README.md 6.53 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
<p align="center">
    <br>
Anton Lozhkov's avatar
Anton Lozhkov committed
3
    <img src="docs/source/imgs/diffusers_library.jpg" width="400"/>
Patrick von Platen's avatar
Patrick von Platen committed
4
5
6
    <br>
<p>
<p align="center">
Anton Lozhkov's avatar
Anton Lozhkov committed
7
    <a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
Patrick von Platen's avatar
Patrick von Platen committed
8
9
10
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
    </a>
    <a href="https://github.com/huggingface/diffusers/releases">
Anton Lozhkov's avatar
Anton Lozhkov committed
11
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
18
19
20
21
22
23
24
    </a>
    <a href="CODE_OF_CONDUCT.md">
        <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
    </a>
</p>

🤗 Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves
as a modular toolbox for inference and training of diffusion models.

More precisely, 🤗 Diffusers offers:

- State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)).
- Various noise schedulers that can be used interchangeably for the prefered speed vs. quality trade-off in inference (see [src/diffusers/schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)).
Suraj Patil's avatar
Suraj Patil committed
25
- Multiple types of models, such as UNet, that can be used as building blocks in an end-to-end diffusion system (see [src/diffusers/models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)).
Patrick von Platen's avatar
up  
Patrick von Platen committed
26
- Training examples to show how to train the most popular diffusion models (see [examples](https://github.com/huggingface/diffusers/tree/main/examples)).
Patrick von Platen's avatar
Patrick von Platen committed
27

Patrick von Platen's avatar
Patrick von Platen committed
28
## Definitions
Patrick von Platen's avatar
Patrick von Platen committed
29

Kashif Rasul's avatar
Kashif Rasul committed
30
**Models**: Neural network that models $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ (see image below) and is trained end-to-end to *denoise* a noisy input to an image.
Patrick von Platen's avatar
Patrick von Platen committed
31
*Examples*: UNet, Conditioned UNet, 3D UNet, Transformer UNet
Patrick von Platen's avatar
Patrick von Platen committed
32

Nathan Lambert's avatar
Nathan Lambert committed
33
34
35
36
37
38
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174349667-04e9e485-793b-429a-affe-096e8199ad5b.png" width="800"/>
    <br>
    <em> Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
**Schedulers**: Algorithm class for both **inference** and **training**.
The class provides functionality to compute previous image according to alpha, beta schedule as well as predict noise for training.
*Examples*: [DDPM](https://arxiv.org/abs/2006.11239), [DDIM](https://arxiv.org/abs/2010.02502), [PNDM](https://arxiv.org/abs/2202.09778), [DEIS](https://arxiv.org/abs/2204.13902)
Patrick von Platen's avatar
Patrick von Platen committed
42

Nathan Lambert's avatar
Nathan Lambert committed
43
44
45
46
47
48
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174349706-53d58acc-a4d1-4cda-b3e8-432d9dc7ad38.png" width="800"/>
    <br>
    <em> Sampling and training algorithms. Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
49

Patrick von Platen's avatar
Patrick von Platen committed
50
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, ...
Patrick von Platen's avatar
Patrick von Platen committed
51
*Examples*: Glide, Latent-Diffusion, Imagen, DALL-E 2
Patrick von Platen's avatar
Patrick von Platen committed
52

Nathan Lambert's avatar
Nathan Lambert committed
53
54
55
56
57
58
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174348898-481bd7c2-5457-4830-89bc-f0907756f64c.jpeg" width="550"/>
    <br>
    <em> Figure from ImageGen (https://imagen.research.google/). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
59
60
## Philosophy

milyiyo's avatar
milyiyo committed
61
- Readability and clarity is prefered over highly optimized code. A strong importance is put on providing readable, intuitive and elementary code design. *E.g.*, the provided [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) are separated from the provided [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and provide well-commented code that can be read alongside the original paper.
Patrick von Platen's avatar
Patrick von Platen committed
62
63
64
- Diffusers is **modality independent** and focusses on providing pretrained models and tools to build systems that generate **continous outputs**, *e.g.* vision and audio.
- Diffusion models and schedulers are provided as consise, elementary building blocks whereas diffusion pipelines are a collection of end-to-end diffusion systems that can be used out-of-the-box, should stay as close as possible to their original implementation and can include components of other library, such as text-encoders. Examples for diffusion pipelines are [Glide](https://github.com/openai/glide-text2im) and [Latent Diffusion](https://github.com/CompVis/latent-diffusion).

