"scripts/vscode:/vscode.git/clone" did not exist on "f740d5a34a3a7a697886b650f15ad46239457d68"
utility.py 25.2 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
WenmuZhou's avatar
WenmuZhou committed
18
import platform
LDOUBLEV's avatar
LDOUBLEV committed
19
20
import cv2
import numpy as np
zhoujun's avatar
zhoujun committed
21
import paddle
LDOUBLEV's avatar
LDOUBLEV committed
22
from PIL import Image, ImageDraw, ImageFont
23
import math
WenmuZhou's avatar
WenmuZhou committed
24
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
25
26
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
27

LDOUBLEV's avatar
LDOUBLEV committed
28

29
30
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
31
32


WenmuZhou's avatar
WenmuZhou committed
33
def init_args():
LDOUBLEV's avatar
LDOUBLEV committed
34
    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
35
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
36
    parser.add_argument("--use_gpu", type=str2bool, default=True)
xiaoting's avatar
xiaoting committed
37
    parser.add_argument("--use_xpu", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
38
39
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
40
    parser.add_argument("--min_subgraph_size", type=int, default=15)
LDOUBLEV's avatar
LDOUBLEV committed
41
    parser.add_argument("--precision", type=str, default="fp32")
42
    parser.add_argument("--gpu_mem", type=int, default=500)
LDOUBLEV's avatar
LDOUBLEV committed
43

WenmuZhou's avatar
WenmuZhou committed
44
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
48
49
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
50

WenmuZhou's avatar
WenmuZhou committed
51
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
52
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
LDOUBLEV's avatar
LDOUBLEV committed
53
54
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
LDOUBLEV's avatar
LDOUBLEV committed
55
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey committed
56
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey committed
57
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
58
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
59
60
61
62
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
63
    # SAST parmas
licx's avatar
licx committed
64
65
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey committed
66
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
licx's avatar
licx committed
67

WenmuZhou's avatar
WenmuZhou committed
68
69
70
71
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
WenmuZhou's avatar
WenmuZhou committed
72
    parser.add_argument("--det_pse_box_type", type=str, default='quad')
WenmuZhou's avatar
WenmuZhou committed
73
74
    parser.add_argument("--det_pse_scale", type=int, default=1)

WenmuZhou's avatar
WenmuZhou committed
75
76
77
78
79
80
81
    # FCE parmas
    parser.add_argument("--scales", type=list, default=[8, 16, 32])
    parser.add_argument("--alpha", type=float, default=1.0)
    parser.add_argument("--beta", type=float, default=1.0)
    parser.add_argument("--fourier_degree", type=int, default=5)
    parser.add_argument("--det_fce_box_type", type=str, default='poly')

WenmuZhou's avatar
WenmuZhou committed
82
    # params for text recognizer
andyjpaddle's avatar
andyjpaddle committed
83
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
LDOUBLEV's avatar
LDOUBLEV committed
84
    parser.add_argument("--rec_model_dir", type=str)
xiaoting's avatar
xiaoting committed
85
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
86
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
87
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
88
89
90
91
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
92
93
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
tink2123's avatar
tink2123 committed
94
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
WenmuZhou's avatar
WenmuZhou committed
95
    parser.add_argument("--drop_score", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
96

Jethong's avatar
Jethong committed
97
98
99
100
101
102
103
104
105
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
Jethong's avatar
Jethong committed
106
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
Jethong's avatar
Jethong committed
107
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
Jethong's avatar
Jethong committed
108
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
Jethong's avatar
Jethong committed
109

WenmuZhou's avatar
WenmuZhou committed
110
111
112
113
114
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
115
    parser.add_argument("--cls_batch_num", type=int, default=6)
WenmuZhou's avatar
WenmuZhou committed
116
117
118
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
119
    parser.add_argument("--cpu_threads", type=int, default=10)
WenmuZhou's avatar
WenmuZhou committed
120
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
121
122
123
124
125
126
127
    parser.add_argument("--warmup", type=str2bool, default=False)

    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")
WenmuZhou's avatar
WenmuZhou committed
128

LDOUBLEV's avatar
LDOUBLEV committed
129
    # multi-process
littletomatodonkey's avatar
littletomatodonkey committed
130
    parser.add_argument("--use_mp", type=str2bool, default=False)
131
132
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
WenmuZhou's avatar
WenmuZhou committed
133

littletomatodonkey's avatar
littletomatodonkey committed
134
    parser.add_argument("--benchmark", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
135
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
Double_V's avatar
Double_V committed
136

