unet_2d_blocks.py 119 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional, Tuple
15

16
import numpy as np
17
import torch
18
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
19
20
from torch import nn

21
from ..utils import is_torch_version, logging
22
from .activations import get_activation
23
from .attention import AdaGroupNorm
24
from .attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
25
from .dual_transformer_2d import DualTransformer2DModel
26
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
27
from .transformer_2d import Transformer2DModel
Patrick von Platen's avatar
Patrick von Platen committed
28
29


30
31
32
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


33
34
35
36
37
38
39
40
41
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
42
    transformer_layers_per_block=1,
43
    num_attention_heads=None,
44
    resnet_groups=None,
45
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
46
    downsample_padding=None,
47
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
48
    use_linear_projection=False,
49
    only_cross_attention=False,
50
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
51
    resnet_time_scale_shift="default",
52
53
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
54
    cross_attention_norm=None,
55
    attention_head_dim=None,
56
    downsample_type=None,
57
):
58
59
60
61
62
63
64
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
68
69
70
71
72
73
74
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
75
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
76
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
77
78
79
80
81
82
83
84
85
86
87
88
89
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "ResnetDownsampleBlock2D":
        return ResnetDownsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
90
91
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
92
        )
Patrick von Platen's avatar
Patrick von Platen committed
93
    elif down_block_type == "AttnDownBlock2D":
94
95
96
97
        if add_downsample is False:
            downsample_type = None
        else:
            downsample_type = downsample_type or "conv"  # default to 'conv'
Patrick von Platen's avatar
Patrick von Platen committed
98
        return AttnDownBlock2D(
99
100
101
102
103
104
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
105
            resnet_groups=resnet_groups,
106
            downsample_padding=downsample_padding,
107
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
108
            resnet_time_scale_shift=resnet_time_scale_shift,
109
            downsample_type=downsample_type,
110
        )
Patrick von Platen's avatar
Patrick von Platen committed
111
    elif down_block_type == "CrossAttnDownBlock2D":
112
        if cross_attention_dim is None:
113
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
114
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
115
            num_layers=num_layers,
116
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
120
121
122
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
123
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
124
            downsample_padding=downsample_padding,
125
            cross_attention_dim=cross_attention_dim,
126
            num_attention_heads=num_attention_heads,
127
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
128
            use_linear_projection=use_linear_projection,
129
            only_cross_attention=only_cross_attention,
130
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "SimpleCrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
        return SimpleCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
146
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
147
            resnet_time_scale_shift=resnet_time_scale_shift,
148
149
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
150
            only_cross_attention=only_cross_attention,
151
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
152
        )
Patrick von Platen's avatar
Patrick von Platen committed
153
154
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
155
156
157
158
159
160
161
162
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
163
            resnet_time_scale_shift=resnet_time_scale_shift,
164
        )
Patrick von Platen's avatar
Patrick von Platen committed
165
166
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
167
168
169
170
171
172
173
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
174
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
175
            resnet_time_scale_shift=resnet_time_scale_shift,
176
        )
177
178
179
180
181
182
183
184
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
185
            resnet_groups=resnet_groups,
186
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
187
            resnet_time_scale_shift=resnet_time_scale_shift,
188
        )
Will Berman's avatar
Will Berman committed
189
190
191
192
193
194
195
196
197
198
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
199
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
200
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
201
        )
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    elif down_block_type == "KDownBlock2D":
        return KDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif down_block_type == "KCrossAttnDownBlock2D":
        return KCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
222
            attention_head_dim=attention_head_dim,
223
224
            add_self_attention=True if not add_downsample else False,
        )
Will Berman's avatar
Will Berman committed
225
    raise ValueError(f"{down_block_type} does not exist.")
226
227
228
229
230
231


