"src/lib/vscode:/vscode.git/clone" did not exist on "d4fd6c5a57bb7b964dfe3de1fa941d6ad62a0ecd"
program.py 20.9 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
24
import datetime
WenmuZhou's avatar
WenmuZhou committed
25
26
27
28
29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
dyning's avatar
dyning committed
33
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
34
from ppocr.utils import profiler
dyning's avatar
dyning committed
35
from ppocr.data import build_dataloader
LDOUBLEV's avatar
LDOUBLEV committed
36

dyning's avatar
dyning committed
37

LDOUBLEV's avatar
LDOUBLEV committed
38
39
40
41
42
43
44
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
48
49
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
50
51
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
LDOUBLEV's avatar
LDOUBLEV committed
52
        )
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
81
82
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
LDOUBLEV's avatar
LDOUBLEV committed
83
84


85
def merge_config(config, opts):
LDOUBLEV's avatar
LDOUBLEV committed
86
87
88
89
90
91
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
92
    for key, value in opts.items():
LDOUBLEV's avatar
LDOUBLEV committed
93
        if "." not in key:
94
95
            if isinstance(value, dict) and key in config:
                config[key].update(value)
LDOUBLEV's avatar
LDOUBLEV committed
96
            else:
97
                config[key] = value
LDOUBLEV's avatar
LDOUBLEV committed
98
99
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
100
            assert (
101
                sub_keys[0] in config
102
103
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
104
105
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
LDOUBLEV's avatar
LDOUBLEV committed
106
107
108
109
110
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
111
    return config
LDOUBLEV's avatar
LDOUBLEV committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
126
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
127
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
128
129
130
131
132
            sys.exit(1)
    except Exception as e:
        pass


133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
152
def train(config,
dyning's avatar
dyning committed
153
154
155
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
156
157
158
159
160
161
162
163
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
stephon's avatar
stephon committed
164
165
          vdl_writer=None,
          scaler=None):
WenmuZhou's avatar
WenmuZhou committed
166
167
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
168
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
LDOUBLEV's avatar
LDOUBLEV committed
169
170
171
172
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
LDOUBLEV's avatar
LDOUBLEV committed
173
    profiler_options = config['profiler_options']
WenmuZhou's avatar
WenmuZhou committed
174

dyning's avatar
dyning committed
175
    global_step = 0
176
177
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
178
179
180
181
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
182
183
        if len(valid_dataloader) == 0:
            logger.info(
184
185
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
WenmuZhou's avatar
WenmuZhou committed
186
187
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
188
        logger.info(
189
190
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
LDOUBLEV's avatar
LDOUBLEV committed
191
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
192
193
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
194
195
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
196
197
198
199
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
200
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
201
202
    model.train()

tink2123's avatar
tink2123 committed
203
    use_srn = config['Architecture']['algorithm'] == "SRN"
andyjpaddle's avatar
andyjpaddle committed
204
205
206
207
208
209
    extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR"]
    if config['Architecture']['algorithm'] == 'Distillation':
        extra_input = config['Architecture']['Models']['Teacher'][
            'algorithm'] in extra_input_models
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
210
    try:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
211
        model_type = config['Architecture']['model_type']
212
    except:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
213
        model_type = None
andyjpaddle's avatar
andyjpaddle committed
214

tink2123's avatar
tink2123 committed
215
    algorithm = config['Architecture']['algorithm']
tink2123's avatar
tink2123 committed
216

217
218
219
220
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
221
222
    train_reader_cost = 0.0
    train_batch_cost = 0.0
223
    reader_start = time.time()
224
    eta_meter = AverageMeter()
225
226
227

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
228

tink2123's avatar
tink2123 committed
229
    for epoch in range(start_epoch, epoch_num + 1):
230
231
232
233
234
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
235
        for idx, batch in enumerate(train_dataloader):
LDOUBLEV's avatar
LDOUBLEV committed
236
            profiler.add_profiler_step(profiler_options)
WenmuZhou's avatar
WenmuZhou committed
237
            train_reader_cost += time.time() - reader_start
Jane-Ding's avatar
Jane-Ding committed
238
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
239
240
241
                break
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
242
            if use_srn:
tink2123's avatar
tink2123 committed
243
                model_average = True
stephon's avatar
stephon committed
244
245
246
247
248
249
250
251

            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
tink2123's avatar
tink2123 committed
252
            else:
stephon's avatar
stephon committed
253
254
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
255
                elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
256
                    preds = model(batch)
stephon's avatar
stephon committed
257
258
                else:
                    preds = model(images)
259

WenmuZhou's avatar
WenmuZhou committed
260
261
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
stephon's avatar
stephon committed
262
263
264
265
266
267
268
269

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
WenmuZhou's avatar
WenmuZhou committed
270
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
271

272
273
274
275
276
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
                if model_type in ['table', 'kie']:
                    eval_class(preds, batch)
                else:
andyjpaddle's avatar
andyjpaddle committed
277
278
279
280
281
282
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
                    else:
                        post_result = post_process_class(preds, batch[1])
283
284
285
286
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

287
288
289
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
290
            global_step += 1
WenmuZhou's avatar
WenmuZhou committed
291
            total_samples += len(images)
WenmuZhou's avatar
WenmuZhou committed
292

dyning's avatar
dyning committed
293
294
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
295
296
297
298
299
300
301
302
303
304
305

