scheduler.py 40.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

"""A scheduler that manages a tensor parallel GPU worker."""

18
import json
19
import logging
20
21
22
import os
import time
import warnings
23
from types import SimpleNamespace
24
from typing import List, Optional, Union
25

26
import torch
27
28
import zmq

29
30
31
32
33
34
35
36
37
38
39
from sglang.global_config import global_config
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.constrained.fsm_cache import FSMCache
from sglang.srt.constrained.jump_forward import JumpForwardCache
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.managers.io_struct import (
    AbortReq,
    BatchEmbeddingOut,
    BatchTokenIDOut,
    FlushCacheReq,
40
    ProfileReq,
41
42
43
44
45
46
47
48
49
50
51
52
53
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
    TokenizedRewardReqInput,
    UpdateWeightReqInput,
    UpdateWeightReqOutput,
)
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
    BaseFinishReason,
    ImageInputs,
    Req,
    ScheduleBatch,
)
54
55
56
57
58
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
59
from sglang.srt.managers.tp_worker import TpModelWorker
60
61
from sglang.srt.mem_cache.chunk_cache import ChunkCache
from sglang.srt.mem_cache.radix_cache import RadixCache
62
from sglang.srt.server_args import PortArgs, ServerArgs
63
64
65
66
67
68
from sglang.srt.utils import (
    broadcast_pyobj,
    configure_logger,
    is_generation_model,
    is_multimodal_model,
    kill_parent_process,
69
    pytorch_profile,
70
71
72
    set_random_seed,
    suppress_other_loggers,
)
73
74
75
76
from sglang.utils import get_exception_traceback

logger = logging.getLogger(__name__)

77
78
79
# Crash on warning if we are running CI tests
crash_on_warning = os.getenv("SGLANG_IS_IN_CI", "false") == "true"

80
81
82
# Test retract decode
test_retract = os.getenv("SGLANG_TEST_RETRACT", "false") == "true"

83
84
85
86
87
88
89
90
91
92
93
94

class Scheduler:
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
    ):
        # Parse args
95
        self.server_args = server_args
96
97
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
98
99
100
101
        self.schedule_policy = server_args.schedule_policy
        self.disable_regex_jump_forward = server_args.disable_regex_jump_forward
        self.lora_paths = server_args.lora_paths
        self.max_loras_per_batch = server_args.max_loras_per_batch
102
103
104
105
106
107

        # Init inter-process communication
        context = zmq.Context(2)

        if self.tp_rank == 0:
            self.recv_from_tokenizer = context.socket(zmq.PULL)
108
            self.recv_from_tokenizer.bind(f"ipc://{port_args.scheduler_input_ipc_name}")
109
110

            self.send_to_detokenizer = context.socket(zmq.PUSH)
111
            self.send_to_detokenizer.connect(f"ipc://{port_args.detokenizer_ipc_name}")
112
        else:
113
114
            self.recv_from_tokenizer = None
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

        # Init tokenizer
        self.model_config = ModelConfig(
            server_args.model_path,
            server_args.trust_remote_code,
            context_length=server_args.context_length,
            model_override_args=json.loads(server_args.json_model_override_args),
        )

        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if is_multimodal_model(self.model_config.hf_config.architectures):
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                )
                self.tokenizer = self.processor.tokenizer
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                )
        self.is_generation = is_generation_model(
            self.model_config.hf_config.architectures, self.server_args.is_embedding
        )
143

144
        # Launch a tensor parallel worker
145
        self.tp_worker = TpModelWorker(
146
147
148
            gpu_id=gpu_id,
            tp_rank=tp_rank,
            server_args=server_args,
149
            nccl_port=port_args.nccl_port,
150
        )
151
152
        self.tp_cpu_group = self.tp_worker.model_runner.tp_group.cpu_group

153
        # Get token and memory info from the model worker
154
155
156
157
158
159
160
161
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
            self.max_req_input_len,
            self.random_seed,
        ) = self.tp_worker.get_token_and_memory_info()
        set_random_seed(self.random_seed)
162
163
164
        self.pad_input_ids_func = getattr(
            self.tp_worker.model_runner.model, "pad_input_ids", None
        )
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

