predict_rec.py 5.76 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20
21
22
23
24

import cv2
import numpy as np
import math
import time
WenmuZhou's avatar
WenmuZhou committed
25
import traceback
26
27
28
import paddle.fluid as fluid

import tools.infer.utility as utility
WenmuZhou's avatar
WenmuZhou committed
29
30
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
31
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
LDOUBLEV's avatar
LDOUBLEV committed
32

WenmuZhou's avatar
WenmuZhou committed
33
34
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
35
36
37

class TextRecognizer(object):
    def __init__(self, args):
38
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
dyning's avatar
dyning committed
39
        self.character_type = args.rec_char_type
40
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
41
        self.rec_algorithm = args.rec_algorithm
WenmuZhou's avatar
WenmuZhou committed
42
43
        postprocess_params = {
            'name': 'CTCLabelDecode',
tink2123's avatar
tink2123 committed
44
            "character_type": args.rec_char_type,
45
            "character_dict_path": args.rec_char_dict_path,
WenmuZhou's avatar
WenmuZhou committed
46
            "use_space_char": args.use_space_char
tink2123's avatar
tink2123 committed
47
        }
WenmuZhou's avatar
WenmuZhou committed
48
49
50
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors = \
            utility.create_predictor(args, 'rec', logger)
LDOUBLEV's avatar
LDOUBLEV committed
51

52
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
53
        imgC, imgH, imgW = self.rec_image_shape
54
        assert imgC == img.shape[2]
55
        if self.character_type == "ch":
tink2123's avatar
tink2123 committed
56
            imgW = int((32 * max_wh_ratio))
57
        h, w = img.shape[:2]
58
59
60
61
62
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
tink2123's avatar
tink2123 committed
63
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
64
65
66
67
68
69
70
71
72
73
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
74
        # Calculate the aspect ratio of all text bars
75
76
77
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
zhangxin's avatar
zhangxin committed
78
        # Sorting can speed up the recognition process
79
80
81
82
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
83
        batch_num = self.rec_batch_num
WenmuZhou's avatar
WenmuZhou committed
84
        elapse = 0
LDOUBLEV's avatar
LDOUBLEV committed
85
86
87
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
88
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
89
            for ino in range(beg_img_no, end_img_no):
90
91
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
92
93
94
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
95
                # norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
tink2123's avatar
tink2123 committed
96
97
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
98
99
100
101
102
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
WenmuZhou's avatar
WenmuZhou committed
103
104
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.run()
WenmuZhou's avatar
WenmuZhou committed
105
106
107
108
109
            outputs = []
            for output_tensor in self.output_tensors:
                output = output_tensor.copy_to_cpu()
                outputs.append(output)
            preds = outputs[0]
WenmuZhou's avatar
WenmuZhou committed
110
111
112
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
113
            elapse += time.time() - starttime
WenmuZhou's avatar
WenmuZhou committed
114
        return rec_res, elapse
LDOUBLEV's avatar
LDOUBLEV committed
115
116


117
def main(args):
dyning's avatar
dyning committed
118
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
119
120
121
122
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
123
124
125
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
126
127
128
129
130
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
tink2123's avatar
tink2123 committed
131
132
    try:
        rec_res, predict_time = text_recognizer(img_list)
WenmuZhou's avatar
WenmuZhou committed
133
134
    except:
        logger.info(traceback.format_exc())
tink2123's avatar
tink2123 committed
135
        logger.info(
tink2123's avatar
tink2123 committed
136
137
138
139
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
tink2123's avatar
tink2123 committed
140
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
tink2123's avatar
tink2123 committed
141
        exit()
LDOUBLEV's avatar
LDOUBLEV committed
142
    for ino in range(len(img_list)):
WenmuZhou's avatar
WenmuZhou committed
143
144
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
WenmuZhou's avatar
WenmuZhou committed
145
    logger.info("Total predict time for {} images, cost: {:.3f}".format(
WenmuZhou's avatar
WenmuZhou committed
146
        len(img_list), predict_time))
147
148
149
150


if __name__ == "__main__":
    main(utility.parse_args())