WenmuZhou's avatar
WenmuZhou committed
137
    parser.add_argument("--show_log", type=str2bool, default=True)
tink2123's avatar
tink2123 committed
138
    parser.add_argument("--use_onnx", type=str2bool, default=False)
WenmuZhou's avatar
WenmuZhou committed
139
    return parser
WenmuZhou's avatar
WenmuZhou committed
140

141

142
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
143
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
144
145
146
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
147
148
149
150
151
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
152
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
153
        model_dir = args.rec_model_dir
WenmuZhou's avatar
WenmuZhou committed
154
155
    elif mode == 'table':
        model_dir = args.table_model_dir
Jethong's avatar
Jethong committed
156
157
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
158
159
160
161

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
tink2123's avatar
tink2123 committed
162
163
164
165
166
167
168
169
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None
LDOUBLEV's avatar
LDOUBLEV committed
170

LDOUBLEV's avatar
LDOUBLEV committed
171
    else:
tink2123's avatar
tink2123 committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        model_file_path = model_dir + "/inference.pdmodel"
        params_file_path = model_dir + "/inference.pdiparams"
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        if not os.path.exists(params_file_path):
            raise ValueError("not find params file path {}".format(
                params_file_path))

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
LDOUBLEV's avatar
LDOUBLEV committed
190
        else:
tink2123's avatar
tink2123 committed
191
192
193
194
195
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
LDOUBLEV's avatar
LDOUBLEV committed
196
                logger.warning(
197
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
tink2123's avatar
tink2123 committed
198
199
200
201
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
LDOUBLEV's avatar
LDOUBLEV committed
202
                    workspace_size=1 << 30,
tink2123's avatar
tink2123 committed
203
204
205
206
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
                    min_subgraph_size=args.min_subgraph_size)
                # skip the minmum trt subgraph
LDOUBLEV's avatar
fix trt  
LDOUBLEV committed
207
            use_dynamic_shape = True
LDOUBLEV's avatar
fix  
LDOUBLEV committed
208
            if mode == "det":
tink2123's avatar
tink2123 committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
                min_input_shape = {
                    "x": [1, 3, 50, 50],
                    "conv2d_92.tmp_0": [1, 120, 20, 20],
                    "conv2d_91.tmp_0": [1, 24, 10, 10],
                    "conv2d_59.tmp_0": [1, 96, 20, 20],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                    "conv2d_124.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
                    "elementwise_add_7": [1, 56, 2, 2],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
                }
                max_input_shape = {
LDOUBLEV's avatar
fix trt  
LDOUBLEV committed
224
                    "x": [1, 3, 1536, 1536],
tink2123's avatar
tink2123 committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
                    "conv2d_92.tmp_0": [1, 120, 400, 400],
                    "conv2d_91.tmp_0": [1, 24, 200, 200],
                    "conv2d_59.tmp_0": [1, 96, 400, 400],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
                    "conv2d_124.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
                    "elementwise_add_7": [1, 56, 400, 400],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
                }
                opt_input_shape = {
                    "x": [1, 3, 640, 640],
                    "conv2d_92.tmp_0": [1, 120, 160, 160],
                    "conv2d_91.tmp_0": [1, 24, 80, 80],
                    "conv2d_59.tmp_0": [1, 96, 160, 160],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
                    "conv2d_124.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
                    "elementwise_add_7": [1, 56, 40, 40],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
                }
                min_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
                }
                max_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
                }
                opt_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
                }
                min_input_shape.update(min_pact_shape)
                max_input_shape.update(max_pact_shape)
                opt_input_shape.update(opt_pact_shape)
            elif mode == "rec":
andyjpaddle's avatar
andyjpaddle committed
273
                if args.rec_algorithm not in ["CRNN", "SVTR_LCNet"]:
LDOUBLEV's avatar
fix trt  
LDOUBLEV committed
274
                    use_dynamic_shape = False
275
276
                imgH = int(args.rec_image_shape.split(',')[-2])
                min_input_shape = {"x": [1, 3, imgH, 10]}
andyjpaddle's avatar
andyjpaddle committed
277
                max_input_shape = {"x": [args.rec_batch_num, 3, imgH, 2304]}
278
                opt_input_shape = {"x": [args.rec_batch_num, 3, imgH, 320]}
Armin's avatar
 
