scheduler.py 78.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import faulthandler
17
import logging
18
import os
19
import signal
20
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
21
import threading
22
23
import time
import warnings
24
from collections import defaultdict, deque
Lianmin Zheng's avatar
Lianmin Zheng committed
25
from concurrent import futures
26
from dataclasses import dataclass
27
from http import HTTPStatus
28
from types import SimpleNamespace
29
from typing import Dict, List, Optional, Tuple, Union
30

31
import psutil
32
import setproctitle
33
import torch
34
import zmq
35
from torch.distributed import barrier
36

37
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
38
from sglang.srt.configs.model_config import ModelConfig
39
from sglang.srt.constrained.base_grammar_backend import create_grammar_backend
Byron Hsu's avatar
Byron Hsu committed
40
41
42
43
44
45
46
47
48
49
50
51
52
from sglang.srt.disaggregation.decode import (
    DecodePreallocQueue,
    DecodeTransferQueue,
    SchedulerDisaggregationDecodeMixin,
)
from sglang.srt.disaggregation.prefill import (
    PrefillBootstrapQueue,
    SchedulerDisaggregationPrefillMixin,
)
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
    ReqToMetadataIdxAllocator,
)
53
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
54
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
55
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
56
from sglang.srt.managers.expert_distribution import ExpertDistributionRecorder
57
58
from sglang.srt.managers.io_struct import (
    AbortReq,
59
    CloseSessionReqInput,
60
    ExpertDistributionReq,
61
    ExpertDistributionReqOutput,
62
    FlushCacheReq,
63
64
    GetInternalStateReq,
    GetInternalStateReqOutput,
65
66
    GetWeightsByNameReqInput,
    GetWeightsByNameReqOutput,
67
    HealthCheckOutput,
68
69
    InitWeightsUpdateGroupReqInput,
    InitWeightsUpdateGroupReqOutput,
70
71
    OpenSessionReqInput,
    OpenSessionReqOutput,
72
    ProfileReq,
73
74
    ProfileReqOutput,
    ProfileReqType,
75
76
77
78
    ReleaseMemoryOccupationReqInput,
    ReleaseMemoryOccupationReqOutput,
    ResumeMemoryOccupationReqInput,
    ResumeMemoryOccupationReqOutput,
79
80
    RpcReqInput,
    RpcReqOutput,
81
82
    SetInternalStateReq,
    SetInternalStateReqOutput,
83
84
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
Chayenne's avatar
Chayenne committed
85
86
    UpdateWeightFromDiskReqInput,
    UpdateWeightFromDiskReqOutput,
87
88
    UpdateWeightsFromDistributedReqInput,
    UpdateWeightsFromDistributedReqOutput,
89
90
    UpdateWeightsFromTensorReqInput,
    UpdateWeightsFromTensorReqOutput,
91
92
93
)
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
Mick's avatar
Mick committed
94
    MultimodalInputs,
95
96
    Req,
    ScheduleBatch,
97
    global_server_args_dict,
98
)
99
100
101
102
103
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
104
105
106
from sglang.srt.managers.scheduler_output_processor_mixin import (
    SchedulerOutputProcessorMixin,
)
107
from sglang.srt.managers.session_controller import Session
108
from sglang.srt.managers.tp_worker import TpModelWorker
109
from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient
110
from sglang.srt.managers.utils import validate_input_length
111
from sglang.srt.mem_cache.chunk_cache import ChunkCache
112
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
113
from sglang.srt.mem_cache.radix_cache import RadixCache
114
from sglang.srt.metrics.collector import SchedulerMetricsCollector, SchedulerStats
Mick's avatar
Mick committed
115
from sglang.srt.model_executor.forward_batch_info import ForwardMode
116
from sglang.srt.reasoning_parser import ReasoningParser
117
from sglang.srt.server_args import PortArgs, ServerArgs
118
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
119
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
120
from sglang.srt.utils import (
121
    DynamicGradMode,
122
123
    broadcast_pyobj,
    configure_logger,
124
    crash_on_warnings,
125
    get_bool_env_var,
126
    get_zmq_socket,
Lianmin Zheng's avatar
Lianmin Zheng committed
127
    kill_itself_when_parent_died,
128
    pyspy_dump_schedulers,
129
    set_gpu_proc_affinity,
130
131
132
    set_random_seed,
    suppress_other_loggers,
)
133
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
134

135
136
expert_distribution_recorder = ExpertDistributionRecorder()

137
138
logger = logging.getLogger(__name__)

139
# Test retract decode for debugging purposes
140
141
TEST_RETRACT = get_bool_env_var("SGLANG_TEST_RETRACT")
RECORD_STEP_TIME = get_bool_env_var("SGLANG_RECORD_STEP_TIME")
142

143

144
145
146
147
@dataclass
class GenerationBatchResult:
    logits_output: LogitsProcessorOutput
    next_token_ids: List[int]
148
149
    extend_input_len_per_req: List[int]
    extend_logprob_start_len_per_req: List[int]
150
151
152
153
154
155
156
157
158
    bid: int


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor
    bid: int


Byron Hsu's avatar
Byron Hsu committed
159
160
161
162
163
class Scheduler(
    SchedulerOutputProcessorMixin,
    SchedulerDisaggregationDecodeMixin,
    SchedulerDisaggregationPrefillMixin,
):
164
165
166
167
168
169
170
171
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
172
        dp_rank: Optional[int],
173
174
    ):
        # Parse args
175
        self.server_args = server_args
176
177
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
178
179
180
        self.schedule_policy = server_args.schedule_policy
        self.lora_paths = server_args.lora_paths
        self.max_loras_per_batch = server_args.max_loras_per_batch
181
        self.enable_overlap = not server_args.disable_overlap_schedule
182
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
183
        self.enable_metrics = server_args.enable_metrics
184
        self.stream_interval = server_args.stream_interval
185
186
187
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
188
189
        self.gpu_id = gpu_id
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
Lianmin Zheng's avatar
Lianmin Zheng committed
190
        self.page_size = server_args.page_size
191

192
        # Distributed rank info
193
194
195
196
197
198
199
200
201
202
        self.dp_size = server_args.dp_size
        self.attn_tp_rank, self.attn_tp_size, self.dp_rank = (
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

203
204
        # Init inter-process communication
        context = zmq.Context(2)
205
        if self.attn_tp_rank == 0:
206
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
207
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
208
            )
209
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
210
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
211
            )
212

213
            if server_args.skip_tokenizer_init:
214
                # Directly send to the TokenizerManager
215
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
216
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
217
218
                )
            else:
219
                # Send to the DetokenizerManager
220
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
221
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
222
                )
223
224
225
226

            self.recv_from_rpc = get_zmq_socket(
                context, zmq.DEALER, port_args.rpc_ipc_name, False
            )
227
        else:
228
            self.recv_from_tokenizer = None
229
            self.recv_from_rpc = None
230
231
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
232
233

        # Init tokenizer
234
        self.init_tokenizer()
235

236
237
238
239
240
241
242
243
244
        # Set reasoning_parser and think_end_id if --reasoning_parser is enabled
        if self.server_args.reasoning_parser and self.tokenizer:
            reasoning_parser = ReasoningParser(
                model_type=self.server_args.reasoning_parser, stream_reasoning=False
            )
            self.tokenizer.think_end_id = self.tokenizer.encode(
                reasoning_parser.detector.think_end_token, add_special_tokens=False
            )[0]

245
246
247
248
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
249
250
251
252
        if self.model_config.is_multimodal:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for multimodal models.")