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

306
307
308
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
309
                logs = train_stats.log()
LDOUBLEV's avatar
LDOUBLEV committed
310

311
312
313
314
315
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
LDOUBLEV's avatar
LDOUBLEV committed
316
                       'ips: {:.5f} samples/s, eta: {}'.format(
317
318
319
320
321
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
WenmuZhou's avatar
WenmuZhou committed
322
                logger.info(strs)
323

WenmuZhou's avatar
WenmuZhou committed
324
                total_samples = 0
325
326
                train_reader_cost = 0.0
                train_batch_cost = 0.0
WenmuZhou's avatar
WenmuZhou committed
327
328
            # eval
            if global_step > start_eval_step and \
329
330
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
331
332
333
334
335
336
337
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
338
339
340
341
342
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
343
                    model_type,
tink2123's avatar
tink2123 committed
344
                    extra_input=extra_input)
LDOUBLEV's avatar
LDOUBLEV committed
345
346
347
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
348
349
350

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
351
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
352
353
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
354
355
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
356
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
357
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
358
359
360
361
362
363
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
364
                        config,
WenmuZhou's avatar
WenmuZhou committed
365
366
367
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
368
369
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
370
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
371
372
373
374
375
376
377
378
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
379

WenmuZhou's avatar
WenmuZhou committed
380
            reader_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
381
382
383
384
385
386
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
387
                config,
WenmuZhou's avatar
WenmuZhou committed
388
389
390
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
391
392
                epoch=epoch,
                global_step=global_step)
WenmuZhou's avatar
WenmuZhou committed
393
394
395
396
397
398
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
399
                config,
WenmuZhou's avatar
WenmuZhou committed
400
401
402
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
403
404
                epoch=epoch,
                global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
405
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
406
407
408
409
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
410
411
412
    return


MissPenguin's avatar
refine  
MissPenguin committed
413
414
415
416
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
LDOUBLEV's avatar
LDOUBLEV committed
417
         model_type=None,
tink2123's avatar
tink2123 committed
418
         extra_input=False):
WenmuZhou's avatar
WenmuZhou committed
419
420
421
422
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
WenmuZhou committed
423
424
425
426
427
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
428
429
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
430
        for idx, batch in enumerate(valid_dataloader):
431
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
432
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
433
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
434
            start = time.time()
tink2123's avatar
tink2123 committed
435
            if model_type == 'table' or extra_input:
MissPenguin's avatar
refine  
MissPenguin committed
436
                preds = model(images, data=batch[1:])
437
            elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
438
                preds = model(batch)
xiaoting's avatar
xiaoting committed
439
            else:
LDOUBLEV's avatar
LDOUBLEV committed
440
                preds = model(images)
441
442
443
444
445
446
447

            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
WenmuZhou's avatar
WenmuZhou committed
448
449
450
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
LDOUBLEV's avatar
LDOUBLEV committed
451
            if model_type in ['table', 'kie']:
452
453
454
455
                eval_class(preds, batch_numpy)
            elif model_type in ['vqa']:
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
MissPenguin's avatar
MissPenguin committed
456
            else:
457
458
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
LDOUBLEV's avatar
LDOUBLEV committed
459

WenmuZhou's avatar
fix bug  
WenmuZhou committed
460
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
461
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
462
463
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
464

WenmuZhou's avatar
fix bug  
WenmuZhou committed
465
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
466
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
467
468
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
469

tink2123's avatar
tink2123 committed
470

Bin Lu's avatar
Bin Lu committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


520
def preprocess(is_train=False):
licx's avatar
licx committed
521
    FLAGS = ArgsParser().parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
522
    profiler_options = FLAGS.profiler_options
licx's avatar
licx committed
523
    config = load_config(FLAGS.config)
524
    config = merge_config(config, FLAGS.opt)
LDOUBLEV's avatar
LDOUBLEV committed
525
    profile_dic = {"profiler_options": FLAGS.profiler_options}
526
    config = merge_config(config, profile_dic)
licx's avatar
licx committed
527

528
529
530
531
532
533
534
535
536
537
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
zhoujun's avatar
zhoujun committed
538
    logger = get_logger(log_file=log_file)
licx's avatar
licx committed
539
540
541
542
543

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

544
545
546
547
548
549
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

WenmuZhou's avatar
WenmuZhou committed
550
551
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
552
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
tink2123's avatar
tink2123 committed
553
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
andyjpaddle's avatar
andyjpaddle committed
554
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'PREN', 'FCE', 'SVTR'
WenmuZhou's avatar
WenmuZhou committed
555
    ]
licx's avatar
licx committed
556

557
558
559
560
561
    device = 'cpu'
    if use_gpu:
        device = 'gpu:{}'.format(dist.ParallelEnv().dev_id)
    if use_xpu:
        device = 'xpu'
WenmuZhou's avatar
WenmuZhou committed
562
    device = paddle.set_device(device)
dyning's avatar
dyning committed
563

dyning's avatar
dyning committed
564
    config['Global']['distributed'] = dist.get_world_size() != 1
565

littletomatodonkey's avatar
littletomatodonkey committed
566
    if config['Global']['use_visualdl'] and dist.get_rank() == 0:
dyning's avatar
dyning committed
567
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
568
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
569
570
571
572
573
574
575
576
577
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer