756
1757
1758

    def resume_memory_occupation(self):
        self.memory_saver_adapter.resume()
        _import_static_state(
            self.tp_worker.worker.model_runner.model, self.stashed_model_static_state
        )
        del self.stashed_model_static_state
1759
1760
1761
1762
1763
1764
1765
        return ResumeMemoryOccupationReqOutput()

    def profile(self, recv_req: ProfileReq):
        if recv_req == ProfileReq.START_PROFILE:
            self.start_profile()
        else:
            self.stop_profile()
1766

1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
    def start_profile(self) -> None:
        if self.profiler is None:
            raise RuntimeError("Profiler is not enabled.")
        self.profiler.start()

    def stop_profile(self) -> None:
        if self.profiler is None:
            raise RuntimeError("Profiler is not enabled.")
        self.profiler.stop()
        self.profiler.export_chrome_trace(
            self.torch_profiler_trace_dir + "/" + str(time.time()) + ".trace.json.gz"
        )
        logger.info("Profiler is done")

1781
    def open_session(self, recv_req: OpenSessionReqInput):
1782
1783
1784
1785
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
1786
            return OpenSessionReqOutput(session_id, False)
1787
1788
        elif session_id is None:
            logger.warning(f"session id is None, cannot open.")
1789
            return OpenSessionReqOutput(session_id, False)
1790
1791
1792
1793
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
1794
            return OpenSessionReqOutput(session_id, True)
1795
1796
1797
1798
1799
1800
1801
1802
1803

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

1804

1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
def _export_static_state(model):
    return dict(
        buffers=[
            (name, buffer.detach().clone()) for name, buffer in model.named_buffers()
        ]
    )


def _import_static_state(model, static_params):
    self_named_buffers = dict(model.named_buffers())
    for name, tensor in static_params["buffers"]:
        self_named_buffers[name][...] = tensor


1819
1820
1821
1822
1823
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
1824
    dp_rank: Optional[int],
1825
    pipe_writer,
1826
):
1827
    setproctitle.setproctitle("sglang::scheduler")
1828
    faulthandler.enable()
1829

1830
1831
1832
    # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
1833

1834
    # Configue the logger
1835
1836
1837
1838
    if dp_rank is None:
        configure_logger(server_args, prefix=f" TP{tp_rank}")
    else:
        configure_logger(server_args, prefix=f" DP{dp_rank} TP{tp_rank}")
1839
    suppress_other_loggers()
1840

1841
    # Set cpu affinity to this gpu process
1842
1843
1844
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, gpu_id)

1845
    parent_process = psutil.Process().parent()
1846

1847
    # Create a scheduler and run the event loop
1848
    try:
1849
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank, dp_rank)
1850
        pipe_writer.send(
Mick's avatar
Mick committed
1851
1852
1853
1854
1855
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
1856
        )
1857
        if scheduler.enable_overlap:
Lianmin Zheng's avatar
Lianmin Zheng committed
1858
1859
1860
            scheduler.event_loop_overlap()
        else:
            scheduler.event_loop_normal()
1861
    except Exception:
1862
1863
1864
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)