253
        # Launch a tensor parallel worker
254
        if self.enable_overlap:
255
            TpWorkerClass = TpModelWorkerClient
256
257
        else:
            TpWorkerClass = TpModelWorker
258

259
        self.tp_worker = TpWorkerClass(
260
            server_args=server_args,
261
262
            gpu_id=gpu_id,
            tp_rank=tp_rank,
263
            dp_rank=dp_rank,
264
            nccl_port=port_args.nccl_port,
265
        )
266

267
        # Launch a draft worker for speculative decoding
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        else:
            self.draft_worker = None

282
        # Get token and memory info from the model worker
283
284
285
286
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
287
            self.max_req_len,
288
289
            self.max_req_input_len,
            self.random_seed,
290
            self.device,
291
292
293
294
295
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
296
        self.tp_cpu_group = self.tp_worker.get_tp_cpu_group()
297
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
298
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
299
        global_server_args_dict.update(worker_global_server_args_dict)
300
        set_random_seed(self.random_seed)
301

302
303
304
        # Print debug info
        logger.info(
            f"max_total_num_tokens={self.max_total_num_tokens}, "
305
            f"chunked_prefill_size={server_args.chunked_prefill_size}, "
306
307
308
309
310
            f"max_prefill_tokens={self.max_prefill_tokens}, "
            f"max_running_requests={self.max_running_requests}, "
            f"context_len={self.model_config.context_len}"
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
311
        # Init memory pool and cache
312
        self.init_memory_pool_and_cache()
313
314
315

        # Init running status
        self.waiting_queue: List[Req] = []
316
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
317
        self.running_batch: ScheduleBatch = ScheduleBatch(reqs=[], batch_is_full=False)
318
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
319
        self.cur_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
320
        # The last forward batch
321
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
322
323
        self.forward_ct = 0
        self.forward_ct_decode = 0
324
        self.num_generated_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
325
        self.num_prefill_tokens = 0
326
        self.last_decode_stats_tic = time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
327
        self.last_prefill_stats_tic = time.time()
328
        self.return_health_check_ct = 0
329
        self.current_stream = torch.get_device_module(self.device).current_stream()
330
331
        if self.device == "cpu":
            self.current_stream.synchronize = lambda: None  # No-op for CPU
332

333
        # Init session info
334
        self.sessions: Dict[str, Session] = {}
335
336
337

        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
338
339
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
340
        self.chunked_req = None
341
342
343
344
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
345
        # Init the grammar backend for constrained generation
346
        self.grammar_queue: List[Req] = []
347
        if not server_args.skip_tokenizer_init:
348
349
350
            self.grammar_backend = create_grammar_backend(
                server_args, self.tokenizer, self.model_config.vocab_size
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
351
352
        else:
            self.grammar_backend = None
353

354
        # Init schedule policy and new token estimation
355
        self.policy = SchedulePolicy(
Lianmin Zheng's avatar
Lianmin Zheng committed
356
357
358
            self.schedule_policy,
            self.tree_cache,
            self.enable_hierarchical_cache,
359
        )
360
361
362
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
363
364
        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
365
366
            * server_args.schedule_conservativeness,
            1.0,
367
        )
368
369
370
371
372
373
374
375
376
377
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
378
379
380
381
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
382
        self.parent_process = psutil.Process().parent()
Lianmin Zheng's avatar
Lianmin Zheng committed
383

384
        # Init memory saver
385
386
387
388
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )

389
        # Init profiler
390
391
        self.torch_profiler = None
        self.torch_profiler_output_dir: Optional[str] = None
392
        self.profiler_activities: Optional[List[str]] = None
393
        self.profiler_target_forward_ct: Optional[int] = None
394

395
        # Init metrics stats
396
        self.init_metrics()
397

398
399
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
400
401
402
403
404
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
                (FlushCacheReq, self.flush_cache_wrapped),
                (AbortReq, self.abort_request),
405
406
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
407
408
409
410
411
412
413
414
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
415
416
                (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
                (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
417
                (ProfileReq, self.profile),
418
                (GetInternalStateReq, self.get_internal_state),
419
                (SetInternalStateReq, self.set_internal_state),
420
                (RpcReqInput, self.handle_rpc_request),
421
                (ExpertDistributionReq, self.expert_distribution_handle),
422
423
424
            ]
        )

Byron Hsu's avatar
Byron Hsu committed
425
426
427
428
429
        self.disaggregation_mode = DisaggregationMode(
            self.server_args.disaggregation_mode
        )
        self.init_disaggregation()

430
431
    def init_tokenizer(self):
        server_args = self.server_args
Lianmin Zheng's avatar
Lianmin Zheng committed
432

433
434
435
436
437
438
439
440
441
442
443
        self.model_config = ModelConfig(
            server_args.model_path,
            trust_remote_code=server_args.trust_remote_code,
            revision=server_args.revision,
            context_length=server_args.context_length,
            model_override_args=server_args.json_model_override_args,
            is_embedding=server_args.is_embedding,
            dtype=server_args.dtype,
            quantization=server_args.quantization,
        )
        self.is_generation = self.model_config.is_generation
444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if self.model_config.is_multimodal:
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )
                self.tokenizer = self.processor.tokenizer
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )

    def init_memory_pool_and_cache(self):
        server_args = self.server_args

        self.req_to_token_pool, self.token_to_kv_pool_allocator = (
            self.tp_worker.get_memory_pool()
        )

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
            self.tree_cache = ChunkCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
            )
        else:
            if self.enable_hierarchical_cache:
                self.tree_cache = HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
484
                    tp_cache_group=self.tp_worker.get_tp_cpu_group(),
485
                    page_size=self.page_size,
486
                    hicache_ratio=server_args.hicache_ratio,
487
488
489
490
491
                )
            else:
                self.tree_cache = RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
492
                    page_size=self.page_size,
493
494
495
496
497
498
499
500
501
502
503
504
505
                    disable=server_args.disable_radix_cache,
                )

        self.decode_mem_cache_buf_multiplier = (
            1
            if self.spec_algorithm.is_none()
            else (
                server_args.speculative_num_draft_tokens
                + (
                    server_args.speculative_eagle_topk
                    * server_args.speculative_num_steps
                )
            )
506
        )
507
508
509
510
511
512
513

    def init_metrics(self):
        # The largest prefill length of a single request
        self._largest_prefill_len: int = 0
        # The largest context length (prefill + generation) of a single request
        self._largest_prefill_decode_len: int = 0
        self.last_gen_throughput: float = 0.0
Lianmin Zheng's avatar
Lianmin Zheng committed
514
        self.last_input_throughput: float = 0.0
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        self.step_time_dict = defaultdict(list)  # Dict[batch size -> step time]
        self.spec_num_total_accepted_tokens = 0
        self.spec_num_total_forward_ct = 0
        self.cum_spec_accept_length = 0
        self.cum_spec_accept_count = 0
        self.stats = SchedulerStats()
        if self.enable_metrics:
            engine_type = "unified"
            self.metrics_collector = SchedulerMetricsCollector(
                labels={
                    "model_name": self.server_args.served_model_name,
                    "engine_type": engine_type,
                },
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
529

Byron Hsu's avatar
Byron Hsu committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    def init_disaggregation(self):
        if (
            self.disaggregation_mode == DisaggregationMode.DECODE
        ):  # *2 for the headroom.
            buffer_size = (self.req_to_token_pool.size) * 2
            req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
                buffer_size
            )
            aux_dtype = torch.int32
            # A list of metadata buffers. The shape is (b, metadata_size) where
            # b corresponds to a max running requests. The last shape * dtype.itemsize
            # should be larger than 64 bytes to work with RDMA, so we pad it.
            output_id_buffer = torch.zeros(
                (buffer_size, 16), dtype=aux_dtype, device="cpu"
            )
            metadata_buffers = [output_id_buffer]

            # The decode requests polling kv cache
            self.disagg_decode_transfer_queue = DecodeTransferQueue(
                gloo_group=self.tp_worker.get_attention_tp_cpu_group(),
                req_to_metadata_buffer_idx_allocator=req_to_metadata_buffer_idx_allocator,
                metadata_buffers=metadata_buffers,
            )

            # The decode requests pending for pre-allocation
            self.disagg_decode_prealloc_queue = DecodePreallocQueue(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                req_to_metadata_buffer_idx_allocator=req_to_metadata_buffer_idx_allocator,
                metadata_buffers=metadata_buffers,
                aux_dtype=aux_dtype,
                scheduler=self,
                transfer_queue=self.disagg_decode_transfer_queue,
                tree_cache=self.tree_cache,
                gloo_group=self.tp_worker.get_attention_tp_cpu_group(),
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
            )
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            # *2 for the headroom.
            buffer_size = self.max_running_requests * 2
            req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
                buffer_size
            )
            aux_dtype = torch.int32
            # A list of metadata buffers. The shape is (b, metadata_size) where
            # b corresponds to a max running requests. The last shape * dtype.itemsize
            # should be larger than 64 bytes to work with RDMA, so we pad it.
            output_id_buffer = torch.zeros(
                (buffer_size, 16), dtype=aux_dtype, device="cpu"
            )
            metadata_buffers = [output_id_buffer]

            self.disagg_prefill_pending_queue = PrefillBootstrapQueue(
                token_to_kv_pool=self.token_to_kv_pool_allocator.get_kvcache(),
                req_to_metadata_buffer_idx_allocator=req_to_metadata_buffer_idx_allocator,
                metadata_buffers=metadata_buffers,
                aux_dtype=aux_dtype,
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
                gloo_group=self.tp_worker.get_attention_tp_cpu_group(),
            )
            # The prefill requests that are in the middle of kv sending
            self.disagg_prefill_infight_queue: List[Req] = []