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
232
233
    out_channels,
    prev_output_channel,
234
235
236
237
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
238
    transformer_layers_per_block=1,
239
    num_attention_heads=None,
240
    resnet_groups=None,
241
    cross_attention_dim=None,
242
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
243
    use_linear_projection=False,
244
    only_cross_attention=False,
245
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
246
    resnet_time_scale_shift="default",
247
248
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
249
    cross_attention_norm=None,
250
    attention_head_dim=None,
251
    upsample_type=None,
252
):
253
254
255
256
257
258
259
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
260
261
262
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
263
264
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
265
266
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
267
268
269
270
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
271
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "ResnetUpsampleBlock2D":
        return ResnetUpsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
286
287
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
288
        )
Patrick von Platen's avatar
Patrick von Platen committed
289
    elif up_block_type == "CrossAttnUpBlock2D":
290
291
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
292
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
293
            num_layers=num_layers,
294
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
295
296
297
298
299
300
301
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
302
            resnet_groups=resnet_groups,
303
            cross_attention_dim=cross_attention_dim,
304
            num_attention_heads=num_attention_heads,
305
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
306
            use_linear_projection=use_linear_projection,
307
            only_cross_attention=only_cross_attention,
308
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "SimpleCrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
        return SimpleCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
325
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
326
            resnet_time_scale_shift=resnet_time_scale_shift,
327
328
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
329
            only_cross_attention=only_cross_attention,
330
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
331
        )
Patrick von Platen's avatar
Patrick von Platen committed
332
    elif up_block_type == "AttnUpBlock2D":
333
334
335
336
337
        if add_upsample is False:
            upsample_type = None
        else:
            upsample_type = upsample_type or "conv"  # default to 'conv'

Patrick von Platen's avatar
Patrick von Platen committed
338
        return AttnUpBlock2D(
339
340
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
341
342
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
343
344
345
            temb_channels=temb_channels,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
346
            resnet_groups=resnet_groups,
347
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
348
            resnet_time_scale_shift=resnet_time_scale_shift,
349
            upsample_type=upsample_type,
350
        )
Patrick von Platen's avatar
Patrick von Platen committed
351
352
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
353
354
355
356
357
358
359
360
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
Will Berman's avatar
Will Berman committed
361
            resnet_time_scale_shift=resnet_time_scale_shift,
362
        )
Patrick von Platen's avatar
Patrick von Platen committed
363
364
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
365
366
367
368
369
370
371
372
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
373
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
374
            resnet_time_scale_shift=resnet_time_scale_shift,
375
        )
376
377
378
379
380
381
382
383
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
384
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
385
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
386
            temb_channels=temb_channels,
387
        )
Will Berman's avatar
Will Berman committed
388
389
390
391
392
393
394
395
396
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
397
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
398
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
399
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
400
        )
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
    elif up_block_type == "KUpBlock2D":
        return KUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif up_block_type == "KCrossAttnUpBlock2D":
        return KCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
421
            attention_head_dim=attention_head_dim,
422
423
        )

424
    raise ValueError(f"{up_block_type} does not exist.")
425
426


427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
class AutoencoderTinyBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, act_fn: str):
        super().__init__()
        act_fn = get_activation(act_fn)
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
        )
        self.skip = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
            if in_channels != out_channels
            else nn.Identity()
        )
        self.fuse = nn.ReLU()

    def forward(self, x):
        return self.fuse(self.conv(x) + self.skip(x))


Patrick von Platen's avatar
Patrick von Platen committed
449
450
451
452
453
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
454
        dropout: float = 0.0,
455
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
456
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
457
        resnet_time_scale_shift: str = "default",  # default, spatial
Patrick von Platen's avatar
Patrick von Platen committed
458
459
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
460
        resnet_pre_norm: bool = True,
Will Berman's avatar
Will Berman committed
461
        add_attention: bool = True,
462
        attention_head_dim=1,
Patrick von Platen's avatar
Patrick von Platen committed
463
464
465
        output_scale_factor=1.0,
    ):
        super().__init__()
466
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Will Berman's avatar
Will Berman committed
467
        self.add_attention = add_attention
Patrick von Platen's avatar
Patrick von Platen committed
468

469
470
        # there is always at least one resnet
        resnets = [
471
            ResnetBlock2D(
472
473
474
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
475
                eps=resnet_eps,
476
477
478
479
480
481
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
482
            )
483
484
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
485

486
487
488
489
490
491
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
            )
            attention_head_dim = in_channels

492
        for _ in range(num_layers):
Will Berman's avatar
Will Berman committed
493
494
            if self.add_attention:
                attentions.append(
495
                    Attention(
Will Berman's avatar
Will Berman committed
496
                        in_channels,
497
498
                        heads=in_channels // attention_head_dim,
                        dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
499
500
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
YiYi Xu's avatar
YiYi Xu committed
501
502
                        norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
                        spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
503
504
505
506
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
Will Berman's avatar
Will Berman committed
507
                    )
508
                )
Will Berman's avatar
Will Berman committed
509
510
511
            else:
                attentions.append(None)

512
            resnets.append(
513
                ResnetBlock2D(
514
515
516
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
517
                    eps=resnet_eps,
518
519
520
521
522
523
524
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
525
526
            )

527
528
529
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Will Berman's avatar
Will Berman committed
530
    def forward(self, hidden_states, temb=None):
Patrick von Platen's avatar
Patrick von Platen committed
531
        hidden_states = self.resnets[0](hidden_states, temb)
532
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
533
            if attn is not None:
YiYi Xu's avatar
YiYi Xu committed
534
                hidden_states = attn(hidden_states, temb=temb)
Patrick von Platen's avatar
Patrick von Platen committed
535
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
536

537
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
538

539

Patrick von Platen's avatar
Patrick von Platen committed
540
541
542
543
544
545
546
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
547
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
548
549
550
551
552
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
553
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
554
555
        output_scale_factor=1.0,
        cross_attention_dim=1280,
556
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
557
        use_linear_projection=False,
558
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
559
560
561
    ):
        super().__init__()

562
        self.has_cross_attention = True
563
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
564
565
566
567
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
568
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
584
585
586
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
587
588
                        num_attention_heads,
                        in_channels // num_attention_heads,
589
                        in_channels=in_channels,
590
                        num_layers=transformer_layers_per_block,
591
592
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
593
                        use_linear_projection=use_linear_projection,
594
                        upcast_attention=upcast_attention,
595
596
597
598
599
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
600
601
                        num_attention_heads,
                        in_channels // num_attention_heads,
602
603
604
605
606
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
607
608
                )
            resnets.append(
609
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

626
627
        self.gradient_checkpointing = False

628
    def forward(
629
630
631
632
633
634
635
636
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
Patrick von Platen's avatar
Patrick von Platen committed
637
638
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    None,  # timestep
                    None,  # class_labels
                    cross_attention_kwargs,
                    attention_mask,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
                hidden_states = resnet(hidden_states, temb)
Will Berman's avatar
Will Berman committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

        return hidden_states


class UNetMidBlock2DSimpleCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
694
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
695
696
        output_scale_factor=1.0,
        cross_attention_dim=1280,
697
        skip_time_act=False,
698
        only_cross_attention=False,
699
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
700
701
702
703
704
    ):
        super().__init__()

        self.has_cross_attention = True

705
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
706
707
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

708
        self.num_heads = in_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
723
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
724
725
726
727
728
            )
        ]
        attentions = []

        for _ in range(num_layers):
729
730
731
732
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
733
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
734
                Attention(
Will Berman's avatar
Will Berman committed
735
736
737
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
738
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
739
740
741
742
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
743
                    only_cross_attention=only_cross_attention,
744
                    cross_attention_norm=cross_attention_norm,
745
                    processor=processor,
Will Berman's avatar
Will Berman committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
760
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
761
762
763
764
765
766
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

767
    def forward(
768
769
770
771
772
773
774
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
775
776
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
777
778
779
780
781
782
783
784
785
786
787
788

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
789
790
791
792
793
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
794
                encoder_hidden_states=encoder_hidden_states,
795
                attention_mask=mask,
796
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
797
798
799
            )

            # resnet
Patrick von Platen's avatar
Patrick von Platen committed
800
801
802
803
804
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
805
class AttnDownBlock2D(nn.Module):
806
807
808
809
810
811
812
813
814
815
816
817
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
818
        attention_head_dim=1,
819
        output_scale_factor=1.0,
820
        downsample_padding=1,
821
        downsample_type="conv",
822
823
824
825
    ):
        super().__init__()
        resnets = []
        attentions = []
826
        self.downsample_type = downsample_type
827

828
829
830
831
832
833
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

834
835
836
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
837
                ResnetBlock2D(
838
839
840
841
842
843
844
845
846
847
848
849
850
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
851
                Attention(
852
                    out_channels,
853
854
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
855
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
856
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
857
                    norm_num_groups=resnet_groups,
858
859
860
861
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
862
863
864
865
866
867
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

868
        if downsample_type == "conv":
869
            self.downsamplers = nn.ModuleList(
870
871
                [
                    Downsample2D(
872
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
873
874
                    )
                ]
875
            )
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
        elif downsample_type == "resnet":
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        down=True,
                    )
                ]
            )
894
895
896
        else:
            self.downsamplers = None

897
    def forward(self, hidden_states, temb=None, upsample_size=None):
898
899
900
901
902
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
903
            output_states = output_states + (hidden_states,)
904
905
906

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
907
908
909
910
                if self.downsample_type == "resnet":
                    hidden_states = downsampler(hidden_states, temb=temb)
                else:
                    hidden_states = downsampler(hidden_states)
911
912
913
914
915
916

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
917
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
918
919
920
921
922
923
924
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
925
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
926
927
928
929
930
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
931
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
932
933
934
935
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
936
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
937
        use_linear_projection=False,
938
        only_cross_attention=False,
939
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
940
941
942
943
944
    ):
        super().__init__()
        resnets = []
        attentions = []

945
        self.has_cross_attention = True
946
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
947
948
949
950

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
951
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
952
953
954
955
956
957
958
959
960
961
962
963
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
964
965
966
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
967
968
                        num_attention_heads,
                        out_channels // num_attention_heads,
969
                        in_channels=out_channels,
970
                        num_layers=transformer_layers_per_block,
971
972
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
973
                        use_linear_projection=use_linear_projection,
974
                        only_cross_attention=only_cross_attention,
975
                        upcast_attention=upcast_attention,
976
977
978
979
980
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
981
982
                        num_attention_heads,
                        out_channels // num_attention_heads,
983
984
985
986
987
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
988
989
990
991
992
993
994
995
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
996
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
997
998
999
1000
1001
1002
                    )
                ]
            )
        else:
            self.downsamplers = None

1003
1004
        self.gradient_checkpointing = False

1005
    def forward(
1006
1007
1008
1009
1010
1011
1012
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
1013
        additional_residuals=None,
1014
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1015
1016
        output_states = ()

Will Berman's avatar
Will Berman committed
1017
1018
1019
        blocks = list(zip(self.resnets, self.attentions))

        for i, (resnet, attn) in enumerate(blocks):
1020
1021
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1022
                def create_custom_forward(module, return_dict=None):
1023
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1024
1025
1026
1027
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1028
1029
1030

                    return custom_forward

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    None,  # timestep
                    None,  # class_labels
                    cross_attention_kwargs,
                    attention_mask,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
1049
1050
            else:
                hidden_states = resnet(hidden_states, temb)
1051
1052
1053
1054
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1055
1056
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1057
1058
                    return_dict=False,
                )[0]
1059

Will Berman's avatar
Will Berman committed
1060
1061
1062
1063
            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

1064
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1065
1066
1067
1068
1069

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

1070
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1071
1072
1073
1074

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1075
class DownBlock2D(nn.Module):
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
1090
        downsample_padding=1,
1091
1092
1093
1094
1095
1096
1097
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1098
                ResnetBlock2D(
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
1116
1117
                [
                    Downsample2D(
1118
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1119
1120
                    )
                ]
1121
1122
1123
1124
            )
        else:
            self.downsamplers = None

1125
1126
        self.gradient_checkpointing = False

1127
1128
1129
1130
    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
1131
1132
1133
1134
1135
1136
1137
1138
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1139
1140
1141
1142
1143
1144
1145
1146
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1147
1148
1149
            else:
                hidden_states = resnet(hidden_states, temb)

1150
            output_states = output_states + (hidden_states,)
1151
1152
1153
1154
1155

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

1156
            output_states = output_states + (hidden_states,)
1157
1158
1159
1160

        return hidden_states, output_states


1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1183
                ResnetBlock2D(
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1203
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1233
        attention_head_dim=1,
1234
1235
1236
1237
1238
1239
1240
1241
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

1242
1243
1244
1245
1246
1247
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1248
1249
1250
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1251
                ResnetBlock2D(
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1265
                Attention(
1266
                    out_channels,
1267
1268
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1269
1270
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1271
                    norm_num_groups=resnet_groups,
1272
1273
1274
1275
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1286
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1305
class AttnSkipDownBlock2D(nn.Module):
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
1317
        attention_head_dim=1,
1318
1319
1320
1321
1322
1323
1324
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

1325
1326
1327
1328
1329
1330
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1331
1332
1333
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1334
                ResnetBlock2D(
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
1349
                Attention(
1350
                    out_channels,
1351
1352
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1353
1354
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
1355
1356
1357
1358
1359
                    norm_num_groups=32,
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1360
1361
1362
1363
                )
            )

        if add_downsample:
1364
            self.resnet_down = ResnetBlock2D(
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1375
                use_in_shortcut=True,
1376
1377
1378
                down=True,
                kernel="fir",
            )
1379
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1406
class SkipDownBlock2D(nn.Module):
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1428
                ResnetBlock2D(
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
1444
            self.resnet_down = ResnetBlock2D(
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1455
                use_in_shortcut=True,
1456
1457
1458
                down=True,
                kernel="fir",
            )
1459
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Will Berman's avatar
Will Berman committed
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
class ResnetDownsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
1500
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1519
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1539
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1561
1562
1563
1564
1565
1566
1567
1568
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
1569
1570
1571
            else:
                hidden_states = resnet(hidden_states, temb)

1572
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1573
1574
1575
1576
1577

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, temb)

1578
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595

        return hidden_states, output_states


class SimpleCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1596
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
1597
1598
1599
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_downsample=True,
1600
        skip_time_act=False,
1601
        only_cross_attention=False,
1602
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
1603
1604
1605
1606
1607
1608
1609
1610
    ):
        super().__init__()

        self.has_cross_attention = True

        resnets = []
        attentions = []

1611
1612
        self.attention_head_dim = attention_head_dim
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1628
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1629
1630
                )
            )
1631
1632
1633
1634
1635

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
1636
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
1637
                Attention(
Will Berman's avatar
Will Berman committed
1638
1639
1640
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
1641
                    dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
1642
1643
1644
1645
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1646
                    only_cross_attention=only_cross_attention,
1647
                    cross_attention_norm=cross_attention_norm,
1648
                    processor=processor,
Will Berman's avatar
Will Berman committed
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1668
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1669
1670
1671
1672
1673
1674
1675
1676
1677
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1678
    def forward(
1679
1680
1681
1682
1683
1684
1685
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1686
    ):
Will Berman's avatar
Will Berman committed
1687
        output_states = ()
1688
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
1689

1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
1701
        for resnet, attn in zip(self.resnets, self.attentions):
1702
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
1703

1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
1718
                    mask,
1719
1720
1721
1722
1723
1724
1725
1726
                    cross_attention_kwargs,
                )[0]
            else:
                hidden_states = resnet(hidden_states, temb)

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
1727
                    attention_mask=mask,
1728
1729
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
1730

1731
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1732
1733
1734
1735
1736

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, temb)

1737
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1738
1739
1740
1741

        return hidden_states, output_states


1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
class KDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
        add_downsample=False,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            # YiYi's comments- might be able to use FirDownsample2D, look into details later
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1800
1801
1802
1803
1804
1805
1806
1807
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
            else:
                hidden_states = resnet(hidden_states, temb)