        # Print debug info
        logger.info(
            f"max_total_num_tokens={self.max_total_num_tokens}, "
            f"max_prefill_tokens={self.max_prefill_tokens}, "
            f"max_running_requests={self.max_running_requests}, "
            f"context_len={self.model_config.context_len}"
        )

        # Init cache
        self.req_to_token_pool = self.tp_worker.model_runner.req_to_token_pool
        self.token_to_kv_pool = self.tp_worker.model_runner.token_to_kv_pool

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
            self.tree_cache = ChunkCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool=self.token_to_kv_pool,
            )
        else:
            self.tree_cache = RadixCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool=self.token_to_kv_pool,
                disable=server_args.disable_radix_cache,
            )
        self.tree_cache_metrics = {"total": 0, "hit": 0}
193
        self.policy = SchedulePolicy(self.schedule_policy, self.tree_cache)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

        # Init running status
        self.waiting_queue: List[Req] = []
        self.running_batch: ScheduleBatch = None
        self.decode_forward_ct = 0
        self.stream_interval = server_args.stream_interval
        self.num_generated_tokens = 0
        self.last_stats_tic = time.time()

        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
        self.current_inflight_req = None
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

        # Init the FSM cache for constrained generation
        if not server_args.skip_tokenizer_init:
            self.regex_fsm_cache = FSMCache(
                server_args.tokenizer_path,
                {
                    "tokenizer_mode": server_args.tokenizer_mode,
                    "trust_remote_code": server_args.trust_remote_code,
                },
                skip_tokenizer_init=server_args.skip_tokenizer_init,
                constrained_json_whitespace_pattern=server_args.constrained_json_whitespace_pattern,
            )
        self.jump_forward_cache = JumpForwardCache()

        # Init new token estimation
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
        self.min_new_token_ratio = min(
            global_config.base_min_new_token_ratio
            * server_args.schedule_conservativeness,
            1.0,
        )
        self.new_token_ratio = self.min_new_token_ratio
        self.new_token_ratio_decay = global_config.new_token_ratio_decay
234
        self.batch_is_full = False
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        if os.getenv("SGLANG_TORCH_PROFILER_DIR", "") == "":
            self.profiler = None
        else:
            self.torch_profiler_trace_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR")
            logger.info(
                "Profiling enabled. Traces will be saved to: %s",
                self.torch_profiler_trace_dir,
            )
            self.profiler = torch.profiler.profile(
                activities=[
                    torch.profiler.ProfilerActivity.CPU,
                    torch.profiler.ProfilerActivity.CUDA,
                ],
                with_stack=True,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
252
    @torch.inference_mode()
253
    def event_loop_normal(self):
254
255
        self.last_batch = None

256
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
257
258
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
259

260
261
262
263
264
            batch = self.get_next_batch_to_run()

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
265

266
267
268
269
270
271
272
273
274
275
276
277
                # Decode multiple steps to reduce the overhead
                if batch.forward_mode.is_decode():
                    for _ in range(self.server_args.num_continuous_decode_steps - 1):
                        if not self.running_batch:
                            break
                        self.update_running_batch()
                        if not self.running_batch:
                            break
                        result = self.run_batch(batch)
                        self.process_batch_result(batch, result)

            self.last_batch = batch
278

Lianmin Zheng's avatar
Lianmin Zheng committed
279
280
281
282
283
284
285
286
287
288
289
290
    def recv_requests(self):
        if self.tp_rank == 0:
            recv_reqs = []

            while True:
                try:
                    recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
                recv_reqs.append(recv_req)
        else:
            recv_reqs = None
291

292
293
        if self.tp_size != 1:
            recv_reqs = broadcast_pyobj(recv_reqs, self.tp_rank, self.tp_cpu_group)
294
295
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
296
    def process_input_requests(self, recv_reqs: List):
297
298
299
300
301
302
303
304
305
306
307
308
309
        for recv_req in recv_reqs:
            if isinstance(recv_req, TokenizedGenerateReqInput):
                self.handle_generate_request(recv_req)
            elif isinstance(
                recv_req, (TokenizedEmbeddingReqInput, TokenizedRewardReqInput)
            ):
                self.handle_embedding_request(recv_req)
            elif isinstance(recv_req, FlushCacheReq):
                self.flush_cache()
            elif isinstance(recv_req, AbortReq):
                self.abort_request(recv_req)
            elif isinstance(recv_req, UpdateWeightReqInput):
                success, message = self.update_weights(recv_req)
310
311
312
                self.send_to_detokenizer.send_pyobj(
                    UpdateWeightReqOutput(success, message)
                )
313
314
315
316
317
            elif isinstance(recv_req, ProfileReq):
                if recv_req == ProfileReq.START_PROFILE:
                    self.start_profile()
                else:
                    self.stop_profile()
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
            else:
                raise ValueError(f"Invalid request: {recv_req}")

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
            lora_path=recv_req.lora_path,
        )
        req.tokenizer = self.tokenizer

        # Image inputs
        if recv_req.image_inputs is not None:
            req.image_inputs = ImageInputs.from_dict(
                recv_req.image_inputs, self.model_config.vocab_size
            )
339
            req.origin_input_ids = self.pad_input_ids_func(
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
                req.origin_input_ids_unpadded, req.image_inputs
            )

        req.return_logprob = recv_req.return_logprob
        req.top_logprobs_num = recv_req.top_logprobs_num
        req.stream = recv_req.stream
        req.logprob_start_len = recv_req.logprob_start_len

        if req.logprob_start_len == -1:
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(recv_req.input_ids) - 1

        # Init regex FSM
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
        ):
            if req.sampling_params.json_schema is not None:
                req.regex_fsm, computed_regex_string = self.regex_fsm_cache.query(
                    ("json", req.sampling_params.json_schema)
                )
            elif req.sampling_params.regex is not None:
                req.regex_fsm, computed_regex_string = self.regex_fsm_cache.query(
                    ("regex", req.sampling_params.regex)
                )
            if not self.disable_regex_jump_forward:
                req.jump_forward_map = self.jump_forward_cache.query(
                    computed_regex_string
                )

        # Truncate prompts that are too long
        if len(req.origin_input_ids) >= self.max_req_input_len:
            logger.warning(
                "Request length is longer than the KV cache pool size or "
                "the max context length. Truncated!!!"
            )
            req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len]
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
            self.max_req_input_len - 1 - len(req.origin_input_ids),
        )

        self.waiting_queue.append(req)

    def handle_embedding_request(
        self,
        recv_req: Union[TokenizedEmbeddingReqInput, TokenizedRewardReqInput],
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
        )
        req.tokenizer = self.tokenizer

        # Truncate prompts that are too long
        if len(req.origin_input_ids) >= self.max_req_input_len:
            logger.warning(
                "Request length is longer than the KV cache pool size or "
                "the max context length. Truncated!!!"
            )
            req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len]

        self.waiting_queue.append(req)

Lianmin Zheng's avatar
Lianmin Zheng committed
410
411
412
413
414
415
416
    def print_decode_stats(self):
        num_used = self.max_total_num_tokens - (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        throughput = self.num_generated_tokens / (time.time() - self.last_stats_tic)
        self.num_generated_tokens = 0
        self.last_stats_tic = time.time()
417
        num_running_reqs = len(self.running_batch.reqs) if self.running_batch else 0
Lianmin Zheng's avatar
Lianmin Zheng committed
418
419
        logger.info(
            f"Decode batch. "
420
            f"#running-req: {num_running_reqs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
            f"#token: {num_used}, "
            f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
            f"gen throughput (token/s): {throughput:.2f}, "
            f"#queue-req: {len(self.waiting_queue)}"
        )

    def check_memory(self):
        available_size = (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        if available_size != self.max_total_num_tokens:
            warnings.warn(
                "Warning: "
                f"available_size={available_size}, max_total_num_tokens={self.max_total_num_tokens}\n"
                "KV cache pool leak detected!"
            )
            exit(1) if crash_on_warning else None

        if len(self.req_to_token_pool.free_slots) != self.req_to_token_pool.size:
            warnings.warn(
                "Warning: "
                f"available req slots={len(self.req_to_token_pool.free_slots)}, "
                f"total slots={self.req_to_token_pool.size}\n"
                "Memory pool leak detected!"
            )
            exit(1) if crash_on_warning else None