597
    @DynamicGradMode()
598
    def event_loop_normal(self):
599
        """A normal scheduler loop."""
600
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
601
602
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
603

604
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
605
            self.cur_batch = batch
606
607
608
609

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
610
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
611
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
612
                self.check_memory()
613
                self.new_token_ratio = self.init_new_token_ratio
614
615

            self.last_batch = batch
616

617
    @DynamicGradMode()
Lianmin Zheng's avatar
Lianmin Zheng committed
618
    def event_loop_overlap(self):
619
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
620
        self.result_queue = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
621
622
623
624
625
626
627

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
628

Lianmin Zheng's avatar
Lianmin Zheng committed
629
630
            if batch:
                result = self.run_batch(batch)
631
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
632

633
                if self.last_batch is None:
634
                    # Create a dummy first batch to start the pipeline for overlap schedule.
635
636
637
638
639
640
641
642
                    # It is now used for triggering the sampling_info_done event.
                    tmp_batch = ScheduleBatch(
                        reqs=None,
                        forward_mode=ForwardMode.DUMMY_FIRST,
                        next_batch_sampling_info=self.tp_worker.cur_sampling_info,
                    )
                    self.process_batch_result(tmp_batch, None)

Lianmin Zheng's avatar
Lianmin Zheng committed
643
            if self.last_batch:
644
                # Process the results of the last batch
645
                tmp_batch, tmp_result = self.result_queue.popleft()
646
647
648
                tmp_batch.next_batch_sampling_info = (
                    self.tp_worker.cur_sampling_info if batch else None
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
649
650
                self.process_batch_result(tmp_batch, tmp_result)
            elif batch is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
651
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
652
                self.check_memory()
653
                self.new_token_ratio = self.init_new_token_ratio
Lianmin Zheng's avatar
Lianmin Zheng committed
654
655
656

            self.last_batch = batch

Byron Hsu's avatar
Byron Hsu committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
    @torch.no_grad()
    def event_loop_normal_disagg_prefill(self):
        """A normal scheduler loop for prefill worker in disaggregation mode."""

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
            self.waiting_queue.extend(
                self.disagg_prefill_pending_queue.pop_bootstrapped()
            )
            self.process_prefill_chunk()
            batch = self.get_new_batch_prefill()
            self.cur_batch = batch

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result_disagg_prefill(batch, result)

            if len(self.disagg_prefill_infight_queue) > 0:
                self.process_disagg_prefill_infight_queue()

            if batch is None and len(self.disagg_prefill_infight_queue) == 0:
                self.check_memory()
                self.new_token_ratio = self.init_new_token_ratio

            self.last_batch = batch
            # HACK (byronhsu): reset the batch_is_full flag because we never enter update_running_batch which resets it
            # Otherwise, it hangs under high concurrency
            self.running_batch.batch_is_full = False

    @torch.no_grad()
    def event_loop_normal_disagg_decode(self):
        """A normal scheduler loop for decode worker in disaggregation mode."""

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
            # polling and allocating kv cache
            self.process_decode_queue()
            batch = self.get_next_disagg_decode_batch_to_run()
            self.cur_batch = batch

            if batch:
                # Generate fake extend output.
                if batch.forward_mode.is_extend():
                    # Note: Logprobs should be handled on the prefill engine.
                    self.stream_output(
                        batch.reqs, [False for _ in range(len(batch.reqs))]
                    )
                else:
                    result = self.run_batch(batch)
                    self.process_batch_result(batch, result)

            if batch is None and (
                len(self.disagg_decode_transfer_queue.queue)
                + len(self.disagg_decode_prealloc_queue.queue)
                == 0
            ):
                # When the server is idle, do self-check and re-init some states
                self.check_memory()
                self.new_token_ratio = self.init_new_token_ratio

            self.last_batch = batch

721
722
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
723
        if self.attn_tp_rank == 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
724
725
            recv_reqs = []

726
727
728
729
730
            while True:
                try:
                    recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
731
                recv_reqs.append(recv_req)
732
733
734
735
736
737
738

            while True:
                try:
                    recv_rpc = self.recv_from_rpc.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
                recv_reqs.append(recv_rpc)
Lianmin Zheng's avatar
Lianmin Zheng committed
739
740
        else:
            recv_reqs = None
741

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                attn_tp_rank_0 = self.dp_rank * self.attn_tp_size
                work_reqs = broadcast_pyobj(
                    work_reqs,
                    self.attn_tp_rank,
                    self.attn_tp_cpu_group,
                    src=attn_tp_rank_0,
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
                    control_reqs, self.tp_rank, self.tp_cpu_group
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
776
            recv_reqs = broadcast_pyobj(recv_reqs, self.tp_rank, self.tp_cpu_group)
777
778
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
779
    def process_input_requests(self, recv_reqs: List):
780
        for recv_req in recv_reqs:
781
782
            # If it is a health check generation request and there are running requests, ignore it.
            if is_health_check_generate_req(recv_req) and (
Lianmin Zheng's avatar
Lianmin Zheng committed
783
                self.chunked_req is not None or not self.running_batch.is_empty()
784
785
786
787
            ):
                self.return_health_check_ct += 1
                continue

788
            output = self._request_dispatcher(recv_req)
789
            if output is not None:
790
791
792
793
794
                if isinstance(output, RpcReqOutput):
                    if self.recv_from_rpc is not None:
                        self.recv_from_rpc.send_pyobj(output)
                else:
                    self.send_to_tokenizer.send_pyobj(output)
795
796
797
798
799

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
800
        # Create a new request
801
802
803
804
805
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
Rin Intachuen's avatar
Rin Intachuen committed
806
807
808
809
810
811
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

812
813
814
815
816
817
818
819
820
821
822
823
824
            # Handle custom logit processor passed to the request
            custom_logit_processor = recv_req.custom_logit_processor
            if (
                not self.server_args.enable_custom_logit_processor
                and custom_logit_processor is not None
            ):
                logger.warning(
                    "The SGLang server is not configured to enable custom logit processor."
                    "The custom logit processor passed in will be ignored."
                    "Please set --enable-custom-logits-processor to enable this feature."
                )
                custom_logit_processor = None

825
826
827
828
829
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
830
831
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
832
                token_ids_logprob=recv_req.token_ids_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
833
                stream=recv_req.stream,
834
                lora_path=recv_req.lora_path,
Rin Intachuen's avatar
Rin Intachuen committed
835
                input_embeds=recv_req.input_embeds,
836
                custom_logit_processor=custom_logit_processor,
837
                return_hidden_states=recv_req.return_hidden_states,
838
                eos_token_ids=self.model_config.hf_eos_token_id,
839
840
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
841

842
843
844
845
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
846
                req.finished_reason = FINISH_ABORT(
847
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
848
                )
849
                self._add_request_to_queue(req)
850
851
                return
        else:
852
853
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
854
            req = session.create_req(recv_req, self.tokenizer)
855
            if isinstance(req.finished_reason, FINISH_ABORT):
856
                self._add_request_to_queue(req)
857
                return
858

859
        # Handle multimodal inputs
Mick's avatar
Mick committed
860
861
        if recv_req.mm_inputs is not None:
            image_inputs = MultimodalInputs.from_dict(recv_req.mm_inputs)
862
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
863
            req.origin_input_ids = self.pad_input_ids_func(
864
                req.origin_input_ids, image_inputs
865
            )
866
            req.extend_image_inputs(image_inputs)
867

