utility.py 25.3 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
WenmuZhou's avatar
WenmuZhou committed
18
import platform
LDOUBLEV's avatar
LDOUBLEV committed
19
20
import cv2
import numpy as np
zhoujun's avatar
zhoujun committed
21
import paddle
LDOUBLEV's avatar
LDOUBLEV committed
22
from PIL import Image, ImageDraw, ImageFont
23
import math
WenmuZhou's avatar
WenmuZhou committed
24
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
25
26
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
27

LDOUBLEV's avatar
LDOUBLEV committed
28

29
30
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
31
32


WenmuZhou's avatar
WenmuZhou committed
33
def init_args():
LDOUBLEV's avatar
LDOUBLEV committed
34
    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
35
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
36
    parser.add_argument("--use_gpu", type=str2bool, default=True)
xiaoting's avatar
xiaoting committed
37
    parser.add_argument("--use_xpu", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
38
39
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
40
    parser.add_argument("--min_subgraph_size", type=int, default=15)
LDOUBLEV's avatar
LDOUBLEV committed
41
    parser.add_argument("--precision", type=str, default="fp32")
42
    parser.add_argument("--gpu_mem", type=int, default=500)
LDOUBLEV's avatar
LDOUBLEV committed
43

WenmuZhou's avatar
WenmuZhou committed
44
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
48
49
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
50

WenmuZhou's avatar
WenmuZhou committed
51
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
52
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
LDOUBLEV's avatar
LDOUBLEV committed
53
54
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
LDOUBLEV's avatar
LDOUBLEV committed
55
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey committed
56
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey committed
57
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
58
    parser.add_argument("--visual_output", type=str2bool, default=False)
WenmuZhou's avatar
WenmuZhou committed
59
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
60
61
62
63
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
64
    # SAST parmas
licx's avatar
licx committed
65
66
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey committed
67
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
licx's avatar
licx committed
68

WenmuZhou's avatar
WenmuZhou committed
69
70
71
72
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
WenmuZhou's avatar
WenmuZhou committed
73
    parser.add_argument("--det_pse_box_type", type=str, default='quad')
WenmuZhou's avatar
WenmuZhou committed
74
75
    parser.add_argument("--det_pse_scale", type=int, default=1)

WenmuZhou's avatar
WenmuZhou committed
76
77
78
79
80
81
82
    # FCE parmas
    parser.add_argument("--scales", type=list, default=[8, 16, 32])
    parser.add_argument("--alpha", type=float, default=1.0)
    parser.add_argument("--beta", type=float, default=1.0)
    parser.add_argument("--fourier_degree", type=int, default=5)
    parser.add_argument("--det_fce_box_type", type=str, default='poly')

WenmuZhou's avatar
WenmuZhou committed
83
    # params for text recognizer
andyjpaddle's avatar
andyjpaddle committed
84
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
LDOUBLEV's avatar
LDOUBLEV committed
85
    parser.add_argument("--rec_model_dir", type=str)
xiaoting's avatar
xiaoting committed
86
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
87
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
88
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
89
90
91
92
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
93
94
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
tink2123's avatar
tink2123 committed
95
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
WenmuZhou's avatar
WenmuZhou committed
96
    parser.add_argument("--drop_score", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
97

Jethong's avatar
Jethong committed
98
99
100
101
102
103
104
105
106
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
Jethong's avatar
Jethong committed
107
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
Jethong's avatar
Jethong committed
108
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
Jethong's avatar
Jethong committed
109
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
Jethong's avatar
Jethong committed
110

WenmuZhou's avatar
WenmuZhou committed
111
112
113
114
115
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
116
    parser.add_argument("--cls_batch_num", type=int, default=6)
WenmuZhou's avatar
WenmuZhou committed
117
118
119
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
120
    parser.add_argument("--cpu_threads", type=int, default=10)
WenmuZhou's avatar
WenmuZhou committed
121
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
122
123
124
125
126
127
128
    parser.add_argument("--warmup", type=str2bool, default=False)

    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")
WenmuZhou's avatar
WenmuZhou committed
129

LDOUBLEV's avatar
LDOUBLEV committed
130
    # multi-process
littletomatodonkey's avatar
littletomatodonkey committed
131
    parser.add_argument("--use_mp", type=str2bool, default=False)
132
133
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
WenmuZhou's avatar
WenmuZhou committed
134

littletomatodonkey's avatar
littletomatodonkey committed
135
    parser.add_argument("--benchmark", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
136
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
Double_V's avatar
Double_V committed
137