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


class KCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        cross_attention_dim: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_group_size: int = 32,
        add_downsample=True,
1831
        attention_head_dim: int = 64,
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
        add_self_attention: bool = False,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    out_channels,
1864
1865
                    out_channels // attention_head_dim,
                    attention_head_dim,
1866
1867
1868
1869
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
1870
                    cross_attention_norm="layer_norm",
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
                    group_size=resnet_group_size,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_downsample:
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
1886
1887
1888
1889
1890
1891
1892
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
    ):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    cross_attention_kwargs,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )
1925
1926
1927
1928
1929
1930
1931
1932
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
1933
                    encoder_attention_mask=encoder_attention_mask,
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
                )

            if self.downsamplers is None:
                output_states += (None,)
            else:
                output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1948
class AttnUpBlock2D(nn.Module):
1949
1950
1951
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1952
1953
        prev_output_channel: int,
        out_channels: int,
1954
1955
1956
1957
1958
1959
1960
1961
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1962
        attention_head_dim=1,
1963
        output_scale_factor=1.0,
1964
        upsample_type="conv",
1965
1966
1967
1968
1969
    ):
        super().__init__()
        resnets = []
        attentions = []

1970
1971
        self.upsample_type = upsample_type

1972
1973
1974
1975
1976
1977
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1978
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1979
1980
1981
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1982
            resnets.append(
1983
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1984
1985
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1997
                Attention(
Patrick von Platen's avatar
Patrick von Platen committed
1998
                    out_channels,
1999
2000
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2001
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
2002
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
2003
                    norm_num_groups=resnet_groups,
2004
2005
2006
2007
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2008
2009
2010
2011
2012
2013
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

2014
        if upsample_type == "conv":
Patrick von Platen's avatar
Patrick von Platen committed
2015
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
        elif upsample_type == "resnet":
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        up=True,
                    )
                ]
            )
2034
2035
2036
        else:
            self.upsamplers = None

2037
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2049
2050
2051
2052
                if self.upsample_type == "resnet":
                    hidden_states = upsampler(hidden_states, temb=temb)
                else:
                    hidden_states = upsampler(hidden_states)
2053
2054
2055
2056

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2057
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
2058
2059
2060
2061
2062
2063
2064
2065
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
2066
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
2067
2068
2069
2070
2071
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2072
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
2073
2074
2075
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2076
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
2077
        use_linear_projection=False,
2078
        only_cross_attention=False,
2079
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
2080
2081
2082
2083
2084
    ):
        super().__init__()
        resnets = []
        attentions = []

2085
        self.has_cross_attention = True
2086
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
2087
2088
2089
2090
2091
2092

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
2093
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
2106
2107
2108
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
2109
2110
                        num_attention_heads,
                        out_channels // num_attention_heads,
2111
                        in_channels=out_channels,
2112
                        num_layers=transformer_layers_per_block,
2113
2114
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
2115
                        use_linear_projection=use_linear_projection,
2116
                        only_cross_attention=only_cross_attention,
2117
                        upcast_attention=upcast_attention,
2118
2119
2120
2121
2122
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
2123
2124
                        num_attention_heads,
                        out_channels // num_attention_heads,
2125
2126
2127
2128
2129
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
2130
2131
2132
2133
2134
2135
2136
2137
2138
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2139
2140
2141
2142
        self.gradient_checkpointing = False

    def forward(
        self,
2143
2144
2145
2146
2147
2148
2149
2150
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
2151
    ):
Patrick von Platen's avatar
Patrick von Platen committed
2152
2153
2154
2155
2156
2157
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2158
2159
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
2160
                def create_custom_forward(module, return_dict=None):
2161
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
2162
2163
2164
2165
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
2166
2167
2168

                    return custom_forward

2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    None,  # timestep
                    None,  # class_labels
                    cross_attention_kwargs,
                    attention_mask,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
2187
2188
            else:
                hidden_states = resnet(hidden_states, temb)
2189
2190
2191
2192
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
2193
2194
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
2195
2196
                    return_dict=False,
                )[0]
Patrick von Platen's avatar
Patrick von Platen committed
2197
2198
2199

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2200
                hidden_states = upsampler(hidden_states, upsample_size)
Patrick von Platen's avatar
Patrick von Platen committed
2201
2202
2203
2204

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2205
class UpBlock2D(nn.Module):
2206
2207
2208
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
2209
2210
        prev_output_channel: int,
        out_channels: int,
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2226
2227
2228
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2229
            resnets.append(
2230
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2231
2232
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
2247
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2248
2249
2250
        else:
            self.upsamplers = None