868
            if len(req.origin_input_ids) >= self.max_req_input_len:
869
                error_msg = (
870
                    "Multimodal prompt is too long after expanding multimodal tokens. "
871
                    f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
872
                )
873
                logger.error(error_msg)
874
                req.origin_input_ids = [0]
Mick's avatar
Mick committed
875
                req.multimodal_inputs = None
876
                req.sampling_params.max_new_tokens = 0
877
                req.finished_reason = FINISH_ABORT(
878
                    error_msg, HTTPStatus.BAD_REQUEST, "BadRequestError"
879
                )
880
                self._add_request_to_queue(req)
881
882
                return

883
884
885
886
887
888
889
        # Validate prompts length
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
890
891
            req.origin_input_ids = [0]
            req.sampling_params.max_new_tokens = 0
892
            self._add_request_to_queue(req)
893
            return
894

895
        # Copy more attributes
896
        if recv_req.logprob_start_len == -1 or not recv_req.return_logprob:
897
898
899
900
901
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(req.origin_input_ids) - 1
        else:
            req.logprob_start_len = recv_req.logprob_start_len

902
903
904
905
906
907
908
909
910
911
        if req.logprob_start_len >= len(req.origin_input_ids):
            req.finished_reason = FINISH_ABORT(
                f"logprob_start_len, ({req.logprob_start_len}) is higher than the number of input tokens ({len(req.origin_input_ids)}). Request with a lower logprob_start_len.",
                HTTPStatus.BAD_REQUEST,
                "BadRequestError",
            )
            req.logprob_start_len = len(req.origin_input_ids) - 1
            self._add_request_to_queue(req)
            return

912
913
914
915
916
917
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
918
            self.max_req_len - len(req.origin_input_ids) - 1,
919
920
        )

921
922
923
924
925
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
926
            or req.sampling_params.ebnf is not None
927
            or req.sampling_params.structural_tag is not None
928
929
930
931
932
933
        ):
            assert self.grammar_backend is not None
            if req.sampling_params.json_schema is not None:
                key = ("json", req.sampling_params.json_schema)
            elif req.sampling_params.regex is not None:
                key = ("regex", req.sampling_params.regex)
934
935
            elif req.sampling_params.ebnf is not None:
                key = ("ebnf", req.sampling_params.ebnf)
936
937
            elif req.sampling_params.structural_tag:
                key = ("structural_tag", req.sampling_params.structural_tag)
938
939
940
941
942
943
944

            req.grammar = self.grammar_backend.get_cached_value(key)
            if not req.grammar:
                req.grammar = self.grammar_backend.get_future_value(key)
                add_to_grammar_queue = True

        if add_to_grammar_queue:
945
946
            self.grammar_queue.append(req)
        else:
947
948
949
            self._add_request_to_queue(req)

    def _add_request_to_queue(self, req: Req):
Byron Hsu's avatar
Byron Hsu committed
950
951
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            self.disagg_prefill_pending_queue.add(req)
952

Byron Hsu's avatar
Byron Hsu committed
953
954
955
956
957
958
959
960
961
962
963
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            self.disagg_decode_prealloc_queue.add(req)

        else:
            self.waiting_queue.append(req)

    def _extend_requests_to_queue(self, reqs: List[Req], is_retracted: bool = False):
        if self.disaggregation_mode == DisaggregationMode.DECODE:
            self.disagg_decode_prealloc_queue.extend(reqs)
        else:
            self.waiting_queue.extend(reqs)
964
965
966

    def handle_embedding_request(
        self,
967
        recv_req: TokenizedEmbeddingReqInput,
968
969
970
971
972
973
974
975
976
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
        )
        req.tokenizer = self.tokenizer

977
978
        # Handle multimodal inputs
        if recv_req.image_inputs is not None:
Mick's avatar
Mick committed
979
            image_inputs = MultimodalInputs.from_dict(recv_req.image_inputs)
980
981
982
983
984
985
986
987
988
989
990
991
992
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
            req.origin_input_ids = self.pad_input_ids_func(
                req.origin_input_ids, image_inputs
            )
            req.extend_image_inputs(image_inputs)

            if len(req.origin_input_ids) >= self.max_req_input_len:
                error_msg = (
                    "Multimodal prompt is too long after expanding multimodal tokens. "
                    f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                )
                logger.error(error_msg)
                req.origin_input_ids = [0]
Mick's avatar
Mick committed
993
                req.multimodal_inputs = None
994
995
996
997
998
999
1000
                req.sampling_params.max_new_tokens = 0
                req.finished_reason = FINISH_ABORT(
                    error_msg, HTTPStatus.BAD_REQUEST, "BadRequestError"
                )
                self.waiting_queue.append(req)
                return

1001
        # Validate prompts length
1002
        error_msg = validate_input_length(
1003
1004
1005
1006
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
1007
        if error_msg:
1008
            self._add_request_to_queue(req)
1009
            return
1010

1011
1012
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
1013
        self._add_request_to_queue(req)
1014

1015
1016
1017
1018
    def log_prefill_stats(
        self,
        adder: PrefillAdder,
        can_run_list: List[Req],
1019
        running_bs: int,
1020
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1021
1022
1023
1024
1025
        gap_latency = time.time() - self.last_prefill_stats_tic
        self.last_prefill_stats_tic = time.time()
        self.last_input_throughput = self.num_prefill_tokens / gap_latency
        self.num_prefill_tokens = 0

1026
        num_used = self.max_total_num_tokens - (
1027
1028
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
1029
        )
1030
1031
1032
        self._largest_prefill_len = max(
            self._largest_prefill_len, adder.log_input_tokens
        )
1033

1034
        f = (
1035
1036
1037
1038
1039
1040
            f"Prefill batch. "
            f"#new-seq: {len(can_run_list)}, "
            f"#new-token: {adder.log_input_tokens}, "
            f"#cached-token: {adder.log_hit_tokens}, "
            f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
            f"#running-req: {running_bs}, "
1041
            f"#queue-req: {len(self.waiting_queue)}, "
1042
        )
1043
        logger.info(f)
1044
1045

        if self.enable_metrics:
1046
1047
1048
            cache_hit_rate = adder.log_hit_tokens / (
                adder.log_input_tokens + adder.log_hit_tokens
            )
1049
1050
1051
            self.stats.num_running_reqs = running_bs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = round(num_used / self.max_total_num_tokens, 2)
1052
1053
            self.stats.num_queue_reqs = len(self.waiting_queue)
            self.stats.cache_hit_rate = cache_hit_rate
1054
1055
1056
            self.metrics_collector.log_stats(self.stats)

    def log_decode_stats(self):
1057
1058
1059
1060
        gap_latency = time.time() - self.last_decode_stats_tic
        self.last_decode_stats_tic = time.time()
        self.last_gen_throughput = self.num_generated_tokens / gap_latency
        self.num_generated_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
1061
        num_running_reqs = len(self.running_batch.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1062
        num_used = self.max_total_num_tokens - (
1063
1064
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1065
        )
1066
1067
1068
1069
1070

        if RECORD_STEP_TIME:
            self.step_time_dict[num_running_reqs].append(
                gap_latency / self.server_args.decode_log_interval
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1071

1072
1073
1074
1075
1076
1077
        if self.spec_algorithm.is_none():
            msg = (
                f"Decode batch. "
                f"#running-req: {num_running_reqs}, "
                f"#token: {num_used}, "
                f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
1078
1079
                f"gen throughput (token/s): {self.last_gen_throughput:.2f}, "
                f"#queue-req: {len(self.waiting_queue)}, "
1080
            )
1081
            spec_accept_length = 0
1082
        else:
1083
            spec_accept_length = (
1084
1085
                self.spec_num_total_accepted_tokens / self.spec_num_total_forward_ct
            )
1086
1087
            self.cum_spec_accept_length += self.spec_num_total_accepted_tokens
            self.cum_spec_accept_count += self.spec_num_total_forward_ct
1088
1089
1090
1091
1092
1093
            self.spec_num_total_accepted_tokens = self.spec_num_total_forward_ct = 0
            msg = (
                f"Decode batch. "
                f"#running-req: {num_running_reqs}, "
                f"#token: {num_used}, "
                f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
1094
                f"accept len: {spec_accept_length:.2f}, "
1095
1096
                f"gen throughput (token/s): {self.last_gen_throughput:.2f}, "
                f"#queue-req: {len(self.waiting_queue)}, "
1097
1098
1099
            )

        logger.info(msg)
1100
1101
1102
1103
        if self.enable_metrics:
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = num_used / self.max_total_num_tokens
1104
1105
            self.stats.cache_hit_rate = 0.0
            self.stats.gen_throughput = self.last_gen_throughput
1106
            self.stats.num_queue_reqs = len(self.waiting_queue)
1107
            self.stats.spec_accept_length = spec_accept_length
1108
1109
            self.metrics_collector.log_stats(self.stats)