WenmuZhou's avatar
WenmuZhou committed
138
    parser.add_argument("--show_log", type=str2bool, default=True)
tink2123's avatar
tink2123 committed
139
    parser.add_argument("--use_onnx", type=str2bool, default=False)
WenmuZhou's avatar
WenmuZhou committed
140
    return parser
WenmuZhou's avatar
WenmuZhou committed
141

142

143
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
144
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
145
146
147
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
148
149
150
151
152
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
153
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
154
        model_dir = args.rec_model_dir
WenmuZhou's avatar
WenmuZhou committed
155
156
    elif mode == 'table':
        model_dir = args.table_model_dir
Jethong's avatar
Jethong committed
157
158
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
159
160
161
162

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
tink2123's avatar
tink2123 committed
163
164
165
166
167
168
169
170
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None
LDOUBLEV's avatar
LDOUBLEV committed
171

LDOUBLEV's avatar
LDOUBLEV committed
172
    else:
tink2123's avatar
tink2123 committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        model_file_path = model_dir + "/inference.pdmodel"
        params_file_path = model_dir + "/inference.pdiparams"
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        if not os.path.exists(params_file_path):
            raise ValueError("not find params file path {}".format(
                params_file_path))

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
LDOUBLEV's avatar
LDOUBLEV committed
191
        else:
tink2123's avatar
tink2123 committed
192
193
194
195
196
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
LDOUBLEV's avatar
LDOUBLEV committed
197
                logger.warning(
198
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
tink2123's avatar
tink2123 committed
199
200
201
202
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
LDOUBLEV's avatar
LDOUBLEV committed
203
                    workspace_size=1 << 30,
tink2123's avatar
tink2123 committed
204
205
206
207
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
                    min_subgraph_size=args.min_subgraph_size)
                # skip the minmum trt subgraph
LDOUBLEV's avatar
fix trt  
LDOUBLEV committed
208
            use_dynamic_shape = True
LDOUBLEV's avatar
fix  
LDOUBLEV committed
209
            if mode == "det":
tink2123's avatar
tink2123 committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
                min_input_shape = {
                    "x": [1, 3, 50, 50],
                    "conv2d_92.tmp_0": [1, 120, 20, 20],
                    "conv2d_91.tmp_0": [1, 24, 10, 10],
                    "conv2d_59.tmp_0": [1, 96, 20, 20],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                    "conv2d_124.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
                    "elementwise_add_7": [1, 56, 2, 2],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
                }
                max_input_shape = {
LDOUBLEV's avatar
fix trt  
LDOUBLEV committed
225
                    "x": [1, 3, 1536, 1536],
tink2123's avatar
tink2123 committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
                    "conv2d_92.tmp_0": [1, 120, 400, 400],
                    "conv2d_91.tmp_0": [1, 24, 200, 200],
                    "conv2d_59.tmp_0": [1, 96, 400, 400],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
                    "conv2d_124.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
                    "elementwise_add_7": [1, 56, 400, 400],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
                }
                opt_input_shape = {
                    "x": [1, 3, 640, 640],
                    "conv2d_92.tmp_0": [1, 120, 160, 160],
                    "conv2d_91.tmp_0": [1, 24, 80, 80],
                    "conv2d_59.tmp_0": [1, 96, 160, 160],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
                    "conv2d_124.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
                    "elementwise_add_7": [1, 56, 40, 40],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
                }
                min_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
                }
                max_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
                }
                opt_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
                }
                min_input_shape.update(min_pact_shape)
                max_input_shape.update(max_pact_shape)
                opt_input_shape.update(opt_pact_shape)
            elif mode == "rec":
andyjpaddle's avatar
andyjpaddle committed
274
                if args.rec_algorithm not in ["CRNN", "SVTR_LCNet"]:
LDOUBLEV's avatar
fix trt  
LDOUBLEV committed
275
                    use_dynamic_shape = False
276
277
                imgH = int(args.rec_image_shape.split(',')[-2])
                min_input_shape = {"x": [1, 3, imgH, 10]}
andyjpaddle's avatar
andyjpaddle committed
278
                max_input_shape = {"x": [args.rec_batch_num, 3, imgH, 2304]}
279
                opt_input_shape = {"x": [args.rec_batch_num, 3, imgH, 320]}
Armin's avatar
 