448
    def get_next_batch_to_run(self):
449
        # Merge the prefill batch into the running batch
450
451
452
453
454
        if (
            self.last_batch
            and not self.last_batch.forward_mode.is_decode()
            and not self.last_batch.is_empty()
        ):
455
456
457
458
459
460
461
462
            if self.current_inflight_req:
                self.last_batch.filter_batch(self.current_inflight_req)
                self.batch_is_full = False
            if not self.last_batch.is_empty():
                if self.running_batch is None:
                    self.running_batch = self.last_batch
                else:
                    self.running_batch.merge_batch(self.last_batch)
463
464

        # Prefill first
465
466
        new_batch = self.get_new_batch_prefill()
        if new_batch is not None:
467
            return new_batch
468

469
470
        # Check memory
        if self.running_batch is None:
471
472
            self.check_memory()
            self.new_token_ratio = global_config.init_new_token_ratio
473
474
475
476
477
478
479
480
481
482
483
            return

        # Run decode
        before_bs = self.running_batch.batch_size()
        self.update_running_batch()
        if not self.running_batch:
            self.batch_is_full = False
            return None
        if before_bs != self.running_batch.batch_size():
            self.batch_is_full = False
        return self.running_batch
484

Lianmin Zheng's avatar
Lianmin Zheng committed
485
486
487
488
489
490
491
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
        # Handle the cases where prefill is not allowed
        if (
            self.batch_is_full or len(self.waiting_queue) == 0
        ) and self.current_inflight_req is None:
            return None

492
493
494
495
        running_bs = (
            len(self.running_batch.reqs) if self.running_batch is not None else 0
        )
        if running_bs >= self.max_running_requests:
496
            self.batch_is_full = True
497
498
499
500
501
            return None

        # Get priority queue
        prefix_computed = self.policy.calc_priority(self.waiting_queue)

Lianmin Zheng's avatar
Lianmin Zheng committed
502
        # Prefill policy
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        num_mixed_running = running_bs if self.is_mixed_chunk else 0
        adder = PrefillAdder(
            self.tree_cache,
            self.running_batch,
            self.new_token_ratio,
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size(),
            self.max_prefill_tokens,
            self.chunked_prefill_size,
            num_mixed_running,
        )

        has_inflight = self.current_inflight_req is not None
        if self.current_inflight_req is not None:
            self.current_inflight_req.init_next_round_input(
                None if prefix_computed else self.tree_cache
            )
            self.current_inflight_req = adder.add_inflight_req(
                self.current_inflight_req
            )

        if self.lora_paths is not None:
            lora_set = (
                set([req.lora_path for req in self.running_batch.reqs])
                if self.running_batch is not None
                else set([])
            )

        for req in self.waiting_queue:
            if (
                self.lora_paths is not None
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
540
                self.batch_is_full = True
541
542
                break

543
            if running_bs + len(adder.can_run_list) >= self.max_running_requests:
544
                self.batch_is_full = True
545
                break
546

547
548
            req.init_next_round_input(None if prefix_computed else self.tree_cache)
            res = adder.add_one_req(req)
549
550
551
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
                    self.batch_is_full = True
552
553
554
555
556
557
558
559
560
561
562
                break

        can_run_list = adder.can_run_list

        if adder.new_inflight_req is not None:
            assert self.current_inflight_req is None
            self.current_inflight_req = adder.new_inflight_req

        if len(can_run_list) == 0:
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
563
564
        self.waiting_queue = [x for x in self.waiting_queue if x not in can_run_list]

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
        # Print stats
        if self.tp_rank == 0:
            if isinstance(self.tree_cache, RadixCache):
                self.tree_cache_metrics["total"] += (
                    adder.log_input_tokens + adder.log_hit_tokens
                ) / 10**9
                self.tree_cache_metrics["hit"] += (adder.log_hit_tokens) / 10**9
                tree_cache_hit_rate = (
                    self.tree_cache_metrics["hit"] / self.tree_cache_metrics["total"]
                )
            else:
                tree_cache_hit_rate = 0.0

            num_used = self.max_total_num_tokens - (
                self.token_to_kv_pool.available_size()
                + self.tree_cache.evictable_size()
            )

            if num_mixed_running > 0:
                logger.info(
                    f"Prefill batch"
                    f"(mixed #running-req: {num_mixed_running}). "
                    f"#new-seq: {len(can_run_list)}, "
                    f"#new-token: {adder.log_input_tokens}, "
                    f"#cached-token: {adder.log_hit_tokens}, "
                    f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, "
                    f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
592
                    f"#queue-req: {len(self.waiting_queue) + has_inflight}"
593
594
595
596
597
598
599
600
601
602
                )
            else:
                logger.info(
                    f"Prefill batch. "
                    f"#new-seq: {len(can_run_list)}, "
                    f"#new-token: {adder.log_input_tokens}, "
                    f"#cached-token: {adder.log_hit_tokens}, "
                    f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, "
                    f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
                    f"#running-req: {running_bs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
603
                    f"#queue-req: {len(self.waiting_queue) + has_inflight}"
604
605
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
606
        # Create a new batch
607
608
609
610
611
612
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
            self.token_to_kv_pool,
            self.tree_cache,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
613
        new_batch.prepare_for_extend(self.model_config.vocab_size)
614

Lianmin Zheng's avatar
Lianmin Zheng committed
615
        # Mixed-style chunked prefill
616
617
618
        decoding_reqs = []
        if self.is_mixed_chunk and self.running_batch is not None:
            self.running_batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
619
            new_batch.mix_with_running(self.running_batch)
620
621
            decoding_reqs = self.running_batch.reqs
            self.running_batch = None
Lianmin Zheng's avatar
Lianmin Zheng committed
622
623
624
625
        new_batch.decoding_reqs = decoding_reqs

        return new_batch

626
    def update_running_batch(self):
627
        global test_retract
Lianmin Zheng's avatar
Lianmin Zheng committed
628
629
        batch = self.running_batch

630
631
632
633
634
        batch.filter_batch()
        if batch.is_empty():
            self.running_batch = None
            return

Lianmin Zheng's avatar
Lianmin Zheng committed
635
        # Check if decode out of memory
636
        if not batch.check_decode_mem() or (test_retract and batch.batch_size() > 10):
Lianmin Zheng's avatar
Lianmin Zheng committed
637
638
639
640
            old_ratio = self.new_token_ratio

            retracted_reqs, new_token_ratio = batch.retract_decode()
            self.new_token_ratio = new_token_ratio
641

Lianmin Zheng's avatar
Lianmin Zheng committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
            logger.info(
                "Decode out of memory happened. "
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
            self.waiting_queue.extend(retracted_reqs)
        else:
            self.new_token_ratio = max(
                self.new_token_ratio - self.new_token_ratio_decay,
                self.min_new_token_ratio,
            )

        # Check for jump-forward
        if not self.disable_regex_jump_forward:
            jump_forward_reqs = batch.check_for_jump_forward(self.pad_input_ids_func)
            self.waiting_queue.extend(jump_forward_reqs)
            if batch.is_empty():
659
660
                self.running_batch = None
                return
Lianmin Zheng's avatar
Lianmin Zheng committed
661
662
663
664
665

        # Update batch tensors
        batch.prepare_for_decode()

    def run_batch(self, batch: ScheduleBatch):
666
        if self.is_generation:
Lianmin Zheng's avatar
Lianmin Zheng committed
667
            if batch.forward_mode.is_decode() or batch.extend_num_tokens != 0:
668
                model_worker_batch = batch.get_model_worker_batch()
669
                logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
670
                    model_worker_batch
671
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
672
673
674
            else:
                logits_output = None
                if self.tokenizer is not None:
675
676
677
                    next_token_ids = torch.full(
                        (batch.batch_size(),), self.tokenizer.eos_token_id
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
678
                else:
679
                    next_token_ids = torch.full((batch.batch_size(),), 0)
680
            batch.output_ids = next_token_ids
681
            ret = logits_output, next_token_ids
Lianmin Zheng's avatar
Lianmin Zheng committed
682
683
684
685
        else:  # embedding or reward model
            assert batch.extend_num_tokens != 0
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
686
687
            ret = embeddings
        return ret
Lianmin Zheng's avatar
Lianmin Zheng committed
688
689
690
691

    def process_batch_result(self, batch: ScheduleBatch, result):
        if batch.forward_mode.is_decode():
            self.process_batch_result_decode(batch, result)
692
693
            if batch.is_empty():
                self.running_batch = None
Lianmin Zheng's avatar
Lianmin Zheng committed
694
695
696
697
698
699
        else:
            self.process_batch_result_prefill(batch, result)

    def process_batch_result_prefill(self, batch: ScheduleBatch, result):
        if self.is_generation:
            logits_output, next_token_ids = result
700
701
702
703
            if batch.sampling_info.penalizer_orchestrator:
                batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
                    next_token_ids
                )
704