Lianmin Zheng's avatar
Lianmin Zheng committed
1110
1111
    def check_memory(self):
        available_size = (
1112
1113
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1114
        )
1115
1116
1117
1118
1119
1120
1121
        protected_size = self.tree_cache.protected_size()
        memory_leak = available_size != (
            self.max_total_num_tokens
            if not self.enable_hierarchical_cache
            else self.max_total_num_tokens - protected_size
        )
        if memory_leak:
1122
            msg = (
1123
                "token_to_kv_pool_allocator memory leak detected! "
1124
                f"{available_size=}, {protected_size=}, {self.max_total_num_tokens=}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1125
1126
                f"{self.token_to_kv_pool_allocator.available_size()=}\n"
                f"{self.tree_cache.evictable_size()=}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1127
            )
1128
1129
1130
            warnings.warn(msg)
            if crash_on_warnings():
                raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1131
1132

        if len(self.req_to_token_pool.free_slots) != self.req_to_token_pool.size:
1133
            msg = (
1134
                "req_to_token_pool memory leak detected!"
1135
1136
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1137
            )
1138
1139
1140
            warnings.warn(msg)
            if crash_on_warnings():
                raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1141

1142
1143
1144
1145
1146
1147
1148
        if (
            self.enable_metrics
            and self.attn_tp_rank == 0
            and time.time() > self.metrics_collector.last_log_time + 30
        ):
            # During idle time, also collect metrics every 30 seconds.
            num_used = self.max_total_num_tokens - (
1149
                self.token_to_kv_pool_allocator.available_size()
1150
1151
                + self.tree_cache.evictable_size()
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1152
            num_running_reqs = len(self.running_batch.reqs)
1153
1154
1155
1156
1157
1158
1159
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = num_used / self.max_total_num_tokens
            self.stats.gen_throughput = 0
            self.stats.num_queue_reqs = len(self.waiting_queue)
            self.metrics_collector.log_stats(self.stats)

1160
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
1161
        # Merge the prefill batch into the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1162
        if self.last_batch and self.last_batch.forward_mode.is_extend():
1163
1164
1165
1166
1167
1168
1169
            if self.chunked_req:
                # Move the chunked request out of the batch so that we can merge
                # only finished requests to running_batch.
                self.last_batch.filter_batch(chunked_req_to_exclude=self.chunked_req)
                self.tree_cache.cache_unfinished_req(self.chunked_req)
                # chunked request keeps its rid but will get a new req_pool_idx
                self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
Lianmin Zheng's avatar
Lianmin Zheng committed
1170
                self.running_batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1171

1172
            # Filter batch
1173
            last_bs = self.last_batch.batch_size()
1174
            self.last_batch.filter_batch()
1175
            if self.last_batch.batch_size() < last_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1176
                self.running_batch.batch_is_full = False
1177

1178
            # Merge the new batch into the running batch
1179
            if not self.last_batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1180
                if self.running_batch.is_empty():
1181
1182
                    self.running_batch = self.last_batch
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1183
                    # Merge running_batch with prefill batch
1184
                    self.running_batch.merge_batch(self.last_batch)
1185

1186
1187
        new_batch = self.get_new_batch_prefill()
        if new_batch is not None:
1188
1189
1190
1191
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
Lianmin Zheng's avatar
Lianmin Zheng committed
1192
            if not self.running_batch.is_empty():
1193
                self.running_batch = self.update_running_batch(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1194
1195
1196
                ret = self.running_batch if not self.running_batch.is_empty() else None
            else:
                ret = None
1197

1198
        # Handle DP attention
1199
        if self.server_args.enable_dp_attention or self.server_args.enable_sp_layernorm:
Lianmin Zheng's avatar
Lianmin Zheng committed
1200
            ret, _ = self.prepare_dp_attn_batch(ret)
1201
1202

        return ret
1203

Lianmin Zheng's avatar
Lianmin Zheng committed
1204
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
1205
        # Check if the grammar is ready in the grammar queue
1206
        if self.grammar_queue:
1207
            self.move_ready_grammar_requests()
1208

Lianmin Zheng's avatar
Lianmin Zheng committed
1209
1210
        # Handle the cases where prefill is not allowed
        if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1211
            self.running_batch.batch_is_full or len(self.waiting_queue) == 0
1212
        ) and self.chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1213
1214
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
1215
        running_bs = len(self.running_batch.reqs)
1216
        if running_bs >= self.max_running_requests:
Lianmin Zheng's avatar
Lianmin Zheng committed
1217
            self.running_batch.batch_is_full = True
1218
1219
            return None

1220
1221
1222
1223
1224
        if self.enable_hierarchical_cache:
            # check for completion of hierarchical cache activities to release memory
            self.tree_cache.writing_check()
            self.tree_cache.loading_check()

1225
1226
1227
        # Get priority queue
        prefix_computed = self.policy.calc_priority(self.waiting_queue)

Lianmin Zheng's avatar
Lianmin Zheng committed
1228
        # Prefill policy
1229
1230
        adder = PrefillAdder(
            self.tree_cache,
1231
            self.token_to_kv_pool_allocator,
1232
1233
1234
1235
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
1236
            running_bs if self.is_mixed_chunk else 0,
1237
1238
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1239
        if self.chunked_req is not None:
1240
1241
            self.chunked_req.init_next_round_input()
            self.chunked_req = adder.add_chunked_req(self.chunked_req)
1242

Lianmin Zheng's avatar
Lianmin Zheng committed
1243
        if self.lora_paths:
Lianmin Zheng's avatar
Lianmin Zheng committed
1244
1245
            lora_set = set([req.lora_path for req in self.running_batch.reqs])

1246
        # Get requests from the waiting queue to a new prefill batch
1247
1248
        for req in self.waiting_queue:
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1249
                self.lora_paths
1250
1251
1252
1253
1254
1255
1256
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1257
                self.running_batch.batch_is_full = True
1258
1259
                break

1260
            if running_bs + len(adder.can_run_list) >= self.max_running_requests:
Lianmin Zheng's avatar
Lianmin Zheng committed
1261
                self.running_batch.batch_is_full = True
1262
                break
1263

1264
1265
1266
1267
            req.init_next_round_input(
                None if prefix_computed else self.tree_cache,
                self.enable_hierarchical_cache,
            )
1268

1269
1270
1271
            res = adder.add_one_req(
                req, self.chunked_req, self.enable_hierarchical_cache
            )
1272
1273
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
1274
1275
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
Lianmin Zheng's avatar
Lianmin Zheng committed
1276
1277
1278
                        self.running_batch.batch_is_full = len(
                            adder.can_run_list
                        ) > 0 or (
1279
1280
1281
1282
                            self.running_batch is not None
                            and not self.running_batch.is_empty()
                        )
                    else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1283
                        self.running_batch.batch_is_full = True
1284
1285
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1286
        # Update waiting queue
1287
        can_run_list: List[Req] = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1288
1289
1290
1291
1292
        if len(can_run_list) == 0:
            return None
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1293

1294
        if self.enable_hierarchical_cache:
1295
            self.tree_cache.ready_to_load_cache()
1296

1297
1298
1299
        if adder.new_chunked_req is not None:
            assert self.chunked_req is None
            self.chunked_req = adder.new_chunked_req
1300

1301
1302
        if self.chunked_req:
            self.chunked_req.is_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1303

1304
        # Print stats
1305
        if self.attn_tp_rank == 0:
1306
            self.log_prefill_stats(adder, can_run_list, running_bs)
1307

Lianmin Zheng's avatar
Lianmin Zheng committed
1308
        # Create a new batch
1309
1310
1311
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
1312
            self.token_to_kv_pool_allocator,
1313
            self.tree_cache,
1314
            self.model_config,
1315
            self.enable_overlap,
1316
            self.spec_algorithm,
1317
            self.server_args.enable_custom_logit_processor,
1318
        )
1319
        new_batch.prepare_for_extend()
1320