2251
2252
        self.gradient_checkpointing = False

2253
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
2254
2255
2256
2257
2258
2259
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2260
2261
2262
2263
2264
2265
2266
2267
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2268
2269
2270
2271
2272
2273
2274
2275
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2276
2277
            else:
                hidden_states = resnet(hidden_states, temb)
2278
2279
2280

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2281
                hidden_states = upsampler(hidden_states, upsample_size)
2282
2283

        return hidden_states
2284
2285


2286
2287
2288
2289
2290
2291
2292
2293
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
2294
        resnet_time_scale_shift: str = "default",  # default, spatial
2295
2296
2297
2298
2299
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2300
        temb_channels=None,
2301
2302
2303
2304
2305
2306
2307
2308
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2309
                ResnetBlock2D(
2310
2311
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2312
                    temb_channels=temb_channels,
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

YiYi Xu's avatar
YiYi Xu committed
2330
    def forward(self, hidden_states, temb=None):
2331
        for resnet in self.resnets:
YiYi Xu's avatar
YiYi Xu committed
2332
            hidden_states = resnet(hidden_states, temb=temb)
2333
2334
2335
2336
2337
2338
2339
2340

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2353
        attention_head_dim=1,
2354
2355
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2356
        temb_channels=None,
2357
2358
2359
2360
2361
    ):
        super().__init__()
        resnets = []
        attentions = []

2362
2363
2364
2365
2366
2367
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2368
2369
2370
2371
        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2372
                ResnetBlock2D(
2373
2374
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2375
                    temb_channels=temb_channels,
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2386
                Attention(
2387
                    out_channels,
2388
2389
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2390
2391
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
2392
                    norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
YiYi Xu's avatar
YiYi Xu committed
2393
                    spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
2394
2395
2396
2397
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

YiYi Xu's avatar
YiYi Xu committed
2409
    def forward(self, hidden_states, temb=None):
2410
        for resnet, attn in zip(self.resnets, self.attentions):
YiYi Xu's avatar
YiYi Xu committed
2411
2412
            hidden_states = resnet(hidden_states, temb=temb)
            hidden_states = attn(hidden_states, temb=temb)
2413
2414
2415
2416
2417
2418
2419
2420

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2421
class AttnSkipUpBlock2D(nn.Module):
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
2434
        attention_head_dim=1,
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2447
                ResnetBlock2D(
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

2462
2463
2464
2465
2466
2467
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2468
        self.attentions.append(
2469
            Attention(
2470
                out_channels,
2471
2472
                heads=out_channels // attention_head_dim,
                dim_head=attention_head_dim,
2473
2474
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
2475
2476
2477
2478
2479
                norm_num_groups=32,
                residual_connection=True,
                bias=True,
                upcast_softmax=True,
                _from_deprecated_attn_block=True,
2480
2481
2482
2483
2484
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2485
            self.resnet_up = ResnetBlock2D(
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2497
                use_in_shortcut=True,
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        hidden_states = self.attentions[0](hidden_states)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
2540
class SkipUpBlock2D(nn.Module):
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2565
                ResnetBlock2D(
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2582
            self.resnet_up = ResnetBlock2D(
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2594
                use_in_shortcut=True,
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample
Will Berman's avatar
Will Berman committed
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650


class ResnetUpsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
2651
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2672
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2692
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2717
2718
2719
2720
2721
2722
2723
2724
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
            else:
                hidden_states = resnet(hidden_states, temb)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, temb)

        return hidden_states


class SimpleCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2749
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
2750
2751
2752
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2753
        skip_time_act=False,
2754
        only_cross_attention=False,
2755
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
2756
2757
2758
2759
2760
2761
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
2762
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
2763

2764
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2782
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2783
2784
                )
            )
2785
2786
2787
2788
2789

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
2790
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
2791
                Attention(
Will Berman's avatar
Will Berman committed
2792
2793
2794
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
2795
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
2796
2797
2798
2799
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
2800
                    only_cross_attention=only_cross_attention,
2801
                    cross_attention_norm=cross_attention_norm,
2802
                    processor=processor,
Will Berman's avatar
Will Berman committed
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2822
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
2834
2835
2836
2837
2838
2839
2840
2841
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
2842
    ):
2843
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
2856
2857
2858
2859
2860
2861
2862
        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2863
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
2864