Lianmin Zheng's avatar
Lianmin Zheng committed
705
            if logits_output:
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
                # Move logprobs to cpu
                if logits_output.next_token_logprobs is not None:
                    logits_output.next_token_logprobs = (
                        logits_output.next_token_logprobs[
                            torch.arange(
                                len(next_token_ids), device=next_token_ids.device
                            ),
                            next_token_ids,
                        ].tolist()
                    )
                    logits_output.input_token_logprobs = (
                        logits_output.input_token_logprobs.tolist()
                    )
                    logits_output.normalized_prompt_logprobs = (
                        logits_output.normalized_prompt_logprobs.tolist()
                    )

Lianmin Zheng's avatar
Lianmin Zheng committed
723
            next_token_ids = next_token_ids.tolist()
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

            # Check finish conditions
            logprob_pt = 0
            for i, req in enumerate(batch.reqs):
                if req is not self.current_inflight_req:
                    # Inflight reqs' prefill is not finished
                    req.completion_tokens_wo_jump_forward += 1
                    req.output_ids.append(next_token_ids[i])
                    req.check_finished()

                if req.regex_fsm is not None:
                    req.regex_fsm_state = req.regex_fsm.get_next_state(
                        req.regex_fsm_state, next_token_ids[i]
                    )

                if req.finished():
                    self.tree_cache.cache_finished_req(req)
Lianmin Zheng's avatar
Lianmin Zheng committed
741
                elif req not in batch.decoding_reqs:
742
743
744
745
746
747
748
749
750
751
752
                    # To reduce overhead, only cache prefill reqs
                    self.tree_cache.cache_unfinished_req(req)

                if req is self.current_inflight_req:
                    # Inflight request would get a new req idx
                    self.req_to_token_pool.free(req.req_pool_idx)

                if req.return_logprob:
                    logprob_pt += self.add_logprob_return_values(
                        i, req, logprob_pt, next_token_ids, logits_output
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
753
        else:  # embedding or reward model
754
            assert batch.extend_num_tokens != 0
755
            embeddings = result.tolist()
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774

            # Check finish conditions
            for i, req in enumerate(batch.reqs):
                req.embedding = embeddings[i]
                if req is not self.current_inflight_req:
                    # Inflight reqs' prefill is not finished
                    # dummy output token for embedding models
                    req.output_ids.append(0)
                    req.check_finished()

                if req.finished():
                    self.tree_cache.cache_finished_req(req)
                else:
                    self.tree_cache.cache_unfinished_req(req)

                if req is self.current_inflight_req:
                    # Inflight request would get a new req idx
                    self.req_to_token_pool.free(req.req_pool_idx)

775
        self.stream_output(batch)
776

Lianmin Zheng's avatar
Lianmin Zheng committed
777
778
    def process_batch_result_decode(self, batch: ScheduleBatch, result):
        logits_output, next_token_ids = result
779
780
781
782
        if batch.sampling_info.penalizer_orchestrator:
            batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
                next_token_ids
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
        self.num_generated_tokens += len(batch.reqs)

        # Move logprobs to cpu
        if logits_output.next_token_logprobs is not None:
            next_token_logprobs = logits_output.next_token_logprobs[
                torch.arange(len(next_token_ids), device=next_token_ids.device),
                next_token_ids,
            ].tolist()

        next_token_ids = next_token_ids.tolist()

        # Check finish condition
        for i, (req, next_token_id) in enumerate(zip(batch.reqs, next_token_ids)):
            req.completion_tokens_wo_jump_forward += 1
            req.output_ids.append(next_token_id)
            req.check_finished()

            if req.regex_fsm is not None:
                req.regex_fsm_state = req.regex_fsm.get_next_state(
                    req.regex_fsm_state, next_token_id
                )

            if req.finished():
                self.tree_cache.cache_finished_req(req)

            if req.return_logprob:
                req.output_token_logprobs.append(
                    (next_token_logprobs[i], next_token_id)
                )
                if req.top_logprobs_num > 0:
                    req.output_top_logprobs.append(logits_output.output_top_logprobs[i])