Lianmin Zheng's avatar
Lianmin Zheng committed
1321
        # Mixed-style chunked prefill
1322
1323
        if (
            self.is_mixed_chunk
Lianmin Zheng's avatar
Lianmin Zheng committed
1324
            and not self.running_batch.is_empty()
1325
1326
1327
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
1328
1329
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
1330
                self.running_batch.prepare_for_decode()
1331
1332
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1333
1334
1335
            self.running_batch = ScheduleBatch(
                reqs=[], batch_is_full=self.running_batch.batch_is_full
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1336
1337
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1338
1339
1340

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
1341
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
1342
        """Update the current running decoding batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1343
        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1344

1345
1346
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1347
1348
            batch.batch_is_full = False
            return batch
1349

Lianmin Zheng's avatar
Lianmin Zheng committed
1350
        # Check if decode out of memory
1351
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
1352
            TEST_RETRACT and batch.batch_size() > 10
1353
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1354
1355
            old_ratio = self.new_token_ratio

1356
            retracted_reqs, new_token_ratio = batch.retract_decode(self.server_args)
Lianmin Zheng's avatar
Lianmin Zheng committed
1357
            self.new_token_ratio = new_token_ratio
1358

Lianmin Zheng's avatar
Lianmin Zheng committed
1359
1360
1361
1362
1363
            logger.info(
                "Decode out of memory happened. "
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
1364
            self._extend_requests_to_queue(retracted_reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1365
1366
        else:
            self.new_token_ratio = max(
1367
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
1368
1369
1370
                self.min_new_token_ratio,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1371
        if batch.batch_size() < initial_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1372
            batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1373
1374

        # Update batch tensors
1375
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1376
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1377

1378
1379
1380
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
1381
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1382
1383
        self.forward_ct += 1

1384
1385
1386
1387
1388
1389
1390
        # Check profiler
        if (
            self.profiler_target_forward_ct
            and self.profiler_target_forward_ct <= self.forward_ct
        ):
            self.stop_profile()

1391
        # Run forward
1392
        if self.is_generation:
1393
1394
1395
1396
1397
            if self.spec_algorithm.is_none():
                model_worker_batch = batch.get_model_worker_batch()
                logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
                    model_worker_batch
                )
1398
                bid = model_worker_batch.bid
Lianmin Zheng's avatar
Lianmin Zheng committed
1399
            else:
1400
1401
1402
                (
                    logits_output,
                    next_token_ids,
1403
                    bid,
1404
1405
1406
1407
1408
1409
1410
                    num_accepted_tokens,
                ) = self.draft_worker.forward_batch_speculative_generation(batch)
                self.spec_num_total_accepted_tokens += (
                    num_accepted_tokens + batch.batch_size()
                )
                self.spec_num_total_forward_ct += batch.batch_size()
                self.num_generated_tokens += num_accepted_tokens
1411
            batch.output_ids = next_token_ids
1412

1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
            # These 2 values are needed for processing the output, but the values can be
            # modified by overlap schedule. So we have to copy them here so that
            # we can use the correct values in output processing.
            if batch.return_logprob:
                extend_input_len_per_req = [req.extend_input_len for req in batch.reqs]
                extend_logprob_start_len_per_req = [
                    req.extend_logprob_start_len for req in batch.reqs
                ]
            else:
                extend_input_len_per_req = None
                extend_logprob_start_len_per_req = None

1425
1426
1427
            ret = GenerationBatchResult(
                logits_output=logits_output,
                next_token_ids=next_token_ids,
1428
1429
                extend_input_len_per_req=extend_input_len_per_req,
                extend_logprob_start_len_per_req=extend_logprob_start_len_per_req,
1430
                bid=bid,
1431
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1432
1433
1434
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
1435
1436
1437
            ret = EmbeddingBatchResult(
                embeddings=embeddings, bid=model_worker_batch.bid
            )
1438
        return ret
Chayenne's avatar
Chayenne committed
1439

1440
1441
1442
1443
1444
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1445
1446
        if batch.forward_mode.is_decode():
            self.process_batch_result_decode(batch, result)
1447
        elif batch.forward_mode.is_extend():
Lianmin Zheng's avatar
Lianmin Zheng committed
1448
            self.process_batch_result_prefill(batch, result)
1449
1450
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
1451
                self.tp_worker.resolve_batch_result(result.bid)
1452
1453
1454
1455
                if batch.next_batch_sampling_info:
                    batch.next_batch_sampling_info.update_regex_vocab_mask()
                    self.current_stream.synchronize()
                    batch.next_batch_sampling_info.sampling_info_done.set()
1456
1457
        elif batch.forward_mode.is_dummy_first():
            batch.next_batch_sampling_info.update_regex_vocab_mask()
1458
            self.current_stream.synchronize()
1459
            batch.next_batch_sampling_info.sampling_info_done.set()
Lianmin Zheng's avatar
Lianmin Zheng committed
1460

1461
1462
1463
1464
1465
1466
1467
        if self.return_health_check_ct:
            # Return some signal for the health check.
            # This is used to prevent the health check signal being blocked by long context prefill.
            # However, one minor issue is that this code path does not check the status of detokenizer manager.
            self.return_health_check_ct -= 1
            self.send_to_tokenizer.send_pyobj(HealthCheckOutput())

1468
1469
1470
1471
    def prepare_dp_attn_batch(self, local_batch: ScheduleBatch):
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
1472
            global_num_tokens_for_logprob = 0
1473
1474
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1475
1476
1477
            if not self.spec_algorithm.is_none() and self.spec_algorithm.is_eagle():
                num_tokens = num_tokens * self.server_args.speculative_num_draft_tokens
            global_num_tokens_for_logprob = num_tokens
1478
1479
        else:
            num_tokens = local_batch.extend_num_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
            global_num_tokens_for_logprob = sum(
                [
                    # We should have at least 1 token for sample in every case.
                    max(extend_len - logprob_start_len, 1)
                    for logprob_start_len, extend_len in zip(
                        local_batch.extend_logprob_start_lens, local_batch.extend_lens
                    )
                ]
            )

        if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
            can_cuda_graph = 1
        else:
            can_cuda_graph = 0

        if not self.spec_algorithm.is_none():
            # TODO(sang): Support cuda graph when idle batch is there.
            if local_batch is None or local_batch.forward_mode.is_idle():
                can_cuda_graph = 0
1499

Lianmin Zheng's avatar
Lianmin Zheng committed
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
        is_extend_in_batch = (
            local_batch.forward_mode.is_extend() if local_batch else False
        )
        local_info = torch.tensor(
            [
                num_tokens,
                can_cuda_graph,
                global_num_tokens_for_logprob,
                is_extend_in_batch,
            ],
            dtype=torch.int64,
        )
        global_info = torch.empty(
            (self.server_args.dp_size, self.attn_tp_size, 4),
            dtype=torch.int64,
        )
1516
        torch.distributed.all_gather_into_tensor(
Lianmin Zheng's avatar
Lianmin Zheng committed
1517
1518
            global_info.flatten(),
            local_info,
1519
1520
            group=self.tp_cpu_group,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1521
1522
1523
1524
        global_num_tokens = global_info[:, 0, 0].tolist()
        can_cuda_graph = min(global_info[:, 0, 1].tolist())
        global_num_tokens_for_logprob = global_info[:, 0, 2].tolist()
        is_extend_in_batch = global_info[:, 0, 3].tolist()
1525

Lianmin Zheng's avatar
Lianmin Zheng committed
1526
        if local_batch is None and max(global_num_tokens) > 0:
1527
1528
1529
            local_batch = self.get_idle_batch()

        if local_batch is not None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1530
1531
            local_batch.global_num_tokens = global_num_tokens
            local_batch.global_num_tokens_for_logprob = global_num_tokens_for_logprob
1532
1533
1534

            # Check forward mode for cuda graph
            if not self.server_args.disable_cuda_graph:
Lianmin Zheng's avatar
Lianmin Zheng committed
1535
                local_batch.can_run_dp_cuda_graph = can_cuda_graph
1536

Lianmin Zheng's avatar
Lianmin Zheng committed
1537
        return local_batch, any(is_extend_in_batch)
1538
1539
1540
1541
1542