2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
2879
                    mask,
2880
2881
2882
2883
2884
2885
2886
2887
                    cross_attention_kwargs,
                )[0]
            else:
                hidden_states = resnet(hidden_states, temb)

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
2888
                    attention_mask=mask,
2889
2890
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
2891
2892
2893
2894
2895
2896

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, temb)

        return hidden_states
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960


class KUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 5,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: Optional[int] = 32,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        k_in_channels = 2 * out_channels
        k_out_channels = in_channels
        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2961
2962
2963
2964
2965
2966
2967
2968
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
            else:
                hidden_states = resnet(hidden_states, temb)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class KCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
2990
        attention_head_dim=1,  # attention dim_head
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
        cross_attention_dim: int = 768,
        add_upsample: bool = True,
        upcast_attention: bool = False,
    ):
        super().__init__()
        resnets = []
        attentions = []

        is_first_block = in_channels == out_channels == temb_channels
        is_middle_block = in_channels != out_channels
        add_self_attention = True if is_first_block else False

        self.has_cross_attention = True
3004
        self.attention_head_dim = attention_head_dim
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039

        # in_channels, and out_channels for the block (k-unet)
        k_in_channels = out_channels if is_first_block else 2 * out_channels
        k_out_channels = in_channels

        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            if is_middle_block and (i == num_layers - 1):
                conv_2d_out_channels = k_out_channels
            else:
                conv_2d_out_channels = None

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    conv_2d_out_channels=conv_2d_out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    k_out_channels if (i == num_layers - 1) else out_channels,
3040
                    k_out_channels // attention_head_dim
3041
                    if (i == num_layers - 1)
3042
3043
                    else out_channels // attention_head_dim,
                    attention_head_dim,
3044
3045
3046
3047
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
3048
                    cross_attention_norm="layer_norm",
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
                    upcast_attention=upcast_attention,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
3065
3066
3067
3068
3069
3070
3071
3072
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
    ):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    cross_attention_kwargs,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
3107
3108
3109
3110
3111
3112
3113
3114
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
3115
                    encoder_attention_mask=encoder_attention_mask,
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
                )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


# can potentially later be renamed to `No-feed-forward` attention
class KAttentionBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        upcast_attention: bool = False,
        temb_channels: int = 768,  # for ada_group_norm
        add_self_attention: bool = False,
3154
        cross_attention_norm: Optional[str] = None,
3155
3156
3157
3158
3159
3160
3161
3162
        group_size: int = 32,
    ):
        super().__init__()
        self.add_self_attention = add_self_attention

        # 1. Self-Attn
        if add_self_attention:
            self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3163
            self.attn1 = Attention(
3164
3165
3166
3167
3168
3169
                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                cross_attention_dim=None,
3170
                cross_attention_norm=None,
3171
3172
3173
3174
            )

        # 2. Cross-Attn
        self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3175
        self.attn2 = Attention(
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,
            cross_attention_norm=cross_attention_norm,
        )

    def _to_3d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)

    def _to_4d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)

    def forward(
        self,
3194
3195
3196
3197
3198
3199
3200
3201
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        # TODO: mark emb as non-optional (self.norm2 requires it).
        #       requires assessing impact of change to positional param interface.
        emb: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        # 1. Self-Attention
        if self.add_self_attention:
            norm_hidden_states = self.norm1(hidden_states, emb)

            height, weight = norm_hidden_states.shape[2:]
            norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=None,
3215
                attention_mask=attention_mask,
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
                **cross_attention_kwargs,
            )
            attn_output = self._to_4d(attn_output, height, weight)

            hidden_states = attn_output + hidden_states

        # 2. Cross-Attention/None
        norm_hidden_states = self.norm2(hidden_states, emb)

        height, weight = norm_hidden_states.shape[2:]
        norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
3230
            attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
3231
3232
3233
3234
3235
3236
3237
            **cross_attention_kwargs,
        )
        attn_output = self._to_4d(attn_output, height, weight)

        hidden_states = attn_output + hidden_states

        return hidden_states