815
        self.stream_output(batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
816

817
818
819
820
        self.decode_forward_ct = (self.decode_forward_ct + 1) % (1 << 30)
        if self.tp_rank == 0 and self.decode_forward_ct % 40 == 0:
            self.print_decode_stats()

821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
    def add_logprob_return_values(
        self,
        i: int,
        req: Req,
        pt: int,
        next_token_ids: List[int],
        output: LogitsProcessorOutput,
    ):
        """Attach logprobs to the return values."""
        req.output_token_logprobs.append(
            (output.next_token_logprobs[i], next_token_ids[i])
        )

        # If logprob_start_len > 0, then first logprob_start_len prompt tokens will be ignored.
        num_input_logprobs = req.extend_input_len - req.extend_logprob_start_len

        if req.normalized_prompt_logprob is None:
            req.normalized_prompt_logprob = output.normalized_prompt_logprobs[i]

        if req.input_token_logprobs is None:
            input_token_logprobs = output.input_token_logprobs[
                pt : pt + num_input_logprobs - 1 - req.last_update_decode_tokens
            ]
            input_token_ids = req.fill_ids[
                len(req.fill_ids)
                - num_input_logprobs
                + 1 : len(req.fill_ids)
                - req.last_update_decode_tokens
            ]
            req.input_token_logprobs = list(zip(input_token_logprobs, input_token_ids))

            if (
                req.logprob_start_len == 0
            ):  # The first token does not have logprob, pad it.
                req.input_token_logprobs = [
                    (None, req.fill_ids[0])
                ] + req.input_token_logprobs

        if req.last_update_decode_tokens != 0:
            # Some decode tokens are re-computed in an extend batch
            req.output_token_logprobs.extend(
                list(
                    zip(
                        output.input_token_logprobs[
                            pt
                            + num_input_logprobs
                            - 1
                            - req.last_update_decode_tokens : pt
                            + num_input_logprobs
                            - 1
                        ],
                        req.fill_ids[
                            len(req.fill_ids)
                            - req.last_update_decode_tokens : len(req.fill_ids)
                        ],
                    )
                )
            )

        if req.top_logprobs_num > 0:
            if req.input_top_logprobs is None:
                req.input_top_logprobs = output.input_top_logprobs[i]
                if req.logprob_start_len == 0:
                    req.input_top_logprobs = [None] + req.input_top_logprobs

            if req.last_update_decode_tokens != 0:
                req.output_top_logprobs.extend(
                    output.input_top_logprobs[i][-req.last_update_decode_tokens :]
                )
            req.output_top_logprobs.append(output.output_top_logprobs[i])

        return num_input_logprobs

894
    def stream_output(self, batch: ScheduleBatch):
895
896
897
898
899
900
901
902
903
904
        output_rids = []
        output_meta_info = []
        output_finished_reason: List[BaseFinishReason] = []
        if self.is_generation:
            output_vids = []
            decoded_texts = []
            output_read_ids = []
            output_read_offsets = []
            output_skip_special_tokens = []
            output_spaces_between_special_tokens = []
905
            output_no_stop_trim = []
Lianmin Zheng's avatar
Lianmin Zheng committed
906
        else:  # embedding or reward model
907
908
            output_embeddings = []

909
        for req in batch.reqs:
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
            if req.finished() or (
                req.stream
                and (
                    self.decode_forward_ct % self.stream_interval == 0
                    or len(req.output_ids) == 1
                )
            ):
                output_rids.append(req.rid)
                output_finished_reason.append(req.finished_reason)
                if self.is_generation:
                    output_vids.append(req.vid)
                    decoded_texts.append(req.decoded_text)
                    read_ids, read_offset = req.init_incremental_detokenize()
                    output_read_ids.append(read_ids)
                    output_read_offsets.append(read_offset)
                    output_skip_special_tokens.append(
                        req.sampling_params.skip_special_tokens
                    )
                    output_spaces_between_special_tokens.append(
                        req.sampling_params.spaces_between_special_tokens
                    )
931
                    output_no_stop_trim.append(req.sampling_params.no_stop_trim)
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