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
1543
            self.token_to_kv_pool_allocator,
1544
1545
1546
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
1547
            self.spec_algorithm,
1548
            self.server_args.enable_custom_logit_processor,
1549
1550
1551
1552
        )
        idle_batch.prepare_for_idle()
        return idle_batch

1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
        num_ready_reqs = 0
        for req in self.grammar_queue:
            try:
                req.grammar = req.grammar.result(timeout=0.05)
                num_ready_reqs += 1
            except futures._base.TimeoutError:
                break

1563
        if self.server_args.enable_dp_attention:
1564
1565
            tp_size = self.attn_tp_size
            tp_group = self.attn_tp_cpu_group
1566
        else:
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
            tp_size = self.tp_size
            tp_group = self.tp_cpu_group

        if tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
            tensor = torch.tensor(num_ready_reqs, dtype=torch.int32)
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=tp_group
            )
            num_ready_reqs_max = tensor.item()
            for i in range(num_ready_reqs, num_ready_reqs_max):
                self.grammar_queue[i].grammar = self.grammar_queue[i].grammar.result()
            num_ready_reqs = num_ready_reqs_max
1580

1581
        self._extend_requests_to_queue(self.grammar_queue[:num_ready_reqs])
1582
1583
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
    def watchdog_thread(self):
        """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
        self.watchdog_last_forward_ct = 0
        self.watchdog_last_time = time.time()

        while True:
            current = time.time()
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
                    if current > self.watchdog_last_time + self.watchdog_timeout:
                        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)

        # Print batch size and memory pool info to check whether there are de-sync issues.
        logger.error(
            f"{self.cur_batch.batch_size()=}, "
            f"{self.cur_batch.reqs=}, "
            f"{self.token_to_kv_pool_allocator.available_size()=}, "
            f"{self.tree_cache.evictable_size()=}, "
        )
        # Wait for some time so that the parent process can print the error.
        pyspy_dump_schedulers()
        print(file=sys.stderr, flush=True)
        print(file=sys.stdout, flush=True)
        time.sleep(5)
        self.parent_process.send_signal(signal.SIGQUIT)

1615
1616
1617
    def flush_cache_wrapped(self, recv_req: FlushCacheReq):
        self.flush_cache()

1618
    def flush_cache(self):
1619
        """Flush the memory pool and cache."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1620
        if len(self.waiting_queue) == 0 and self.running_batch.is_empty():
1621
1622
            self.cur_batch = None
            self.last_batch = None
1623
            self.tree_cache.reset()
1624
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
1625
                self.grammar_backend.reset()
1626
            self.req_to_token_pool.clear()
1627
            self.token_to_kv_pool_allocator.clear()
1628
1629
1630

            if not self.spec_algorithm.is_none():
                self.draft_worker.model_runner.req_to_token_pool.clear()
1631
                self.draft_worker.model_runner.token_to_kv_pool_allocator.clear()
1632
1633
1634
1635
1636

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
1637
1638
            self.cum_spec_accept_length = 0
            self.cum_spec_accept_count = 0
1639
1640
1641
1642
1643
1644
1645
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
1646
                f"#running-req: {len(self.running_batch.reqs)}"
1647
1648
1649
1650
            )
            if_success = False
        return if_success

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
    def get_internal_state(self, recv_req: GetInternalStateReq):
        ret = dict(global_server_args_dict)
        ret["last_gen_throughput"] = self.last_gen_throughput
        if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
            ret["avg_spec_accept_length"] = (
                self.cum_spec_accept_length / self.cum_spec_accept_count
            )

        if RECORD_STEP_TIME:
            ret["step_time_dict"] = self.step_time_dict
        return GetInternalStateReqOutput(
            internal_state=ret,
        )

    def set_internal_state(self, recv_req: SetInternalStateReq):
        server_args_dict = recv_req.server_args
        args_allow_update = set(
            [
                "speculative_accept_threshold_single",
                "speculative_accept_threshold_acc",
            ]
        )
        if_success = True
        for k, v in server_args_dict.items():
            if k not in args_allow_update:
                logging.warning(f"Updating {k} is not supported.")
                if_success = False
                break
        if if_success:
            if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
                avg_spec_accept_length = (
                    self.cum_spec_accept_length / self.cum_spec_accept_count
                )
                logger.info(f"{avg_spec_accept_length=}")
            self.cum_spec_accept_length = self.cum_spec_accept_count = 0
            for k, v in server_args_dict.items():
                global_server_args_dict[k] = v
            logger.info(f"Global server args updated! " f"{global_server_args_dict=}")
        return SetInternalStateReqOutput(
            updated=True,
            server_args=global_server_args_dict,
        )

1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
    def handle_rpc_request(self, recv_req: RpcReqInput):
        # Handle RPC requests
        logger.info(
            f"handle_rpc_request: {recv_req.method}, param: {recv_req.parameters}"
        )

        success = True
        exec = None
        try:
            func = getattr(self, recv_req.method)
            func(recv_req.parameters)
        except Exception as e:
            success = False
            exec = e
            logger.error(f"Failed to call rpc {recv_req.method}: {str(e)}")

        barrier()
        return RpcReqOutput(success, "" if not exec else str(exec))

    def save_remote_model(self, params):
        url = params["url"]

1716
        worker = self.tp_worker.worker
1717
1718
1719
1720

        worker.model_runner.save_remote_model(url)

    def save_sharded_model(self, params):
1721
        worker = self.tp_worker.worker
1722
1723
1724
1725
1726
1727
1728

        worker.model_runner.save_sharded_model(
            path=params["path"],
            pattern=params["pattern"],
            max_size=params["max_size"],
        )

1729
1730
    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
Lianmin Zheng's avatar
Lianmin Zheng committed
1731
        to_del = []
1732
        for i, req in enumerate(self.waiting_queue):
Lianmin Zheng's avatar
Lianmin Zheng committed
1733
1734
            if req.rid.startswith(recv_req.rid):
                to_del.append(i)
1735
1736
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1737
1738
1739
        # Sort in reverse order to avoid index issues when deleting
        for i in sorted(to_del, reverse=True):
            req = self.waiting_queue.pop(i)
1740
1741
            logger.debug(f"Abort queued request. {req.rid=}")
            return
1742
1743

        # Delete requests in the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1744
1745
1746
1747
1748
        for req in self.running_batch.reqs:
            if req.rid.startswith(recv_req.rid) and not req.finished():
                logger.debug(f"Abort running request. {req.rid=}")
                req.to_abort = True
                return
1749

1750
1751
1752
    def _pause_engine(self) -> Tuple[List[Req], int]:
        raise NotImplementedError()

Chayenne's avatar
Chayenne committed
1753
1754
1755
    def update_weights_from_disk(self, recv_req: UpdateWeightFromDiskReqInput):
        """In-place update of the weights from disk."""
        success, message = self.tp_worker.update_weights_from_disk(recv_req)
1756
1757
1758
1759
1760
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
1761
        return UpdateWeightFromDiskReqOutput(success, message, 0)
1762

1763
1764
1765
    def init_weights_update_group(self, recv_req: InitWeightsUpdateGroupReqInput):
        """Initialize the online model parameter update group."""
        success, message = self.tp_worker.init_weights_update_group(recv_req)
1766
        return InitWeightsUpdateGroupReqOutput(success, message)
1767
1768

    def update_weights_from_distributed(
1769
1770
1771
        self,
        recv_req: UpdateWeightsFromDistributedReqInput,
    ) -> Tuple[bool, str]:
1772
1773
1774
1775
1776
1777
1778
        """Update the online model parameter."""
        success, message = self.tp_worker.update_weights_from_distributed(recv_req)
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
1779
        return UpdateWeightsFromDistributedReqOutput(success, message)
1780

1781
1782
1783
1784
1785
    def update_weights_from_tensor(self, recv_req: UpdateWeightsFromTensorReqInput):
        """Update the online model parameter from tensors."""
        success, message = self.tp_worker.update_weights_from_tensor(recv_req)
        # TODO extract common code b/t update_weights_from_distributed and update_weights_from_tensor later
        if success:
1786
1787
1788
            if recv_req.flush_cache:
                flash_cache_success = self.flush_cache()
                assert flash_cache_success, "Cache flush failed after updating weights"
1789
1790
        else:
            logger.error(message)
1791
        return UpdateWeightsFromTensorReqOutput(success, message)
1792