Patrick von Platen's avatar
Patrick von Platen committed
65
66
## Quickstart

Patrick von Platen's avatar
Patrick von Platen committed
67
68
### Installation

Patrick von Platen's avatar
Patrick von Platen committed
69
```
Patrick von Platen's avatar
Patrick von Platen committed
70
pip install diffusers  # should install diffusers 0.0.4
Patrick von Platen's avatar
Patrick von Platen committed
71
```
Patrick von Platen's avatar
Patrick von Platen committed
72

Kashif Rasul's avatar
Kashif Rasul committed
73
### 1. `diffusers` as a toolbox for schedulers and models
Patrick von Platen's avatar
Patrick von Platen committed
74

Patrick von Platen's avatar
Patrick von Platen committed
75
76
`diffusers` is more modularized than `transformers`. The idea is that researchers and engineers can use only parts of the library easily for the own use cases.
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
Patrick von Platen's avatar
Patrick von Platen committed
77
Both models and schedulers should be load- and saveable from the Hub.
Patrick von Platen's avatar
Patrick von Platen committed
78

Patrick von Platen's avatar
Patrick von Platen committed
79
80
For more examples see [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) and [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)

Patrick von Platen's avatar
Patrick von Platen committed
81
#### **Example for Unconditonal Image generation [DDPM](https://arxiv.org/abs/2006.11239):**
Patrick von Platen's avatar
Patrick von Platen committed
82
83
84

```python
import torch
Patrick von Platen's avatar
Patrick von Platen committed
85
86
from diffusers import UNetUnconditionalModel, DDIMScheduler
import PIL.Image
Patrick von Platen's avatar
Patrick von Platen committed
87
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
88
import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
89

Patrick von Platen's avatar
Patrick von Platen committed
90
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
91
92

# 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
93
94
scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq", tensor_format="pt")
unet = UNetUnconditionalModel.from_pretrained("fusing/ddpm-celeba-hq", ddpm=True).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
95
96

# 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
97
98
generator = torch.manual_seed(23)
unet.image_size = unet.resolution
Patrick von Platen's avatar
Patrick von Platen committed
99
image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
100
   (1, unet.in_channels, unet.image_size, unet.image_size),
Suraj Patil's avatar
Suraj Patil committed
101
   generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
102
103
)
image = image.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
104

Patrick von Platen's avatar
Patrick von Platen committed
105
# 3. Denoise
Patrick von Platen's avatar
Patrick von Platen committed
106
107
num_inference_steps = 50
eta = 0.0  # <- deterministic sampling
Patrick von Platen's avatar
Patrick von Platen committed
108
scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
109

Patrick von Platen's avatar
Patrick von Platen committed
110
for t in tqdm.tqdm(scheduler.timesteps):
Kashif Rasul's avatar
Kashif Rasul committed
111
    # 1. predict noise residual
112
    with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
113
        residual = unet(image, t)["sample"]
Kashif Rasul's avatar
Kashif Rasul committed
114

Patrick von Platen's avatar
Patrick von Platen committed
115
    prev_image = scheduler.step(residual, t, image, eta)["prev_sample"]
Kashif Rasul's avatar
Kashif Rasul committed
116

Patrick von Platen's avatar
Patrick von Platen committed
117
118
    # 3. set current image to prev_image: x_t -> x_t-1
    image = prev_image
Kashif Rasul's avatar
Kashif Rasul committed
119

Patrick von Platen's avatar
Patrick von Platen committed
120
# 4. process image to PIL
Patrick von Platen's avatar
Patrick von Platen committed
121
122
123
124
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
Patrick von Platen's avatar
Patrick von Platen committed
125

Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
130
131
132
# 5. save image
image_pil.save("generated_image.png")
``` 

#### **Example for Unconditonal Image generation [LDM](https://github.com/CompVis/latent-diffusion):**

```python
Patrick von Platen's avatar
Patrick von Platen committed
133
```