                    meta_info = {
                        "prompt_tokens": len(req.origin_input_ids),
                        "completion_tokens": len(req.output_ids),
                        "completion_tokens_wo_jump_forward": req.completion_tokens_wo_jump_forward,
                        "finish_reason": (
                            req.finished_reason.to_json()
                            if req.finished_reason is not None
                            else None
                        ),
                    }
                    if req.return_logprob:
                        (
                            meta_info["input_token_logprobs"],
                            meta_info["output_token_logprobs"],
                            meta_info["input_top_logprobs"],
                            meta_info["output_top_logprobs"],
                            meta_info["normalized_prompt_logprob"],
                        ) = (
                            req.input_token_logprobs,
                            req.output_token_logprobs,
                            req.input_top_logprobs,
                            req.output_top_logprobs,
                            req.normalized_prompt_logprob,
                        )
                    output_meta_info.append(meta_info)
Lianmin Zheng's avatar
Lianmin Zheng committed
958
                else:  # embedding or reward model
959
960
961
962
963
964
965
966
967
                    output_embeddings.append(req.embedding)
                    meta_info = {
                        "prompt_tokens": len(req.origin_input_ids),
                    }
                    output_meta_info.append(meta_info)

        # Send to detokenizer
        if output_rids:
            if self.is_generation:
968
                self.send_to_detokenizer.send_pyobj(
969
970
971
972
973
974
975
976
977
978
                    BatchTokenIDOut(
                        output_rids,
                        output_vids,
                        decoded_texts,
                        output_read_ids,
                        output_read_offsets,
                        output_skip_special_tokens,
                        output_spaces_between_special_tokens,
                        output_meta_info,
                        output_finished_reason,
979
                        output_no_stop_trim,
980
981
                    )
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
982
            else:  # embedding or reward model
983
                self.send_to_detokenizer.send_pyobj(
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
                    BatchEmbeddingOut(
                        output_rids,
                        output_embeddings,
                        output_meta_info,
                        output_finished_reason,
                    )
                )

    def flush_cache(self):
        if len(self.waiting_queue) == 0 and (
            self.running_batch is None or len(self.running_batch.reqs) == 0
        ):
            self.tree_cache.reset()
            self.tree_cache_metrics = {"total": 0, "hit": 0}
            self.regex_fsm_cache.reset()
            self.req_to_token_pool.clear()
            self.token_to_kv_pool.clear()
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
                f"#running-req: {0 if self.running_batch is None else len(self.running_batch.reqs)}"
            )
            if_success = False
        return if_success

    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
        to_del = None
        for i, req in enumerate(self.waiting_queue):
            if req.rid == recv_req.rid:
                to_del = i
                break

        if to_del is not None:
            del self.waiting_queue[to_del]

        # Delete requests in the running batch
        if self.running_batch:
            for req in self.running_batch.reqs:
                if req.rid == recv_req.rid:
                    req.finished_reason = FINISH_ABORT()
                    break

    def update_weights(self, recv_req: UpdateWeightReqInput):
        success, message = self.tp_worker.update_weights(recv_req)
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
        return success, message

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
    def start_profile(self) -> None:
        if self.profiler is None:
            raise RuntimeError("Profiler is not enabled.")
        self.profiler.start()

    def stop_profile(self) -> None:
        if self.profiler is None:
            raise RuntimeError("Profiler is not enabled.")
        self.profiler.stop()
        self.profiler.export_chrome_trace(
            self.torch_profiler_trace_dir + "/" + str(time.time()) + ".trace.json.gz"
        )
        logger.info("Profiler is done")

1054
1055
1056
1057
1058
1059

def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
1060
    dp_rank: Optional[int],
1061
    pipe_writer,
1062
):
1063
1064
1065
1066
1067
    if dp_rank is None:
        configure_logger(server_args, prefix=f" TP{tp_rank}")
    else:
        configure_logger(server_args, prefix=f" DP{dp_rank} TP{tp_rank}")

1068
    suppress_other_loggers()
1069
1070
1071
1072

    try:
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank)
        pipe_writer.send("ready")
1073
        scheduler.event_loop_normal()
1074
1075
1076
1077
    except Exception:
        msg = get_exception_traceback()
        logger.error(msg)
        kill_parent_process()