predict_rec.py 7.61 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
19
20
21
22
23
24

import cv2
import copy
import numpy as np
import math
import time
25
26
27
28
29
30
31

import paddle.fluid as fluid

import tools.infer.utility as utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
LDOUBLEV's avatar
LDOUBLEV committed
32
33
34
35
36
37
38
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
39
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
dyning's avatar
dyning committed
40
        self.character_type = args.rec_char_type
41
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
42
        self.rec_algorithm = args.rec_algorithm
tink2123's avatar
tink2123 committed
43
44
        char_ops_params = {
            "character_type": args.rec_char_type,
45
            "character_dict_path": args.rec_char_dict_path,
tink2123's avatar
tink2123 committed
46
47
            "use_space_char": args.use_space_char,
            "max_text_length": args.max_text_length
tink2123's avatar
tink2123 committed
48
        }
tink2123's avatar
tink2123 committed
49
50
        if self.rec_algorithm != "RARE":
            char_ops_params['loss_type'] = 'ctc'
tink2123's avatar
tink2123 committed
51
            self.loss_type = 'ctc'
tink2123's avatar
tink2123 committed
52
53
        else:
            char_ops_params['loss_type'] = 'attention'
tink2123's avatar
tink2123 committed
54
            self.loss_type = 'attention'
LDOUBLEV's avatar
LDOUBLEV committed
55
56
        self.char_ops = CharacterOps(char_ops_params)

57
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
58
        imgC, imgH, imgW = self.rec_image_shape
59
        assert imgC == img.shape[2]
60
        if self.character_type == "ch":
tink2123's avatar
tink2123 committed
61
            imgW = int((32 * max_wh_ratio))
62
        h, w = img.shape[:2]
63
64
65
66
67
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
tink2123's avatar
tink2123 committed
68
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
69
70
71
72
73
74
75
76
77
78
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
79
        # Calculate the aspect ratio of all text bars
80
81
82
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
zhangxin's avatar
zhangxin committed
83
        # Sorting can speed up the recognition process
84
85
86
87
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
88
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
89
90
91
92
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
93
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
94
            for ino in range(beg_img_no, end_img_no):
95
96
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
97
98
99
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
100
                # norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
tink2123's avatar
tink2123 committed
101
102
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
103
104
105
106
107
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
108
109
            norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
            self.predictor.run([norm_img_batch])
tink2123's avatar
tink2123 committed
110

tink2123's avatar
tink2123 committed
111
            if self.loss_type == "ctc":
tink2123's avatar
tink2123 committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
129
                    if len(valid_ind) == 0:
130
                        continue
LDOUBLEV's avatar
LDOUBLEV committed
131
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
132
133
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
tink2123's avatar
tink2123 committed
134
135
136
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
tink2123's avatar
tink2123 committed
137
138
                elapse = time.time() - starttime
                predict_time += elapse
tink2123's avatar
tink2123 committed
139
140
141
142
143
144
145
146
147
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
148
149
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
tink2123's avatar
tink2123 committed
150

LDOUBLEV's avatar
LDOUBLEV committed
151
152
153
        return rec_res, predict_time


154
def main(args):
dyning's avatar
dyning committed
155
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
156
157
158
159
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
160
161
162
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
163
164
165
166
167
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
tink2123's avatar
tink2123 committed
168
169
    try:
        rec_res, predict_time = text_recognizer(img_list)
tink2123's avatar
tink2123 committed
170
171
    except Exception as e:
        print(e)
tink2123's avatar
tink2123 committed
172
        logger.info(
tink2123's avatar
tink2123 committed
173
174
175
176
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
tink2123's avatar
tink2123 committed
177
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
tink2123's avatar
tink2123 committed
178
        exit()
LDOUBLEV's avatar
LDOUBLEV committed
179
180
181
182
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))
183
184
185
186


if __name__ == "__main__":
    main(utility.parse_args())