Armin committed
279
                config.exp_disable_tensorrt_ops(["transpose2"])
tink2123's avatar
tink2123 committed
280
281
            elif mode == "cls":
                min_input_shape = {"x": [1, 3, 48, 10]}
LDOUBLEV's avatar
LDOUBLEV committed
282
                max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
tink2123's avatar
tink2123 committed
283
284
                opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
            else:
LDOUBLEV's avatar
fix trt  
LDOUBLEV committed
285
286
                use_dynamic_shape = False
            if use_dynamic_shape:
andyjpaddle's avatar
andyjpaddle committed
287
288
                config.set_trt_dynamic_shape_info(
                    min_input_shape, max_input_shape, opt_input_shape)
LDOUBLEV's avatar
LDOUBLEV committed
289

xiaoting's avatar
xiaoting committed
290
291
        elif args.use_xpu:
            config.enable_xpu(10 * 1024 * 1024)
LDOUBLEV's avatar
LDOUBLEV committed
292
        else:
tink2123's avatar
tink2123 committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
            config.disable_gpu()
            if hasattr(args, "cpu_threads"):
                config.set_cpu_math_library_num_threads(args.cpu_threads)
            else:
                # default cpu threads as 10
                config.set_cpu_math_library_num_threads(10)
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
        # enable memory optim
        config.enable_memory_optim()
        config.disable_glog_info()
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
tink2123's avatar
tink2123 committed
309
        config.delete_pass("matmul_transpose_reshape_fuse_pass")
tink2123's avatar
tink2123 committed
310
311
312
313
314
315
316
317
318
319
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
        for name in input_names:
            input_tensor = predictor.get_input_handle(name)
LDOUBLEV's avatar
LDOUBLEV committed
320
321
322
323
324
325
326
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
andyjpaddle's avatar
andyjpaddle committed
327
    if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
LDOUBLEV's avatar
LDOUBLEV committed
328
329
330
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
LDOUBLEV's avatar
LDOUBLEV committed
331
332
333
334
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
335
    else:
tink2123's avatar
tink2123 committed
336
337
338
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
339
    return output_tensors
WenmuZhou's avatar
WenmuZhou committed
340
341


LDOUBLEV's avatar
LDOUBLEV committed
342
def get_infer_gpuid():
WenmuZhou's avatar
WenmuZhou committed
343
344
345
346
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

ronny1996's avatar
ronny1996 committed
347
348
349
350
    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
LDOUBLEV's avatar
LDOUBLEV committed
351
352
353
354
355
356
357
358
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


Jethong's avatar
Jethong committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
375
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
376
377
378
379
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
380
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
381
382


LDOUBLEV's avatar
LDOUBLEV committed
383
384
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
385
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
386
387
388
389
390
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
391
392
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
393
394


WenmuZhou's avatar
WenmuZhou committed
395
396
397
398
399
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
400
             font_path="./doc/fonts/simfang.ttf"):
401
402
403
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
404
        image(Image|array): RGB image
405
406
407
408
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
409
        font_path: the path of font which is used to draw text
410
411
412
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
413
414
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
415
416
417
418
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
419
            continue
WenmuZhou's avatar
WenmuZhou committed
420
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
421
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
422
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
423
        img = np.array(resize_img(image, input_size=600))
424
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
425
426
427
428
429
430
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
431
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
432
433
        return img
    return image
434
435


WenmuZhou's avatar
WenmuZhou committed
436
437
438
439
440
441
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
442
443
444
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
445
446

    import random
LDOUBLEV's avatar
LDOUBLEV committed
447

448
449
450
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
451
452
453
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
454
455
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
456
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
457
458
459
460
461
462
463
464
465
466
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
467
468
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
469
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
470
471
472
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
473
474
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
475
476
477
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
478
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
479
480
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
481
482
483
484
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
485
486
487
    return np.array(img_show)


488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
512
513
514
515
516
517
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
518
519
520
521
522
523
524
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
525
        font_path: the path of font which is used to draw text
526
527
528
529
530
531
532
533
534
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
535
536
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
537
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
538

539
540
541
542
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
543
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
544
545
546

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
547
    count, index = 1, 0
548
549
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
550
        if scores[idx] < threshold or math.isnan(scores[idx]):
551
552
553
554
555
556
557
558
559
560
561
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
562
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
563
564
565
566
567
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
568
            count += 1
569
570
571
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
572
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
573
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
574
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
575
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
576
577
578
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
579
        count += 1
580
581
582
583
584
585
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
586
587


dyning's avatar
dyning committed
588
589
590
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
paopjian's avatar
paopjian committed
591
    data = np.frombuffer(data, np.uint8)
dyning's avatar
dyning committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


WenmuZhou's avatar
WenmuZhou committed
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


zhoujun's avatar
zhoujun committed
642
643
644
645
646
647
def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


LDOUBLEV's avatar
LDOUBLEV committed
648
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
649
    pass