1793
1794
    def get_weights_by_name(self, recv_req: GetWeightsByNameReqInput):
        parameter = self.tp_worker.get_weights_by_name(recv_req)
1795
        return GetWeightsByNameReqOutput(parameter)
1796

1797
    def release_memory_occupation(self, recv_req: ReleaseMemoryOccupationReqInput):
1798
1799
1800
        self.memory_saver_adapter.check_validity(
            caller_name="release_memory_occupation"
        )
1801
1802
1803
1804
1805
        self.stashed_model_static_state = _export_static_state(
            self.tp_worker.worker.model_runner.model
        )
        self.memory_saver_adapter.pause()
        self.flush_cache()
1806
        return ReleaseMemoryOccupationReqOutput()
1807

1808
    def resume_memory_occupation(self, recv_req: ResumeMemoryOccupationReqInput):
1809
        self.memory_saver_adapter.check_validity(caller_name="resume_memory_occupation")
1810
1811
1812
1813
1814
        self.memory_saver_adapter.resume()
        _import_static_state(
            self.tp_worker.worker.model_runner.model, self.stashed_model_static_state
        )
        del self.stashed_model_static_state
1815
1816
1817
        return ResumeMemoryOccupationReqOutput()

    def profile(self, recv_req: ProfileReq):
1818
1819
        if recv_req.type == ProfileReqType.START_PROFILE:
            return self.start_profile(
1820
1821
1822
1823
1824
                recv_req.output_dir,
                recv_req.num_steps,
                recv_req.activities,
                recv_req.with_stack,
                recv_req.record_shapes,
1825
            )
1826
        else:
1827
1828
1829
1830
1831
1832
1833
            return self.stop_profile()

    def start_profile(
        self,
        output_dir: Optional[str],
        num_steps: Optional[int],
        activities: Optional[List[str]],
1834
1835
        with_stack: Optional[bool],
        record_shapes: Optional[bool],
1836
    ) -> None:
1837
        if self.profiler_activities:
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
            return ProfileReqOutput(
                success=False,
                message="Profiling is already in progress. Call /stop_profile first.",
            )

        if output_dir is None:
            output_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR", "/tmp")
        if activities is None:
            activities = ["CPU", "GPU"]

        self.torch_profiler_output_dir = output_dir
1849
        self.profiler_activities = activities
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
        logger.info(
            "Profiling starts. Traces will be saved to: %s",
            self.torch_profiler_output_dir,
        )

        activity_map = {
            "CPU": torch.profiler.ProfilerActivity.CPU,
            "GPU": torch.profiler.ProfilerActivity.CUDA,
        }
        torchprof_activities = [
            activity_map[a] for a in activities if a in activity_map
        ]

        if torchprof_activities:
            self.torch_profiler = torch.profiler.profile(
                activities=torchprof_activities,
1866
1867
                with_stack=with_stack if with_stack is not None else True,
                record_shapes=record_shapes if record_shapes is not None else False,
1868
1869
1870
1871
1872
            )
            self.torch_profiler.start()

        if "MEM" in activities:
            torch.cuda.memory._record_memory_history(max_entries=100000)
1873

1874
1875
1876
        if "CUDA_PROFILER" in activities:
            torch.cuda.cudart().cudaProfilerStart()

1877
1878
1879
1880
1881
1882
        if num_steps:
            self.profiler_target_forward_ct = self.forward_ct + num_steps
            # The caller will be notified when reaching profiler_target_forward_ct
        else:
            self.profiler_target_forward_ct = None
            return ProfileReqOutput(success=True, message="Succeeded")
1883
1884

    def stop_profile(self) -> None:
1885
        if self.profiler_activities is None:
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
            return

        logger.info("Stop profiling...")
        if self.torch_profiler is not None:
            self.torch_profiler.stop()
            self.torch_profiler.export_chrome_trace(
                os.path.join(
                    self.torch_profiler_output_dir,
                    str(time.time()) + f"-TP-{self.tp_rank}" + ".trace.json.gz",
                )
            )

1898
        if "MEM" in self.profiler_activities:
1899
            memory_profile_path = os.path.join(
1900
                self.torch_profiler_output_dir,
1901
1902
1903
1904
1905
                str(time.time()) + f"-TP-{self.tp_rank}-memory" + ".pickle",
            )
            torch.cuda.memory._dump_snapshot(memory_profile_path)
            torch.cuda.memory._record_memory_history(enabled=None)

1906
1907
1908
        if "CUDA_PROFILER" in self.profiler_activities:
            torch.cuda.cudart().cudaProfilerStop()

1909
1910
1911
        logger.info(
            "Profiling done. Traces are saved to: %s",
            self.torch_profiler_output_dir,
1912
        )
1913
1914
        self.torch_profiler = None
        self.torch_profiler_output_dir = None
1915
        self.profiler_activities = None
1916
1917
1918
1919
1920

        if self.profiler_target_forward_ct:
            self.send_to_tokenizer.send_pyobj(
                ProfileReqOutput(success=True, message="Succeeded.")
            )
1921

1922
1923
1924
1925
1926
1927
1928
1929
1930
    def expert_distribution_handle(self, recv_req: ExpertDistributionReq):
        if recv_req == ExpertDistributionReq.START_RECORD:
            expert_distribution_recorder.start_record()
        elif recv_req == ExpertDistributionReq.STOP_RECORD:
            expert_distribution_recorder.stop_record()
        elif recv_req == ExpertDistributionReq.DUMP_RECORD:
            expert_distribution_recorder.dump_record()
        else:
            raise ValueError("Unrecognized ExpertDistributionReq value")
1931
        return ExpertDistributionReqOutput()
1932

1933
    def open_session(self, recv_req: OpenSessionReqInput):
1934
1935
1936
1937
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
1938
            return OpenSessionReqOutput(session_id, False)
1939
        elif session_id is None:
1940
            logger.warning("session id is None, cannot open.")
1941
            return OpenSessionReqOutput(session_id, False)
1942
1943
1944
1945
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
1946
            return OpenSessionReqOutput(session_id, True)
1947
1948
1949
1950
1951
1952
1953
1954
1955

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

1956

1957
1958
1959
1960
def is_health_check_generate_req(recv_req):
    return getattr(recv_req, "rid", "").startswith("HEALTH_CHECK")


1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
def _export_static_state(model):
    return dict(
        buffers=[
            (name, buffer.detach().clone()) for name, buffer in model.named_buffers()
        ]
    )


def _import_static_state(model, static_params):
    self_named_buffers = dict(model.named_buffers())
    for name, tensor in static_params["buffers"]:
        self_named_buffers[name][...] = tensor


1975
1976
1977
1978
1979
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
1980
    dp_rank: Optional[int],
1981
    pipe_writer,
1982
):
1983
1984
1985
1986
1987
1988
    # Generate the prefix
    if dp_rank is None:
        prefix = f" TP{tp_rank}"
    else:
        prefix = f" DP{dp_rank} TP{tp_rank}"

1989
    # Config the process
1990
    kill_itself_when_parent_died()
1991
    setproctitle.setproctitle(f"sglang::scheduler{prefix.replace(' ', '_')}")
1992
    faulthandler.enable()
1993
    parent_process = psutil.Process().parent()
1994

1995
1996
1997
    # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
1998

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1999
    # Configure the logger
2000
    configure_logger(server_args, prefix=prefix)
2001
    suppress_other_loggers()
2002

2003
    # Set cpu affinity to this gpu process
2004
2005
2006
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, gpu_id)

2007
    # Create a scheduler and run the event loop
2008
    try:
2009
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank, dp_rank)
2010
        pipe_writer.send(
Mick's avatar
Mick committed
2011
2012
2013
2014
2015
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
2016
        )
Byron Hsu's avatar
Byron Hsu committed
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
        disaggregation_mode: DisaggregationMode = scheduler.disaggregation_mode

        if disaggregation_mode == DisaggregationMode.NULL:
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap()
            else:
                scheduler.event_loop_normal()
        elif disaggregation_mode == DisaggregationMode.PREFILL:
            scheduler.event_loop_normal_disagg_prefill()
        elif disaggregation_mode == DisaggregationMode.DECODE:
            scheduler.event_loop_normal_disagg_decode()

2029
    except Exception:
2030
2031
2032
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)