Armin committed
280
                config.exp_disable_tensorrt_ops(["transpose2"])
tink2123's avatar
tink2123 committed
281
282
            elif mode == "cls":
                min_input_shape = {"x": [1, 3, 48, 10]}
LDOUBLEV's avatar
LDOUBLEV committed
283
                max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
tink2123's avatar
tink2123 committed
284
285
                opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
            else:
LDOUBLEV's avatar
fix trt  
LDOUBLEV committed
286
287
                use_dynamic_shape = False
            if use_dynamic_shape:
andyjpaddle's avatar
andyjpaddle committed
288
289
                config.set_trt_dynamic_shape_info(
                    min_input_shape, max_input_shape, opt_input_shape)
LDOUBLEV's avatar
LDOUBLEV committed
290

xiaoting's avatar
xiaoting committed
291
292
        elif args.use_xpu:
            config.enable_xpu(10 * 1024 * 1024)
LDOUBLEV's avatar
LDOUBLEV committed
293
        else:
tink2123's avatar
tink2123 committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
            config.disable_gpu()
            if hasattr(args, "cpu_threads"):
                config.set_cpu_math_library_num_threads(args.cpu_threads)
            else:
                # default cpu threads as 10
                config.set_cpu_math_library_num_threads(10)
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
        # enable memory optim
        config.enable_memory_optim()
        config.disable_glog_info()
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
tink2123's avatar
tink2123 committed
310
        config.delete_pass("matmul_transpose_reshape_fuse_pass")
tink2123's avatar
tink2123 committed
311
312
313
314
315
316
317
318
319
320
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
        for name in input_names:
            input_tensor = predictor.get_input_handle(name)
LDOUBLEV's avatar
LDOUBLEV committed
321
322
323
324
325
326
327
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
andyjpaddle's avatar
andyjpaddle committed
328
    if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
LDOUBLEV's avatar
LDOUBLEV committed
329
330
331
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
LDOUBLEV's avatar
LDOUBLEV committed
332
333
334
335
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
336
    else:
tink2123's avatar
tink2123 committed
337
338
339
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
340
    return output_tensors
WenmuZhou's avatar
WenmuZhou committed
341
342


LDOUBLEV's avatar
LDOUBLEV committed
343
def get_infer_gpuid():
WenmuZhou's avatar
WenmuZhou committed
344
345
346
347
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

ronny1996's avatar
ronny1996 committed
348
349
350
351
    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
LDOUBLEV's avatar
LDOUBLEV committed
352
353
354
355
356
357
358
359
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


Jethong's avatar
Jethong committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
376
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
377
378
379
380
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
381
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
382
383


LDOUBLEV's avatar
LDOUBLEV committed
384
385
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
386
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
387
388
389
390
391
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
392
393
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
394
395


WenmuZhou's avatar
WenmuZhou committed
396
397
398
399
400
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
401
             font_path="./doc/fonts/simfang.ttf"):
402
403
404
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
405
        image(Image|array): RGB image
406
407
408
409
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
410
        font_path: the path of font which is used to draw text
411
412
413
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
414
415
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
416
417
418
419
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
420
            continue
WenmuZhou's avatar
WenmuZhou committed
421
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
422
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
423
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
424
        img = np.array(resize_img(image, input_size=600))
425
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
426
427
428
429
430
431
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
432
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
433
434
        return img
    return image
435
436


WenmuZhou's avatar
WenmuZhou committed
437
438
439
440
441
442
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
443
444
445
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
446
447

    import random
LDOUBLEV's avatar
LDOUBLEV committed
448

449
450
451
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
452
453
454
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
455
456
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
457
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
458
459
460
461
462
463
464
465
466
467
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
468
469
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
470
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
471
472
473
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
474
475
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
476
477
478
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
479
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
480
481
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
482
483
484
485
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
486
487
488
    return np.array(img_show)


489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
513
514
515
516
517
518
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
519
520
521
522
523
524
525
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
526
        font_path: the path of font which is used to draw text
527
528
529
530
531
532
533
534
535
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
536
537
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
538
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
539

540
541
542
543
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
544
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
545
546
547

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
548
    count, index = 1, 0
549
550
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
551
        if scores[idx] < threshold or math.isnan(scores[idx]):
552
553
554
555
556
557
558
559
560
561
562
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
563
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
564
565
566
567
568
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
569
            count += 1
570
571
572
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
573
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
574
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
575
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
576
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
577
578
579
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
580
        count += 1
581
582
583
584
585
586
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
587
588


dyning's avatar
dyning committed
589
590
591
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
paopjian's avatar
paopjian committed
592
    data = np.frombuffer(data, np.uint8)
dyning's avatar
dyning committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


WenmuZhou's avatar
WenmuZhou committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


zhoujun's avatar
zhoujun committed
643
644
645
646
647
648
def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


LDOUBLEV's avatar
LDOUBLEV committed
649
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
650
    pass